1
|
Klaus T, Ninck S, Albersmeier A, Busche T, Wibberg D, Jiang J, Elcheninov AG, Zayulina KS, Kaschani F, Bräsen C, Overkleeft HS, Kalinowski J, Kublanov IV, Kaiser M, Siebers B. Activity-Based Protein Profiling for the Identification of Novel Carbohydrate-Active Enzymes Involved in Xylan Degradation in the Hyperthermophilic Euryarchaeon Thermococcus sp. Strain 2319x1E. Front Microbiol 2022; 12:734039. [PMID: 35095781 PMCID: PMC8790579 DOI: 10.3389/fmicb.2021.734039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Activity-based protein profiling (ABPP) has so far scarcely been applied in Archaea in general and, especially, in extremophilic organisms. We herein isolated a novel Thermococcus strain designated sp. strain 2319x1E derived from the same enrichment culture as the recently reported Thermococcus sp. strain 2319x1. Both strains are able to grow with xylan as the sole carbon and energy source, and for Thermococcus sp. strain 2319x1E (optimal growth at 85°C, pH 6–7), the induction of xylanolytic activity in the presence of xylan was demonstrated. Since the solely sequence-based identification of xylanolytic enzymes is hardly possible, we established a complementary approach by conducting comparative full proteome analysis in combination with ABPP using α- or β-glycosidase selective probes and subsequent mass spectrometry (MS)-based analysis. This complementary proteomics approach in combination with recombinant protein expression and classical enzyme characterization enabled the identification of a novel bifunctional maltose-forming α-amylase and deacetylase (EGDIFPOO_00674) belonging to the GH57 family and a promiscuous β-glycosidase (EGIDFPOO_00532) with β-xylosidase activity. We thereby further substantiated the general applicability of ABPP in archaea and expanded the ABPP repertoire for the identification of glycoside hydrolases in hyperthermophiles.
Collapse
Affiliation(s)
- Thomas Klaus
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Faculty of Chemistry, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| | - Sabrina Ninck
- Department of Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Andreas Albersmeier
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jianbing Jiang
- Section of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Kseniya S Zayulina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Farnusch Kaschani
- Department of Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Faculty of Chemistry, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| | - Herman S Overkleeft
- Section of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Markus Kaiser
- Department of Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Faculty of Chemistry, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Singhal N, Garg A, Singh N, Gulati P, Kumar M, Goel M. Efficacy of signal peptide predictors in identifying signal peptides in the experimental secretome of Picrophilous torridus, a thermoacidophilic archaeon. PLoS One 2021; 16:e0255826. [PMID: 34358261 PMCID: PMC8345856 DOI: 10.1371/journal.pone.0255826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/25/2021] [Indexed: 11/28/2022] Open
Abstract
Secretory proteins are important for microbial adaptation and survival in a particular environment. Till date, experimental secretomes have been reported for a few archaea. In this study, we have identified the experimental secretome of Picrophilous torridus and evaluated the efficacy of various signal peptide predictors (SPPs) in identifying signal peptides (SPs) in its experimental secretome. Liquid chromatography mass spectrometric (LC MS) analysis was performed for three independent P. torridus secretome samples and only those proteins which were common in the three experiments were selected for further analysis. Thus, 30 proteins were finally included in this study. Of these, 10 proteins were identified as hypothetical/uncharacterized proteins. Gene Ontology, KEGG and STRING analyses revealed that majority of the sercreted proteins and/or their interacting partners were involved in different metabolic pathways. Also, a few proteins like malate dehydrogenase (Q6L0C3) were multi-functional involved in different metabolic pathways like carbon metabolism, microbial metabolism in diverse environments, biosynthesis of antibiotics, etc. Multi-functionality of the secreted proteins reflects an important aspect of thermoacidophilic adaptation of P. torridus which has the smallest genome (1.5 Mbp) among nonparasitic aerobic microbes. SPPs like, PRED-SIGNAL, SignalP 5.0, PRED-TAT and LipoP 1.0 identified SPs in only a few secreted proteins. This suggests that either these SPPs were insufficient, or N-terminal SPs were absent in majority of the secreted proteins, or there might be alternative mechanisms of protein translocation in P. torridus.
Collapse
Affiliation(s)
- Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Anjali Garg
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Nirpendra Singh
- Regional Center for Biotechnology, NCR-Biotech Science Cluster, Faridabad, India
| | - Pallavi Gulati
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Manisha Goel
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
3
|
Zayulina KS, Kochetkova TV, Piunova UE, Ziganshin RH, Podosokorskaya OA, Kublanov IV. Novel Hyperthermophilic Crenarchaeon Thermofilum adornatum sp. nov. Uses GH1, GH3, and Two Novel Glycosidases for Cellulose Hydrolysis. Front Microbiol 2020; 10:2972. [PMID: 31998263 PMCID: PMC6965361 DOI: 10.3389/fmicb.2019.02972] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/10/2019] [Indexed: 01/16/2023] Open
Abstract
A novel hyperthermophilic, anaerobic filamentous archaeon, Thermofilum adornatum strain 1910bT, is capable of growing with cellulose as its sole carbon and energy source. This strain was isolated from a terrestrial hot spring in Kamchatka, Russia. The isolate 1910bT grew optimally at a temperature of 80°C and a pH of 5.5-6.0, producing cell-bound inducible cellulases. During genome analysis, genes, encoding various glycosidases (GHs) involved in oligo- and polysaccharide hydrolysis and genes for the fermentation of sugars were identified. No homologs of currently known cellulase families were found among the GHs encoded by the 1910bT genome, suggesting that novel proteins are involved. To figure this out, a proteomic analysis of cells grown on cellulose or pyruvate (as a control) was performed. Both in-depth genomic and proteomic analyses revealed four proteins (Cel25, Cel30, Cel40, and Cel45) that were the most likely to be involved in the cellulose hydrolysis in this archaeon. Two of these proteins (Cel30 and Cel45) were hypothetical according to genome analysis, while the other two (Cel25 and Cel40) have GH3 and GH1 domains, respectively. The respective genes were heterologously expressed in Escherichia coli BL21 (DE3), and enzymatic activities of recombinant proteins were measured with carboxymethyl cellulose (CMC), Avicel and cellobiose as substrates. It was revealed that the Cel30 and Cel25 proteins were likely exoglucanases with side beta-glucosidase and endoglucanase activities, that Cel40 was a multifunctional glucanase capable of hydrolyzing beta-1,4-glucosides of various lengths, and that Cel45 was an endoglucanase with side exoglucanase activity. Taking into account that the cellulolytic activity of T. adornatum 1910bT surface protein fractions was inducible, that recombinant Cel25 and Cel30 were much less active than Cel40 and Cel45, and that their gene expressions were (almost) non-induced by CMC, we suggest that Cel40 and Cel45 play a major role in the degradation of cellulose, while Cel25 and Cel30 act only as accessory enzymes.
Collapse
Affiliation(s)
- Kseniya S. Zayulina
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V. Kochetkova
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Ulyana E. Piunova
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Olga A. Podosokorskaya
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya V. Kublanov
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Abstract
Biofilms are structured and organized communities of microorganisms that represent one of the most successful forms of life on Earth. Bacterial biofilms have been studied in great detail, and many molecular details are known about the processes that govern bacterial biofilm formation, however, archaea are ubiquitous in almost all habitats on Earth and can also form biofilms. In recent years, insights have been gained into the development of archaeal biofilms, how archaea communicate to form biofilms and how the switch from a free-living lifestyle to a sessile lifestyle is regulated. In this Review, we explore the different stages of archaeal biofilm development and highlight similarities and differences between archaea and bacteria on a molecular level. We also consider the role of archaeal biofilms in industry and their use in different industrial processes.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II, Microbiology, University of Freiburg, Freiburg, Germany
| | - Alvaro Orell
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Microbiology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Pohlschroder M, Pfeiffer F, Schulze S, Abdul Halim MF. Archaeal cell surface biogenesis. FEMS Microbiol Rev 2018; 42:694-717. [PMID: 29912330 PMCID: PMC6098224 DOI: 10.1093/femsre/fuy027] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Cell surfaces are critical for diverse functions across all domains of life, from cell-cell communication and nutrient uptake to cell stability and surface attachment. While certain aspects of the mechanisms supporting the biosynthesis of the archaeal cell surface are unique, likely due to important differences in cell surface compositions between domains, others are shared with bacteria or eukaryotes or both. Based on recent studies completed on a phylogenetically diverse array of archaea, from a wide variety of habitats, here we discuss advances in the characterization of mechanisms underpinning archaeal cell surface biogenesis. These include those facilitating co- and post-translational protein targeting to the cell surface, transport into and across the archaeal lipid membrane, and protein anchoring strategies. We also discuss, in some detail, the assembly of specific cell surface structures, such as the archaeal S-layer and the type IV pili. We will highlight the importance of post-translational protein modifications, such as lipid attachment and glycosylation, in the biosynthesis as well as the regulation of the functions of these cell surface structures and present the differences and similarities in the biogenesis of type IV pili across prokaryotic domains.
Collapse
Affiliation(s)
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Stefan Schulze
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
6
|
Williams TJ, Liao Y, Ye J, Kuchel RP, Poljak A, Raftery MJ, Cavicchioli R. Cold adaptation of the Antarctic haloarchaea
Halohasta litchfieldiae
and
Halorubrum lacusprofundi. Environ Microbiol 2017; 19:2210-2227. [DOI: 10.1111/1462-2920.13705] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Timothy J. Williams
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
| | - Yan Liao
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
| | - Jun Ye
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
- Centre for Marine Bio‐InnovationThe University of New South WalesSydney New South Wales2052 Australia
| | - Rhiannon P. Kuchel
- Electron Microscopy UnitThe University of New South WalesSydney New South Wales2052 Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry FacilityThe University of New South WalesSydney New South Wales2052 Australia
| | - Mark J. Raftery
- Bioanalytical Mass Spectrometry FacilityThe University of New South WalesSydney New South Wales2052 Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
| |
Collapse
|
7
|
|
8
|
Dey G, Thattai M, Baum B. On the Archaeal Origins of Eukaryotes and the Challenges of Inferring Phenotype from Genotype. Trends Cell Biol 2016; 26:476-485. [PMID: 27319280 PMCID: PMC4917890 DOI: 10.1016/j.tcb.2016.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 01/16/2023]
Abstract
If eukaryotes arose through a merger between archaea and bacteria, what did the first true eukaryotic cell look like? A major step toward an answer came with the discovery of Lokiarchaeum, an archaeon whose genome encodes small GTPases related to those used by eukaryotes to regulate membrane traffic. Although ‘Loki’ cells have yet to be seen, their existence has prompted the suggestion that the archaeal ancestor of eukaryotes engulfed the future mitochondrion by phagocytosis. We propose instead that the archaeal ancestor was a relatively simple cell, and that eukaryotic cellular organization arose as the result of a gradual transfer of bacterial genes and membranes driven by an ever-closer symbiotic partnership between a bacterium and an archaeon. Eukaryotes are thought to be a product of symbiosis between archaea and bacteria. The recently discovered Lokiarchaeum (‘Loki’) encodes more Eukaryotic Signature Proteins (ESPs) than any other archaeon, making it the closest living relative to the putative ancestor of eukaryotes. Lokiarchaeum is the first prokaryote found to encode small GTPases, gelsolin, BAR domains, and longin domains, leading many to suggest that it might be compartmentalized and be capable of membrane trafficking. Many models for the evolution of eukaryotes invoke an archaeal ancestor that is capable of phagocytosis to explain the entry of the future mitochondrion into the host cell. Understanding the cell biology of Lokiarchaeum will be key to understanding the morphological transitions that characterized the evolution of eukaryotic cellular architecture, but Loki has not yet been cultured or seen.
Collapse
Affiliation(s)
- Gautam Dey
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Mukund Thattai
- National Centre for Biological Sciences, TIFR, GKVK, Bellary Road, Bengaluru 560065, India
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
9
|
Gagic D, Ciric M, Wen WX, Ng F, Rakonjac J. Exploring the Secretomes of Microbes and Microbial Communities Using Filamentous Phage Display. Front Microbiol 2016; 7:429. [PMID: 27092113 PMCID: PMC4823517 DOI: 10.3389/fmicb.2016.00429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/17/2016] [Indexed: 01/12/2023] Open
Abstract
Microbial surface and secreted proteins (the secretome) contain a large number of proteins that interact with other microbes, host and/or environment. These proteins are exported by the coordinated activities of the protein secretion machinery present in the cell. A group of bacteriophage, called filamentous phage, have the ability to hijack bacterial protein secretion machinery in order to amplify and assemble via a secretion-like process. This ability has been harnessed in the use of filamentous phage of Escherichia coli in biotechnology applications, including screening large libraries of variants for binding to “bait” of interest, from tissues in vivo to pure proteins or even inorganic substrates. In this review we discuss the roles of secretome proteins in pathogenic and non-pathogenic bacteria and corresponding secretion pathways. We describe the basics of phage display technology and its variants applied to discovery of bacterial proteins that are implicated in colonization of host tissues and pathogenesis, as well as vaccine candidates through filamentous phage display library screening. Secretome selection aided by next-generation sequence analysis was successfully applied for selective display of the secretome at a microbial community scale, the latter revealing the richness of secretome functions of interest and surprising versatility in filamentous phage display of secretome proteins from large number of Gram-negative as well as Gram-positive bacteria and archaea.
Collapse
Affiliation(s)
- Dragana Gagic
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand; Animal Science, Grasslands Research Centre, AgResearch Ltd, Palmerston NorthNew Zealand
| | - Milica Ciric
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand; Animal Science, Grasslands Research Centre, AgResearch Ltd, Palmerston NorthNew Zealand
| | - Wesley X Wen
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| | - Filomena Ng
- Animal Science, Grasslands Research Centre, AgResearch Ltd, Palmerston North New Zealand
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| |
Collapse
|
10
|
Soo E, Rudrappa D, Blum P. Membrane Association and Catabolite Repression of the Sulfolobus solfataricus α-Amylase. Microorganisms 2015; 3:567-87. [PMID: 27682106 PMCID: PMC5023256 DOI: 10.3390/microorganisms3030567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/10/2015] [Accepted: 09/11/2015] [Indexed: 11/16/2022] Open
Abstract
Sulfolobus solfataricus is a thermoacidophilic member of the archaea whose envelope consists of an ether-linked lipid monolayer surrounded by a protein S-layer. Protein translocation across this envelope must accommodate a steep proton gradient that is subject to temperature extremes. To better understand this process in vivo, studies were conducted on the S. solfataricus glycosyl hydrolyase family 57 α-Amylase (AmyA). Cell lines harboring site specific modifications of the amyA promoter and AmyA structural domains were created by gene replacement using markerless exchange and characterized by Western blot, enzyme assay and culture-based analysis. Fusion of amyA to the malAp promoter overcame amyAp-mediated regulatory responses to media composition including glucose and amino acid repression implicating action act at the level of transcription. Deletion of the AmyA Class II N-terminal signal peptide blocked protein secretion and intracellular protein accumulation. Deletion analysis of a conserved bipartite C-terminal motif consisting of a hydrophobic region followed by several charged residues indicated the charged residues played an essential role in membrane-association but not protein secretion. Mutants lacking the C-terminal bipartite motif exhibited reduced growth rates on starch as the sole carbon and energy source; therefore, association of AmyA with the membrane improves carbohydrate utilization. Widespread occurrence of this motif in other secreted proteins of S. solfataricus and of related Crenarchaeota suggests protein association with membranes is a general trait used by these organisms to influence external processes.
Collapse
Affiliation(s)
- Edith Soo
- School of Biological Sciences, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln 68588, NE, USA.
| | - Deepak Rudrappa
- School of Biological Sciences, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln 68588, NE, USA.
| | - Paul Blum
- School of Biological Sciences, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln 68588, NE, USA.
| |
Collapse
|
11
|
Pohlschroder M, Esquivel RN. Archaeal type IV pili and their involvement in biofilm formation. Front Microbiol 2015; 6:190. [PMID: 25852657 PMCID: PMC4371748 DOI: 10.3389/fmicb.2015.00190] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022] Open
Abstract
Type IV pili are ancient proteinaceous structures present on the cell surface of species in nearly all bacterial and archaeal phyla. These filaments, which are required for a diverse array of important cellular processes, are assembled employing a conserved set of core components. While type IV pilins, the structural subunits of pili, share little sequence homology, their signal peptides are structurally conserved allowing for in silico prediction. Recently, in vivo studies in model archaea representing the euryarchaeal and crenarchaeal kingdoms confirmed that several of these pilins are incorporated into type IV adhesion pili. In addition to facilitating surface adhesion, these in vivo studies also showed that several predicted pilins are required for additional functions that are critical to biofilm formation. Examples include the subunits of Sulfolobus acidocaldarius Ups pili, which are induced by exposure to UV light and promote cell aggregation and conjugation, and a subset of the Haloferax volcanii adhesion pilins, which play a critical role in microcolony formation while other pilins inhibit this process. The recent discovery of novel pilin functions such as the ability of haloarchaeal adhesion pilins to regulate swimming motility may point to novel regulatory pathways conserved across prokaryotic domains. In this review, we will discuss recent advances in our understanding of the functional roles played by archaeal type IV adhesion pili and their subunits, with particular emphasis on their involvement in biofilm formation.
Collapse
Affiliation(s)
| | - Rianne N Esquivel
- Department of Biology, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
12
|
McCarver AC, Lessner DJ. Molecular characterization of the thioredoxin system from Methanosarcina acetivorans. FEBS J 2014; 281:4598-611. [PMID: 25112424 DOI: 10.1111/febs.12964] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/25/2014] [Accepted: 08/07/2014] [Indexed: 11/28/2022]
Abstract
The thioredoxin system, composed of thioredoxin reductase (TrxR) and thioredoxin (Trx), is widely distributed in nature, where it serves key roles in electron transfer and in the defense against oxidative stress. Although recent evidence reveals Trx homologues are almost universally present among the methane-producing archaea (methanogens), a complete thioredoxin system has not been characterized from any methanogen. We examined the phylogeny of Trx homologues among methanogens and characterized the thioredoxin system from Methanosarcina acetivorans. Phylogenetic analysis of Trx homologues from methanogens revealed eight clades, with one clade containing Trxs broadly distributed among methanogens. The Methanococci and Methanobacteria each contain one additional Trx from another clade, respectively, whereas the Methanomicrobia contain an additional five distinct Trxs. Methanosarcina acetivorans, a member of the Methanomicrobia, contains a single TrxR (MaTrxR) and seven Trx homologues (MaTrx1-7), with representatives from five of the methanogen Trx clades. Purified recombinant MaTrxR had 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) reductase and oxidase activities. The apparent Km value for NADPH was 115-fold lower than that for NADH, consistent with NADPH as the physiological electron donor to MaTrxR. Purified recombinant MaTrx2, MaTrx6 and MaTrx7 exhibited dithiothreitol- and lipoamide-dependent insulin disulfide reductase activities. However, only MaTrx7, which is encoded adjacent to MaTrxR, could serve as a redox partner to MaTrxR. These results reveal that M. acetivorans harbors at least three functional and distinct Trxs, and a complete thioredoxin system composed of NADPH, MaTrxR and at least MaTrx7. This is the first characterization of a complete thioredoxin system from a methanogen, which provides a foundation to understand the system in methanogens.
Collapse
Affiliation(s)
- Addison C McCarver
- Department of Biological Sciences, University of Arkansas-Fayetteville, AR, USA
| | | |
Collapse
|
13
|
Sleytr UB, Schuster B, Egelseer E, Pum D. S-layers: principles and applications. FEMS Microbiol Rev 2014; 38:823-64. [PMID: 24483139 PMCID: PMC4232325 DOI: 10.1111/1574-6976.12063] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/12/2023] Open
Abstract
Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B. Sleytr
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Bernhard Schuster
- Institute of Synthetic BiologyDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Eva‐Maria Egelseer
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dietmar Pum
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
14
|
Schuster B, Sleytr UB. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules. J R Soc Interface 2014; 11:20140232. [PMID: 24812051 PMCID: PMC4032536 DOI: 10.1098/rsif.2014.0232] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/15/2014] [Indexed: 12/20/2022] Open
Abstract
Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems.
Collapse
Affiliation(s)
- Bernhard Schuster
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190 Vienna, Austria
| | - Uwe B. Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Institute for Biophysics, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
15
|
Chimileski S, Dolas K, Naor A, Gophna U, Papke RT. Extracellular DNA metabolism in Haloferax volcanii. Front Microbiol 2014; 5:57. [PMID: 24600440 PMCID: PMC3929857 DOI: 10.3389/fmicb.2014.00057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/29/2014] [Indexed: 11/29/2022] Open
Abstract
Extracellular DNA is found in all environments and is a dynamic component of the microbial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA concentrations measured in nature–a potential rich source of carbon, nitrogen, and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration, and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent, and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA. Additionally, fluorescence microscopy showed that labeled DNA co-localized with H. volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in DNA processing at the cell surface, and deletion of Hvo_1477 created a strain deficient in the ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.
Collapse
Affiliation(s)
- Scott Chimileski
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Kunal Dolas
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Adit Naor
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv, Israel
| | - Uri Gophna
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv, Israel
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
16
|
Abdul Halim MF, Pfeiffer F, Zou J, Frisch A, Haft D, Wu S, Tolić N, Brewer H, Payne SH, Paša-Tolić L, Pohlschroder M. Haloferax volcanii archaeosortase is required for motility, mating, and C-terminal processing of the S-layer glycoprotein. Mol Microbiol 2013; 88:1164-75. [PMID: 23651326 DOI: 10.1111/mmi.12248] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 01/29/2023]
Abstract
Cell surfaces are decorated by a variety of proteins that facilitate interactions with their environments and support cell stability. These secreted proteins are anchored to the cell by mechanisms that are diverse, and, in archaea, poorly understood. Recently published in silico data suggest that in some species a subset of secreted euryarchaeal proteins, which includes the S-layer glycoprotein, is processed and covalently linked to the cell membrane by enzymes referred to as archaeosortases. In silico work led to the proposal that an independent, sortase-like system for proteolysis-coupled, carboxy-terminal lipid modification exists in bacteria (exosortase) and archaea (archaeosortase). Here, we provide the first in vivo characterization of an archaeosortase in the haloarchaeal model organism Haloferax volcanii. Deletion of the artA gene (HVO_0915) resulted in multiple biological phenotypes: (a) poor growth, especially under low-salt conditions, (b) alterations in cell shape and the S-layer, (c) impaired motility, suppressors of which still exhibit poor growth, and (d) impaired conjugation. We studied one of the ArtA substrates, the S-layer glycoprotein, using detailed proteomic analysis. While the carboxy-terminal region of S-layer glycoproteins, consisting of a putative threonine-rich O-glycosylated region followed by a hydrophobic transmembrane helix, has been notoriously resistant to any proteomic peptide identification, we were able to identify two overlapping peptides from the transmembrane domain present in the ΔartA strain but not in the wild-type strain. This clearly shows that ArtA is involved in carboxy-terminal post-translational processing of the S-layer glycoprotein. As it is known from previous studies that a lipid is covalently attached to the carboxy-terminal region of the S-layer glycoprotein, our data strongly support the conclusion that archaeosortase functions analogously to sortase, mediating proteolysis-coupled, covalent cell surface attachment.
Collapse
|
17
|
Robb FT, Lowe TM, Kelman Z. The modern "3G" age of archaeal molecular biology. Front Microbiol 2012; 3:430. [PMID: 23267357 PMCID: PMC3527003 DOI: 10.3389/fmicb.2012.00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/06/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- Frank T Robb
- Institute of Marine and Environmental Technology Baltimore, MD, USA ; University of Maryland School of Medicine Baltimore, MD, USA
| | | | | |
Collapse
|