1
|
Malachowski AN, Yosri M, Park G, Bahn YS, He Y, Olszewski MA. Systemic Approach to Virulence Gene Network Analysis for Gaining New Insight into Cryptococcal Virulence. Front Microbiol 2016; 7:1652. [PMID: 27833589 PMCID: PMC5081415 DOI: 10.3389/fmicb.2016.01652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/04/2016] [Indexed: 11/13/2022] Open
Abstract
Cryptococcus neoformans is pathogenic yeast, responsible for highly lethal infections in compromised patients around the globe. C. neoformans typically initiates infections in mammalian lung tissue and subsequently disseminates to the central nervous system where it causes significant pathologies. Virulence genes of C. neoformans are being characterized at an increasing rate, however, we are far from a comprehensive understanding of their roles and genetic interactions. Some of these reported virulence genes are scattered throughout different databases, while others are not yet included. This study gathered and analyzed 150 reported virulence associated factors (VAFs) of C. neoformans. Using the web resource STRING database, our study identified different interactions between the total VAFs and those involved specifically in lung and brain infections and identified a new strain specific virulence gene, SHO1, involved in the mitogen-activated protein kinase signaling pathway. As predicted by our analysis, SHO1 expression enhanced C. neoformans virulence in a mouse model of pulmonary infection, contributing to enhanced non-protective immune Th2 bias and progressively enhancing fungal growth in the infected lungs. Sequence analysis indicated 77.4% (116) of total studied VAFs are soluble proteins, and 22.7% (34) are transmembrane proteins. Motifs involved in regulation and signaling such as protein kinases and transcription factors are highly enriched in Cryptococcus VAFs. Altogether, this study represents a pioneering effort in analysis of the virulence composite network of C. neoformans using a systems biology approach.
Collapse
Affiliation(s)
- Antoni N Malachowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann ArborMI, USA; VA Ann Arbor Healthcare System Research Service (11R), Ann ArborMI, USA
| | - Mohamed Yosri
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann ArborMI, USA; VA Ann Arbor Healthcare System Research Service (11R), Ann ArborMI, USA; The Regional Center for Mycology and Biotechnology, Al-Azhar UniversityCairo, Egypt
| | - Goun Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann ArborMI, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann ArborMI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann ArborMI, USA
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann ArborMI, USA; VA Ann Arbor Healthcare System Research Service (11R), Ann ArborMI, USA
| |
Collapse
|
2
|
Panek J, Frąc M, Bilińska-Wielgus N. Comparison of Chemical Sensitivity of Fresh and Long-Stored Heat Resistant Neosartorya fischeri Environmental Isolates Using BIOLOG Phenotype MicroArray System. PLoS One 2016; 11:e0147605. [PMID: 26815302 PMCID: PMC4729462 DOI: 10.1371/journal.pone.0147605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 01/06/2016] [Indexed: 12/23/2022] Open
Abstract
Spoilage of heat processed food and beverage by heat resistant fungi (HRF) is a major problem for food industry in many countries. Neosartorya fischeri is the leading source of spoilage in thermally processed products. Its resistance to heat processing and toxigenicity makes studies about Neosartorya fischeri metabolism and chemical sensitivity essential. In this study chemical sensitivity of two environmental Neosartorya fischeri isolates were compared. One was isolated from canned apples in 1923 (DSM3700), the other from thermal processed strawberry product in 2012 (KC179765), used as long-stored and fresh isolate, respectively. The study was conducted using Biolog Phenotype MicroArray platforms of chemical sensitivity panel and traditional hole-plate method. The study allowed for obtaining data about Neosartorya fischeri growth inhibitors. The fresh isolate appeared to be much more resistant to chemical agents than the long-stored isolate. Based on phenotype microarray assay nitrogen compounds, toxic cations and membrane function compounds were the most effective in growth inhibition of N. fischeri isolates. According to the study zaragozic acid A, thallium(I) acetate and sodium selenate were potent and promising N. fischeri oriented fungicides which was confirmed by both chemical sensitivity microplates panel and traditional hole-plate methods.
Collapse
Affiliation(s)
- Jacek Panek
- Institute of Agrophysics, Polish Academy of Sciences, Department of Plant and Soil System, Laboratory of Molecular and Environmental Microbiology, Doświadczalna 4, 20–290 Lublin, Poland
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Department of Plant and Soil System, Laboratory of Molecular and Environmental Microbiology, Doświadczalna 4, 20–290 Lublin, Poland
- * E-mail:
| | - Nina Bilińska-Wielgus
- Institute of Agrophysics, Polish Academy of Sciences, Department of Plant and Soil System, Laboratory of Molecular and Environmental Microbiology, Doświadczalna 4, 20–290 Lublin, Poland
| |
Collapse
|
3
|
Mansoor S, Juhardeen H, Alnajjar A, Abaalkhail F, Al-Kattan W, Alsebayel M, Al hamoudi W, Elsiesy H. Hyponatremia as the Initial Presentation of Cryptococcal Meningitis After Liver Transplantation. HEPATITIS MONTHLY 2015; 15:e29902. [PMID: 26504469 PMCID: PMC4612771 DOI: 10.5812/hepatmon.29902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/29/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Meningoencephalitis is the most common clinical manifestation of cryptococcal infection, as the organism has a propensity to invade the CNS. Patients often present with elevated intracranial pressure, focal motor deficits, altered mentation and internal hydrocephalus. Syndrome of inappropriate antidiuretic hormone secretion (SIADH) has been reported as a notable cause of euvolemic hyponatremia in immunocompromised patients. CASE PRESENTATION A 67-year-old male with liver transplantation due to hepatitis C (HCV) related liver cirrhosis developed severe hyponatremia four months after liver transplantation, which was discovered during routine clinic visit. Patient was referred to the emergency department, treated and discharged with normal serum sodium level. Few days later, he presented with dizziness, confusion, ataxia, abnormal muscle movements and leg pain. Laboratory investigations were consistent with SIADH and revealed a sodium level of 115 mmol/L. Brain MRI showed a leptomeningeal enhancement in the superior cerebellar sulci suspicious for infection. Lumbar puncture was performed and consistent with Cryptococcus neoformans infection; therefore, cryptococcal meningitis was diagnosed. Amphotericin B was started for the patient for six weeks followed by fluconazole for one year. His level of consciousness improved significantly, and his serum sodium level slowly returned to its normal baseline over three weeks after starting amphotericin B. CONCLUSIONS Symptomatic hyponatremia secondary to SIADH remains a rare complication of cryptococcal meningitis.
Collapse
Affiliation(s)
- Saad Mansoor
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Asma Alnajjar
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Faisal Abaalkhail
- Department of Liver and Small Bowel Transplantation and Hepatobiliary and Pancreatic Surgery, King Faisal Specialist Hospital and Research Center (KFSH and RC), Riyadh, Saudi Arabia
| | - Wael Al-Kattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed Alsebayel
- Department of Liver and Small Bowel Transplantation and Hepatobiliary and Pancreatic Surgery, King Faisal Specialist Hospital and Research Center (KFSH and RC), Riyadh, Saudi Arabia
| | - Waleed Al hamoudi
- Department of Medicine, Gastroenterology and Hepatology Unit (59), King Saud University, Riyadh, Saudi Arabia
| | - Hussien Elsiesy
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Liver and Small Bowel Transplantation and Hepatobiliary and Pancreatic Surgery, King Faisal Specialist Hospital and Research Center (KFSH and RC), Riyadh, Saudi Arabia
- Corresponding Author: Hussien Elsiesy, Department of Liver and Small Bowel Transplantation and Hepatobiliary and Pancreatic Surgery, King Faisal Specialist Hospital and Research Center (KFSH and RC), P. O. Box: 3354, Riyadh, Saudi Arabia. Tel: +966-114647272, Fax: +966-114424817, E-mail:
| |
Collapse
|
4
|
Role of Inositol Phosphosphingolipid Phospholipase C1, the Yeast Homolog of Neutral Sphingomyelinases in DNA Damage Response and Diseases. J Lipids 2015; 2015:161392. [PMID: 26346287 PMCID: PMC4544949 DOI: 10.1155/2015/161392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/25/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids play a very crucial role in many diseases and are well-known as signaling mediators in many pathways. Sphingolipids are produced during the de novo process in the ER (endoplasmic reticulum) from the nonsphingolipid precursor and comprise both structural and bioactive lipids. Ceramide is the central core of the sphingolipid pathway, and its production has been observed following various treatments that can induce several different cellular effects including growth arrest, DNA damage, apoptosis, differentiation, and senescence. Ceramides are generally produced through the sphingomyelin hydrolysis and catalyzed by the enzyme sphingomyelinase (SMase) in mammals. Presently, there are many known SMases and they are categorized into three groups acid SMases (aSMases), alkaline SMases (alk-SMASES), and neutral SMases (nSMases). The yeast homolog of mammalians neutral SMases is inositol phosphosphingolipid phospholipase C. Yeasts generally have inositol phosphosphingolipids instead of sphingomyelin, which may act as a homolog of mammalian sphingomyelin. In this review, we shall explain the structure and function of inositol phosphosphingolipid phospholipase C1, its localization inside the cells, mechanisms, and its roles in various cell responses during replication stresses and diseases. This review will also give a new basis for our understanding for the mechanisms and nature of the inositol phosphosphingolipid phospholipase C1/nSMase.
Collapse
|
5
|
Rella A, Mor V, Farnoud AM, Singh A, Shamseddine AA, Ivanova E, Carpino N, Montagna MT, Luberto C, Del Poeta M. Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: potential applications for vaccine development. Front Microbiol 2015; 6:836. [PMID: 26322039 PMCID: PMC4531891 DOI: 10.3389/fmicb.2015.00836] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 07/29/2015] [Indexed: 01/01/2023] Open
Abstract
Cryptococcosis caused by Cryptococcus neoformans and Cryptococcus gattii affects a large population and is a cause of significant morbidity and mortality. Despite its public health burden, there are currently no vaccines against cryptococcosis and new strategies against such infections are needed. In this study, we demonstrate that C. neoformans has the biochemical ability to metabolize sterylglucosides (SGs), a class of immunomodulatory glycolipids. Genetic manipulations that eliminate cryptococccal sterylglucosidase lead to the accumulation of SGs and generate a mutant strain (Δsgl1) that is non-pathogenic in the mouse models of cryptococcosis. Interestingly, this mutant strain acts as a vaccine strain and protects mice against cryptococcosis following infection with C. neoformans or C. gattii. The immunity induced by the Δsgl1 strain is not CD4+ T-cells dependent. Immunocompromised mice, which lack CD4+ T-cells, are able to control the infection by Δsgl1 and acquire immunity against the challenge by wild-type C. neoformans following vaccination with the Δsgl1 strain. These findings are particularly important in the context of HIV/AIDS immune deficiency and suggest that the Δsgl1 strain might provide a potential vaccination strategy against cryptococcosis.
Collapse
Affiliation(s)
- Antonella Rella
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Visesato Mor
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Amir M Farnoud
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Ashutosh Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | | | - Elitza Ivanova
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Nicholas Carpino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Maria T Montagna
- Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Bari, Italy
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| |
Collapse
|
6
|
Alwan WS, Karpoormath R, Palkar MB, Patel HM, Rane RA, Shaikh MS, Kajee A, Mlisana KP. Novel imidazo[2,1-b]-1,3,4-thiadiazoles as promising antifungal agents against clinical isolate of Cryptococcus neoformans. Eur J Med Chem 2015; 95:514-25. [DOI: 10.1016/j.ejmech.2015.03.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 11/30/2022]
|
7
|
Bryan AM, Farnoud AM, Mor V, Del Poeta M. Macrophage cholesterol depletion and its effect on the phagocytosis of Cryptococcus neoformans. J Vis Exp 2014:52432. [PMID: 25549203 PMCID: PMC4396961 DOI: 10.3791/52432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cryptococcosis is a life-threatening infection caused by pathogenic fungi of the genus Cryptococcus. Infection occurs upon inhalation of spores, which are able to replicate in the deep lung. Phagocytosis of Cryptococcus by macrophages is one of the ways that the disease is able to spread into the central nervous system to cause lethal meningoencephalitis. Therefore, study of the association between Cryptococcus and macrophages is important to understanding the progression of the infection. The present study describes a step-by-step protocol to study macrophage infectivity by C. neoformansin vitro. Using this protocol, the role of host sterols on host-pathogen interactions is studied. Different concentrations of methyl--cyclodextrin (MCD) were used to deplete cholesterol from murine reticulum sarcoma macrophage-like cell line J774A.1. Cholesterol depletion was confirmed and quantified using both a commercially available cholesterol quantification kit and thin layer chromatography. Cholesterol depleted cells were activated using Lipopolysacharide (LPS) and Interferon gamma (IFNγ) and infected with antibody-opsonized Cryptococcus neoformans wild-type H99 cells at an effector-to-target ratio of 1:1. Infected cells were monitored after 2 hr of incubation with C. neoformans and their phagocytic index was calculated. Cholesterol depletion resulted in a significant reduction in the phagocytic index. The presented protocols offer a convenient method to mimic the initiation of the infection process in a laboratory environment and study the role of host lipid composition on infectivity.
Collapse
Affiliation(s)
- Arielle M Bryan
- Department of Molecular Genetics and Microbiology, Stony Brook University
| | - Amir M Farnoud
- Department of Molecular Genetics and Microbiology, Stony Brook University
| | - Visesato Mor
- Department of Molecular Genetics and Microbiology, Stony Brook University
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University;
| |
Collapse
|