1
|
Thiagarajan V, Nah T, Xin X. Impacts of atmospheric particulate matter deposition on phytoplankton: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175280. [PMID: 39122032 DOI: 10.1016/j.scitotenv.2024.175280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
In many rapidly urbanizing and industrializing countries, atmospheric pollution causes severe environmental problems and compromises the health of humans and ecosystems. Atmospheric emissions, which encompass gases and particulate matter, can be transported back to the earth's surface through atmospheric deposition. Atmospheric deposition supplies chemical species that can serve as nutrients and/or toxins to aquatic ecosystems, resulting in wide-ranging responses of aquatic organisms. Among the aquatic organisms, phytoplankton is the basis of the aquatic food web and is a key player in global primary production. Atmospheric deposition alters nutrient availability and thus influences phytoplankton species abundance and composition. This review provides a comprehensive overview of the physiological responses of phytoplankton resulting from the atmospheric deposition of trace metals, nitrogen-containing compounds, phosphorus-containing compounds, and sulfur-containing compounds in particulate matter into aquatic ecosystems. Knowledge gaps and critical areas for future studies are also discussed.
Collapse
Affiliation(s)
- Vignesh Thiagarajan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Theodora Nah
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Xiaying Xin
- Beaty Water Research Centre, Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
2
|
Yuan H, Yuan Q, Guan T, Cai Y, Liu E, Li B, Wang Y. Biotic regulation of phoD-encoding gene bacteria on organic phosphorus mineralization in lacustrine sediments with distinct trophic levels. WATER RESEARCH 2024; 260:121980. [PMID: 38909425 DOI: 10.1016/j.watres.2024.121980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Organic phosphorus (Po) mineralization hydrolyzed by alkaline phosphatase (APase) can replenish bioavailable P load in the sediment water ecosystem of lakes. However, the understanding about the interaction between P load and bacteria community encoding APase generation in the sediment are still limited. Different P pools in the sediments from Taihu Lake, China were measured using sequential extraction procedure. The APAase activity (APA) were obtained accompanying with enzymatic dynamical parameters Vmax and Km. The abundances and diversity of gene phoD-harboring bacterial communities were assessed using high throughput sequencing. The analysis results showed the decrease of potentially bioavailable P fractions including MgCl2-P and Fe-P along sampling gradient southwards together with active P concentrations in the water. Conversely, increasing APA and absolute abundance of phoD gene were found with the decreasing of P loads southwards. Positive correlation (p < 0.05) between absolute abundance and APA indicated that phoD-encoding bacteria manipulated the APA and Po mineralization. Negative correlation (p < 0.01) suggested that the APA was restrained by high P load and was promoted under low P condition. However, higher Vmax and Km values suggested that high mineralization potential of Po maintained the high concentrations of potentially bioavailable P even the APA was restricted. The abundance increase of predominant genus Cobetia (from 15.51 to 24.34 %) mirrored by the reduced Calothrix abundance (from 24.65 to 1036 %) was speculated to be responsible for the APA promotion under low P condition. Higher diversity indices in the high P scenario suggested that high P load stimulated the ecological diversity of gene phoD-encoding bacteria community. Generally, rare taxa such as Burkholderia having high connected degrees in bacterial communities together with abundant genera synergistically manipulated the phoD gene abundance and APase generation. Interaction between P fractions and bacteria encoding phoD gene determined the eutrophication status in the lacustrine ecosystem.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Qianhui Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Tong Guan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Bin Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
3
|
Jin H, Zhang C, Meng S, Wang Q, Ding X, Meng L, Zhuang Y, Yao X, Gao Y, Shi F, Mock T, Gao H. Atmospheric deposition and river runoff stimulate the utilization of dissolved organic phosphorus in coastal seas. Nat Commun 2024; 15:658. [PMID: 38291022 PMCID: PMC10828365 DOI: 10.1038/s41467-024-44838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
In coastal seas, the role of atmospheric deposition and river runoff in dissolved organic phosphorus (DOP) utilization is not well understood. Here, we address this knowledge gap by combining microcosm experiments with a global approach considering the relationship between the activity of alkaline phosphatases and changes in phytoplankton biomass in relation to the concentration of dissolved inorganic phosphorus (DIP). Our results suggest that the addition of aerosols and riverine water stimulate the biological utilization of DOP in coastal seas primarily by depleting DIP due to increasing nitrogen concentrations, which enhances phytoplankton growth. This "Anthropogenic Nitrogen Pump" was therefore identified to make DOP an important source of phosphorus for phytoplankton in coastal seas but only when the ratio of chlorophyll a to DIP [Log10 (Chl a / DIP)] is larger than 1.20. Our study therefore suggests that anthropogenic nitrogen input might contribute to the phosphorus cycle in coastal seas.
Collapse
Affiliation(s)
- Haoyu Jin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Chao Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China.
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China.
| | - Siyu Meng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Qin Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
| | - Xiaokun Ding
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Ling Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Zhuang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
| | - Xiaohong Yao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
| | - Yang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
| | - Feng Shi
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Huiwang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China.
- Marine Ecology and Environmental Science Laboratory, Laoshan Laboratory, Qingdao, 266071, China.
| |
Collapse
|
4
|
Su B, Song X, Duhamel S, Mahaffey C, Davis C, Ivančić I, Liu J. A dataset of global ocean alkaline phosphatase activity. Sci Data 2023; 10:205. [PMID: 37055424 PMCID: PMC10102321 DOI: 10.1038/s41597-023-02081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/16/2023] [Indexed: 04/15/2023] Open
Abstract
Utilisation of dissolved organic phosphorus (DOP) by marine microbes as an alternative phosphorus (P) source when phosphate is scarce can help sustain non-Redfieldian carbon:nitrogen:phosphorus ratios and efficient ocean carbon export. However, global spatial patterns and rates of microbial DOP utilisation are poorly investigated. Alkaline phosphatase (AP) is an important enzyme group that facilitates the remineralisation of DOP to phosphate and thus its activity is a good proxy for DOP-utilisation, particularly in P-stressed regions. We present a Global Alkaline Phosphatase Activity Dataset (GAPAD) with 4083 measurements collected from 79 published manuscripts and one database. Measurements are organised into four groups based on substrate and further subdivided into seven size fractions based on filtration pore size. The dataset is globally distributed and covers major oceanic regions, with most measurements collected in the upper 20 m of low-latitude oceanic regions during summer since 1997. This dataset can help support future studies assessing global ocean P supply from DOP utilisation and provide a useful data reference for both field investigations and modelling activities.
Collapse
Affiliation(s)
- Bei Su
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.
| | - Xianrui Song
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Solange Duhamel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Claire Mahaffey
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Merseyside, UK
| | - Clare Davis
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Merseyside, UK
- Now at Springer Nature, London, UK
| | - Ingrid Ivančić
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR-52210, Rovinj, Croatia
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
5
|
Blanckaert ACA, Grover R, Marcus MI, Ferrier-Pagès C. Nutrient starvation and nitrate pollution impairs the assimilation of dissolved organic phosphorus in coral-Symbiodiniaceae symbiosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159944. [PMID: 36351498 DOI: 10.1016/j.scitotenv.2022.159944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Phosphorus (P) is an essential but limiting nutrient for coral growth due to low concentrations of dissolved inorganic concentrations (DIP) in reef waters. P limitation is often exacerbated when concentrations of dissolved inorganic nitrogen (DIN) increase in the reef. To increase their access to phosphorus, corals can use organic P dissolved in seawater (DOP). They possess phosphatase enzymes that transform DOP into DIP, which can then be taken up by coral symbionts. Although the concentration of DOP in reef waters is much higher than DIP, the dependence of corals on this P source is still poorly understood, especially with different concentrations of DIN in seawater. As efforts to predict the future of corals increase, improved knowledge of the P requirements of corals living under different DIN concentrations may be key to predicting coral health. In this study, we investigated P content and phosphatase activities (PAs) in Stylophora pistillata maintained under nutrient starvation, long-term nitrogen enrichment (nitrate or ammonium at 2 μM) and short-term (few hours) nitrogen pulses. Results show that under nutrient depletion and ammonium-enriched conditions, a significant increase in PAs was observed compared to control conditions, with no change in the N:P ratio of the coral tissue. On the contrary, under nitrate enrichment, there was no increase in PAs compared to control conditions, but an increase in the N:P ratio of the coral tissue. These results suggest that under nitrate enrichment, corals were unable to increase their ability to rely on DOP and replenish their cellular P content. An increase in cellular N:P ratio is detrimental to coral health as it increases the susceptibility of coral bleaching under thermal stress. These results provide an overall view of the P requirements of corals exposed to different nutrient conditions and improve our understanding of the effects of nitrogen enrichment on corals.
Collapse
Affiliation(s)
- Alice C A Blanckaert
- Sorbonne Université, UPMC Université Paris VI, IFD-ED 129, Paris Cedex 05, France; Centre Scientifique de Monaco, Coral Ecophysiology Team, 8 Quai Antoine I(er), MC 98000, Monaco.
| | - Renaud Grover
- Centre Scientifique de Monaco, Coral Ecophysiology Team, 8 Quai Antoine I(er), MC 98000, Monaco
| | - Maria-Isabelle Marcus
- Centre Scientifique de Monaco, Coral Ecophysiology Team, 8 Quai Antoine I(er), MC 98000, Monaco
| | - Christine Ferrier-Pagès
- Centre Scientifique de Monaco, Coral Ecophysiology Team, 8 Quai Antoine I(er), MC 98000, Monaco
| |
Collapse
|
6
|
Wang J, Tang X, Mo Z, Mao Y. Metagenome-Assembled Genomes From Pyropia haitanensis Microbiome Provide Insights Into the Potential Metabolic Functions to the Seaweed. Front Microbiol 2022; 13:857901. [PMID: 35401438 PMCID: PMC8984609 DOI: 10.3389/fmicb.2022.857901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Pyropia is an economically important edible red alga worldwide. The aquaculture industry and Pyropia production have grown considerably in recent decades. Microbial communities inhabit the algal surface and produce a variety of compounds that can influence host adaptation. Previous studies on the Pyropia microbiome were focused on the microbial components or the function of specific microbial lineages, which frequently exclude metabolic information and contained only a small fraction of the overall community. Here, we performed a genome-centric analysis to study the metabolic potential of the Pyropia haitanensis phycosphere bacteria. We reconstructed 202 unique metagenome-assembled genomes (MAGs) comprising all major taxa present within the P. haitanensis microbiome. The addition of MAGs to the genome tree containing all publicly available Pyropia-associated microorganisms increased the phylogenetic diversity by 50% within the bacteria. Metabolic reconstruction of the MAGs showed functional redundancy across taxa for pathways including nitrate reduction, taurine metabolism, organophosphorus, and 1-aminocyclopropane-1-carboxylate degradation, auxin, and vitamin B12 synthesis. Some microbial functions, such as auxin and vitamin B12 synthesis, that were previously assigned to a few Pyropia-associated microorganisms were distributed across the diverse epiphytic taxa. Other metabolic pathways, such as ammonia oxidation, denitrification, and sulfide oxidation, were confined to specific keystone taxa.
Collapse
Affiliation(s)
- Junhao Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
- Yazhou Bay Innovation Research Institute, Hainan Tropical Ocean University, Sanya, China
- Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources of Hainan Province, Hainan Tropical Ocean University, Sanya, China
| |
Collapse
|
7
|
Kim DD, Wan L, Cao X, Klisarova D, Gerdzhikov D, Zhou Y, Song C, Yoon S. Metagenomic insights into co-proliferation of Vibrio spp. and dinoflagellates Prorocentrum during a spring algal bloom in the coastal East China Sea. WATER RESEARCH 2021; 204:117625. [PMID: 34530224 DOI: 10.1016/j.watres.2021.117625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Coastal harmful algal blooms (HABs), commonly termed 'red tides', have severe undesirable consequences to the marine ecosystems and local fishery and tourism industries. Increase in nitrogen and/or phosphorus loading is often regarded as the major culprits of increasing frequency and intensity of the coastal HAB; however, fundamental understanding is lacking as to the causes and mechanism of bloom formation despite decades of intensive investigation. In this study, we interrogated the prokaryotic microbiomes of surface water samples collected at two neighboring segments of East China Sea that contrast greatly in terms of the intensity and frequency of Prorocentrum-dominated HAB. Mantel tests identified significant correlations between the structural and functional composition of the microbiomes and the physicochemical state and the algal biomass density of the surface seawater, implying the possibility that prokaryotic microbiota may play key roles in the coastal HAB. A conspicuous feature of the microbiomes at the sites characterized with high trophic state index and eukaryotic algal cell counts was disproportionate proliferation of Vibrio spp., and their complete domination of the functional genes attributable to the dissimilatory nitrate reduction to ammonia (DNRA) pathway substantially enriched at these sites. The genes attributed to phosphorus uptake function were significantly enriched at these sites, presumably due to the Pi-deficiency induced by algal growth; however, the profiles of the phosphorus mineralization genes lacked consistency, barring any conclusive evidence with regard to contribution of prokaryotic microbiota to phosphorus bioavailability. The results of the co-occurrence network analysis performed with the core prokaryotic microbiome supported that the observed proliferation of Vibrio and HAB may be causally associated. The findings of this study suggest a previously unidentified association between Vibrio proliferation and the Prorocentrum-dominated HAB in the subtropical East China Sea, and opens a discussion regarding a theoretically unlikely, but still possible, involvement of Vibrio-mediated DNRA in Vibrio-Prorocentrum symbiosis. Further experimental substantiation of this supposed symbiotic mechanism may prove crucial in understanding the dynamics of explosive local algal growth in the region during spring algal blooms.
Collapse
Affiliation(s)
- Daehyun Daniel Kim
- Department of Civil and Environmental Engineerimng, KAIST, Daejeon, 34141, Republic of Korea
| | - Lingling Wan
- Key Laboratory of Algal Biology, State key laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiuyun Cao
- Key Laboratory of Algal Biology, State key laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Daniela Klisarova
- Department of Anatomy, Histology, Cytology and Biology, Faculty of Medicine, Medical University, Pleven, 5800, Bulgaria; Institute of Fish Resources, 9000 Varna, Bulgaria
| | | | - Yiyong Zhou
- Key Laboratory of Algal Biology, State key laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chunlei Song
- Key Laboratory of Algal Biology, State key laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineerimng, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Yamaguchi T, Sato M, Hashihama F, Kato H, Sugiyama T, Ogawa H, Takahashi K, Furuya K. Longitudinal and Vertical Variations of Dissolved Labile Phosphoric Monoesters and Diesters in the Subtropical North Pacific. Front Microbiol 2021; 11:570081. [PMID: 33552003 PMCID: PMC7854537 DOI: 10.3389/fmicb.2020.570081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022] Open
Abstract
The labile fraction of dissolved organic phosphorus (DOP) – predominantly consisting of phosphoric esters – is an important microbial P source in the subtropical oligotrophic ocean. However, unlike phosphate, knowledge for labile DOP is still limited due to the scarcity of broad and intensive observations. In this study, we examined the concentrations and size-fractionated hydrolysis rates of labile phosphoric monoesters and diesters along a >10,000 km longitudinal transect in the North Pacific (23°N; upper 200-m layer). Depth-integrated monoesters decreased westward with a maximum difference of fivefold. Vertical profiles of monoesters in the eastern and western basins showed decreasing and increasing trends with depth, respectively. The monoester-depleted shallow layer of the western basin was associated with phosphate depletion and monoesterase activity was predominant in the large size fraction (>0.8 μm), suggesting that monoesters are significant P sources particularly for large microbes. In contrast, diester concentrations were generally lower than monoester concentrations and showed no obvious horizontal or vertical variation in the study area. Despite the unclear distribution pattern of diesters, diesterase activity in the particulate fraction (>0.2 μm) increased in the phosphate-depleted shallow layer of the western basin, suggesting that the targeted diesters in the assay were also important microbial P sources. Diesterase activities in the dissolved fraction (<0.2 μm) were not correlated with ambient phosphate concentrations; however, cell-free diesterase likely played a key role in P cycling, as dissolved diesterase activities were substantially higher than those in the particulate fraction. The horizontal and vertical variability of labile monoesters in the subtropical North Pacific were therefore predominantly regulated by P stress in particularly large microbes, whereas the distributions of labile diesters and diesterase activities were generally independent of microbial P stress, indicating a more complex regulation of diesters to that of monoesters.
Collapse
Affiliation(s)
- Tamaha Yamaguchi
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, Japan.,Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mitsuhide Sato
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Fuminori Hashihama
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Haruka Kato
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Takanori Sugiyama
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hiroshi Ogawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Kazutaka Takahashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ken Furuya
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Science and Engineering, Soka University, Tokyo, Japan
| |
Collapse
|
9
|
Yuan H, Tai Z, Li Q, Zhang F. Characterization and source identification of organic phosphorus in sediments of a hypereutrophic lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113500. [PMID: 31733975 DOI: 10.1016/j.envpol.2019.113500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
High phosphorus (P) load and consequent algal bloom are critical issues because of their harmful effects to aquatic ecosystems. The organic phosphorus (Po) cycling and hydrolyzation pathway in the sediments of a hypereutrophic lake area with high algae biomass were investigated using stable isotopes (δ13C and δ15N) along with C/N ratios, a sequential extraction procedure, 31P NMR spectrum, and alkaline phosphatase activity (APA) was measured simultaneously. C/N ratios lower than 10 combined with lighter δ13C (-23.5 to -25.2‰) and δ15N values (3.7-9.5‰) indicated that endogenous algal debris contributed to the predominant proportions of P-containing organic matter in the sediments. Sequential extraction results showed that Po fractions decreased as nonlabile Po > moderately labile Po > biomass-Po. Decreasing humic-associated Po (HA-Po) in sediments downward suggested the degradation of high-molecular-weight Po compounds on the geological time scale to low-molecular-weight Po including fulvic-associated Po (FA-Po), which is an important source of labile Po in the sediment. An analysis of the solution 31P NMR spectrum analysis showed that important Po compound groups decreased in the order of orthophosphate monoesters > DNA-Po > phospholipids. The significant correlation indicated that orthophosphate monoesters were the predominant components of HA-Po. Rapid hydrolysis of labile orthophosphate diesters further facilitated the accumulation of orthophosphate monoesters in the sediments. Additionally, the simultaneously upward increasing trend demonstrated that APA accelerated the mineralization of Po into dissolved reactive phosphorus (DRP), which might feed back to eutrophication in algae-dominant lakes. The significantly low half-life time (T1/2) for important Po compound groups indicated faster metabolism processes, including hydrolysis and mineralization, in hypereutrophic lakes with high algae biomass. These findings provided improved insights for better understanding of the origin and cycling processes as well as management of Po in hypereutrophic lakes.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Ziqiu Tai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qiang Li
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, United States
| | - Fengmin Zhang
- Testing Center, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Spatial Variations in the Abundance and Chemical Speciation of Phosphorus across the River–Sea Interface in the Northern Beibu Gulf. WATER 2018. [DOI: 10.3390/w10081103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water samples were collected to measure dissolved and particulate phosphorus species in order to examine the dynamics of phosphorus in the water column across the river–sea interface from the lower Dafengjiang River to the open Beibu Gulf. Dissolved inorganic phosphorus concentrations were as high as 0.90 ± 0.42 μM in river water but decreased dramatically to as low as 0.02 ± 0.01 μM in open coastal waters. Total dissolved phosphorus was largely measured in the form of dissolved inorganic phosphorus in river waters (58% ± 18%), whereas dissolved organic phosphorus became the predominant species (>90% on average) in open coastal waters. Total dissolved phosphorus was the dominant species, comprising 76% ± 16% of the total phosphorus, while total particulate phosphorus only comprised 24% ± 16% of the total phosphorus pool. Riverine inputs, physical and biological processes, and particulate phosphorus regeneration were the dominant factors responsible for the dynamic variations of phosphorus species in the study area. Based on a two-end-member mixing model, the biological uptake resulted in a dissolved inorganic phosphorus depletion of 0.12 ± 0.08 μM in the coastal surface water, whereas the replenishment of dissolved inorganic phosphorus in the lower river from particle P regeneration and release resulted in an increase (0.19 ± 0.22 μM) of dissolved inorganic phosphorus in the estuarine mixing region. The molar ratios of dissolved inorganic nitrogen to dissolved inorganic phosphorus and dissolved silicate to dissolved inorganic phosphorus in the open surface waters were >22, suggesting that, although the lower Dafengjiang River contained elevated concentrations of dissolved inorganic phosphorus, the northern Beibu Gulf was an overall P-limited coastal ecosystem.
Collapse
|
11
|
Lim JH, Lee CW, Bong CW, Affendi YA, Hii YS, Kudo I. Distributions of particulate and dissolved phosphorus in aquatic habitats of Peninsular Malaysia. MARINE POLLUTION BULLETIN 2018; 128:415-427. [PMID: 29571392 DOI: 10.1016/j.marpolbul.2018.01.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
Particulate phosphorus was the dominant phosphorus species and accounted for 72 ± 5% of total phosphorus in coastal habitats, 63 ± 4% in estuaries, 58 ± 6% in lakes and 80 ± 7% in aquaculture farms whereas dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP) were minor components. Correlation analyses (DIP vs Chl a; R2 = 0.407, df = 31, p < 0.001) suggested phosphorus limiting conditions in lakes, which was corroborated with the highest alkaline phosphatase activity (APA) that fluctuated from 0.38 to 41.14 nmol L-1 min-1. In contrast, APA was elevated in coastal habitats and estuaries only when DIP concentration decreased below 0.9 μM. Moreover size-fractionation experiment showed that the highest APA was detected in the 0.2-2 μm pico-size fraction. Our results suggested that the main APA in coastal habitats and estuaries was from phototrophic pico-eukaryotes and heterotrophic bacteria, and regulated largely by DIP availability.
Collapse
Affiliation(s)
- Joon Hai Lim
- Laboratory of Microbial Ecology, Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Graduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Choon Weng Lee
- Laboratory of Microbial Ecology, Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Chui Wei Bong
- Laboratory of Microbial Ecology, Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yang Amri Affendi
- Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yii Siang Hii
- School of Fisheries and Aquaculture Sciences, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Isao Kudo
- Graduate School of Fisheries Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Monticelli LS, Caruso G, Decembrini F, Caroppo C, Fiesoletti F. Role of prokaryotic biomasses and activities in carbon and phosphorus cycles at a coastal, thermohaline front and in offshore waters (Gulf of Manfredonia, Southern Adriatic Sea). MICROBIAL ECOLOGY 2014; 67:501-519. [PMID: 24402364 DOI: 10.1007/s00248-013-0350-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/11/2013] [Indexed: 06/03/2023]
Abstract
The Western areas of the Adriatic Sea are subjected to inputs of inorganic nutrients and organic matter that can modify the trophic status of the waters and consequently, the microbiological processes involved in the carbon and phosphorus biogeochemical cycles, particularly in shallow coastal environments. To explore this topic, a survey was carried out during the spring of 2003 in a particular hydrodynamic area of the Gulf of Manfredonia, where the potential (P) and real (R) rates of four different microbial exoenzymatic activities (EEA) (α [αG] and ß glucosidases [ßG], leucine aminopeptidase [LAP], and alkaline phosphatase [AP]) as well as the P and R rates of prokaryotic heterotrophic production (PHP), AP as well as the P and R rates of PHP, primary production (PPnet), the prokaryotic and phototrophic stocks and basic hydrological parameters were examined. Three different water masses were found, with a thermohaline front (THF) being detected between the warmer and less saline coastal waters and colder and saltier offshore Adriatic waters. Under the general oligotrophic conditions of the entire Gulf, a decreasing gradient from the coastal toward the offshore areas was detected, with PHP, PPnet, stocks and EEA (αG, ßG, AP) being directly correlated with the temperature and inversely correlated with the salinity, whereas opposite relationships were observed for LAP activity. No enhancement of microbiological activities or stocks was observed at the THF. The use of P or R rates of microbiological activities, which decrease particularly for EEA, could result in discrepancies in interpreting the efficiency of several metabolic processes.
Collapse
Affiliation(s)
- L S Monticelli
- CNR-Institute for Coastal Marine Environment: Section of Messina, Sp. S. Raineri, 86, 98122, Messina, Italy,
| | | | | | | | | |
Collapse
|
13
|
Luo H, Moran MA. Assembly-free metagenomic analysis reveals new metabolic capabilities in surface ocean bacterioplankton. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:686-696. [PMID: 24115619 DOI: 10.1111/1758-2229.12068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/21/2013] [Indexed: 06/02/2023]
Abstract
Uncovering the metabolic capabilities of microbes is key to understanding global energy flux and nutrient transformations. Since the vast majority of environmental microorganisms are uncultured, metagenomics has become an important tool to genotype the microbial community. This study uses a recently developed computational method to confidently assign metagenomic reads to microbial clades without the requirement of metagenome assembly by comparing the evolutionary pattern of nucleotide sequences at non-synonymous sites between metagenomic and orthologous reference genes. We found evidence for new, ecologically relevant metabolic pathways in several lineages of surface ocean bacterioplankton using the Global Ocean Survey (GOS) metagenomic data, including assimilatory sulfate reduction and alkaline phosphatase capabilities in the alphaproteobacterial SAR11 clade, and proteorhodopsin-like genes in the cyanobacterial genus Prochlorococcus. These findings raise new hypotheses about microbial roles in energy flux and organic matter transformation in the ocean.
Collapse
Affiliation(s)
- Haiwei Luo
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
14
|
White A, Dyhrman S. The marine phosphorus cycle. Front Microbiol 2013; 4:105. [PMID: 23734145 PMCID: PMC3659303 DOI: 10.3389/fmicb.2013.00105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/12/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Angelicque White
- College of Oceanography and Atmospheric Sciences, Oregon State University Corvallis, OR, USA
| | | |
Collapse
|
15
|
Yamada N, Fukuda H, Ogawa H, Saito H, Suzumura M. Heterotrophic bacterial production and extracellular enzymatic activity in sinking particulate matter in the western North Pacific Ocean. Front Microbiol 2012; 3:379. [PMID: 23109933 PMCID: PMC3478788 DOI: 10.3389/fmicb.2012.00379] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/03/2012] [Indexed: 11/20/2022] Open
Abstract
Heterotrophic activities on sinking particulate matter (SPM) play an important role in SPM fluxes in the ocean. To demonstrate regional differences in heterotrophic activities on SPM, we measured heterotrophic bacterial production (HBP) in seawater (HBPSW) and SPM (HBPSPM) as well as potential extracellular enzyme activity (EEA) in SPM on a transect along 155°E in the western North Pacific Ocean in the subarctic (44°N), the Kuroshio Extension area (35°N), and the subtropical gyre (20°N). Depth-integrated HBPSW from the surface to 500 m was comparable between the locations, whereas HBPSPM at 44°N was substantially lower than at the other sites. We found the highest particulate organic carbon (POC) export flux and export efficiency to bathypelagic depths, and the lowest water temperatures, at 44°N. We found significant correlations between leucine aminopeptidase (LAPase) activity, β-glucosidase (BGase) activity, POC flux and particulate organic nitrogen flux. LAPase activity was two orders of magnitude higher than BGase activity, with a BGase:LAPase activity ratio of 0.027. There were no significant correlations between HBP and EEA in SPM except for lipase, and lipase activity was significantly correlated with temperature. We propose that hydrographic conditions are an important factor controlling heterotrophic bacterial activity and export efficiency of organic carbon to the deep ocean, as are the sources and abundance of SPM produced in the euphotic zone via primary production.
Collapse
Affiliation(s)
- Namiha Yamada
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology Tsukuba, Japan
| | | | | | | | | |
Collapse
|