1
|
Mohan N, Bosco K, Peter A, Abhitha K, Bhat SG. Bacteriophage entrapment strategies for the treatment of chronic wound infections: a comprehensive review. Arch Microbiol 2024; 206:443. [PMID: 39443305 DOI: 10.1007/s00203-024-04168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
The growing threat of antimicrobial resistance has made the quest for antibiotic alternatives or synergists one of the most pressing priorities of the 21st century. The emergence of multidrug-resistance in most of the common wound pathogens has amplified the risk of antibiotic-resistant wound infections. Bacteriophages, with their self-replicating ability and targeted specificity, can act as suitable antibiotic alternatives. Nevertheless, targeted delivery of phages to infection sites remains a crucial issue, specifically in the case of topical infections. Hence, different phage delivery systems have been studied in recent years. However, there have been no recent reviews of phage delivery systems focusing exclusively on phage application on wounds. This review provides a compendium of all the major delivery systems that have been used to deliver phages to wound infection sites. Special focus has also been awarded to phage-embedded hydrogels with a discussion on the different aspects to be considered during their preparation.
Collapse
Affiliation(s)
- Nivedya Mohan
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - Kiran Bosco
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Center for Infectious Diseases and Microbiology, Westmead, NSW, Australia
| | - Anmiya Peter
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - K Abhitha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India.
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India.
| |
Collapse
|
2
|
Padmesh S, Singh A, Chopra S, Sen M, Habib S, Shrivastava D, Johri P. Isolation and characterization of novel lytic bacteriophages that infect multi drug resistant clinical strains of Escherichia coli. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57327-57337. [PMID: 37347328 DOI: 10.1007/s11356-023-28081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
The pathogenic strains of Escherichia coli (E. coli) are frequent cause of urinary tract infections including catheter-associated, soft tissue infections and sepsis. The growing antibiotic resistance in E. coli is a major health concern. Bacteriophages are specific for their bacterial host, thus providing a novel and effective alternatives. This study focuses on isolation of bacteriophages from urban sewage treatment plants. Initially 50 different bacteriophages have been isolated against non-resistant reference E. coli strain and fifty multidrug resistant clinical isolates of extraintestinal infections. Out of which only thirty-one lytic phages which gave clear plaques were further analysed for different physico-chemical aspects such as thermal inactivation, pH, effect of organic solvents and detergents. Two bacteriophages, ASEC2201 and ASEC2202, were selected for their ability to withstand temperature fluctuation from -20 to 62 °C and a pH range from 4 to 10. They also showed good survival (40-94%) in the presence of organic solvents like ethanol, acetone, DMSO and chloroform or ability to form plaques even after the treatment with detergents like SDS, CTAB and sarkosyl. Both efficiently killed reference strain and 40-44% of multidrug resistant clinical isolates of E. coli. Later ASEC2201 and ASEC2202 were subjected to morphological characterisation through transmission electron microscopy, which revealed them to be tailed phages. The genomic analysis confirmed them to be Escherichia phages which belonged to family Drexlerviridae of Caudovirales.
Collapse
Affiliation(s)
- Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow, 226028, India
| | - Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow, 226028, India.
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manodeep Sen
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226010, India
| | - Saman Habib
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepti Shrivastava
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Parul Johri
- Department of Biotechnology, Dr. Ambedkar Institute of Technology for Handicapped, Kanpur, 208024, India
| |
Collapse
|
3
|
Nefedova A, Rausalu K, Zusinaite E, Kisand V, Kook M, Smits K, Vanetsev A, Ivask A. Antiviral efficacy of nanomaterial-treated textiles in real-life like exposure conditions. Heliyon 2023; 9:e20067. [PMID: 37810009 PMCID: PMC10559815 DOI: 10.1016/j.heliyon.2023.e20067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the growing interest towards reducing the number of potentially infectious agents on critical high-touch surfaces, the popularity of antimicrobially and antivirally active surfaces, including textiles, has increased. The goal of this study was to create antiviral textiles by spray-depositing three different nanomaterials, two types of CeO2 nanoparticles and quaternary ammonium surfactant CTAB loaded SiO2 nanocontainers, onto the surface of a knitted polyester textile and assess their antiviral activity against two coronaviruses, porcine transmissible gastroenteritis virus (TGEV) and severe acute respiratory syndrome virus (SARS CoV-2). Antiviral testing was carried out in small droplets in semi-dry conditions and in the presence of organic soiling, to mimic aerosol deposition of viruses onto the textiles. In such conditions, SARS CoV-2 stayed infectious at least for 24 h and TGEV infected cells even after 72h of semi-dry deposition suggesting that textiles exhibiting sufficient antiviral activity before or at 24 h, can be considered promising. The antiviral efficacy of nanomaterial-deposited textiles was compared with the activity of the same nanomaterials in colloidal form and with positive control textiles loaded with copper nitrate and CTAB. Our results indicated that after deposition onto the textile, CeO2 nanoparticles lost most of their antiviral activity, but antiviral efficacy of CTAB-loaded SiO2 nanocontainers was retained also after deposition. Copper nitrate deposited textile that was used as a positive control, showed relatively high antiviral activity as expected. However, as copper was effectively washed away from the textile already during 1 h, the use of copper for creating antiviral textiles would be impractical. In summary, our results indicated that antiviral activity of textiles cannot be predicted from antiviral efficacy of the deposited compounds in colloid and attention should be paid on prolonged efficacy of antivirally coated textiles.
Collapse
Affiliation(s)
- Alexandra Nefedova
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Vambola Kisand
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Mati Kook
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Krisjanis Smits
- Institute Solid State Physics, University of Latvia, 8 Kengaraga street, Riga, LV-1063, Latvia
| | - Alexander Vanetsev
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia
| | - Angela Ivask
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| |
Collapse
|
4
|
Martins da Silva Filho P, Higor Rocha Mariano P, Lopes Andrade A, Barros Arrais Cruz Lopes J, de Azevedo Pinheiro A, Itala Geronimo de Azevedo M, Carneiro de Medeiros S, Alves de Vasconcelos M, Gonçalvez da Cruz Fonseca S, Barbosa Grangeiro T, Gonzaga de França Lopes L, Henrique Silva Sousa E, Holanda Teixeira E, Longhinotti E. Antibacterial and antifungal action of CTAB-containing silica nanoparticles against human pathogens. Int J Pharm 2023; 641:123074. [PMID: 37230370 DOI: 10.1016/j.ijpharm.2023.123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/16/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
New antibiotic agents are urgently needed worldwide to combat the increasing tolerance and resistance of pathogenic fungi and bacteria to current antimicrobials. Here, we looked at the antibacterial and antifungal effects of minor quantities of cetyltrimethylammonium bromide (CTAB), ca. 93.8 mg g-1, on silica nanoparticles (MPSi-CTAB). Our results show that MPSi-CTAB exhibits antimicrobial activity against Methicillin-resistant Staphylococcus aureus strain (S. aureus ATCC 700698) with MIC and MBC of 0.625 mg mL-1 and 1.25 mg mL-1, respectively. Additionally, for Staphylococcus epidermidis ATCC 35984, MPSi-CTAB reduces MIC and MBC by 99.99% of viable cells on the biofilm. Furthermore, when combined with ampicillin or tetracycline, MPSi-CTAB exhibits reduced MIC values by 32- and 16-folds, respectively. MPSi-CTAB also exhibited in vitro antifungal activity against reference strains of Candida, with MIC values ranging from 0.0625 to 0.5 mg mL-1. This nanomaterial has low cytotoxicity in human fibroblasts, where over 80% of cells remained viable at 0.31 mg mL-1 of MPSi-CTAB. Finally, we developed a gel formulation of MPSi-CTAB, which inhibited in vitro the growth of Staphylococcus and Candida strains. Overall, these results support the efficacy of MPSi-CTAB with potential application in the treatment and/or prevention of infections caused by methicillin-resistant Staphylococcus and/or Candida species.
Collapse
Affiliation(s)
- Pedro Martins da Silva Filho
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará 60440-900 Fortaleza - CE, Brazil; Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil.
| | - Pedro Higor Rocha Mariano
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará 60440-900 Fortaleza - CE, Brazil
| | - Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | - Jessica Barros Arrais Cruz Lopes
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | - Aryane de Azevedo Pinheiro
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | | | - Suelen Carneiro de Medeiros
- Departamento de Biologia, Universidade Federal do Ceará, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil
| | - Mayron Alves de Vasconcelos
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil; Departamento de Ciências Biológicas, Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, 59610-090, Mossoró - RN, Brazil; Universidade do Estado de Minas Gerais, Unidade de Divinópolis, 35501-170, Divinópolis - MG, Brazil
| | | | - Thalles Barbosa Grangeiro
- Departamento de Biologia, Universidade Federal do Ceará, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil
| | - Luiz Gonzaga de França Lopes
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil
| | - Eduardo Henrique Silva Sousa
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil.
| | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | - Elisane Longhinotti
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará 60440-900 Fortaleza - CE, Brazil.
| |
Collapse
|
5
|
Liu L, Jia X, Zhao X, Li T, Luo Z, Deng R, Peng B, Mao D, Liu H, Zheng Q. In vitro PCR verification that lysozyme inhibits nucleic acid replication and transcription. Sci Rep 2023; 13:6383. [PMID: 37076576 PMCID: PMC10115842 DOI: 10.1038/s41598-023-33228-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023] Open
Abstract
Lysozyme can kill bacteria by its enzymatic activity or through a mechanism involving its cationic nature, which can facilitate electrostatic interactions with the viral capsid, the negatively charged parts of nucleic acids, and polymerase, so binding to nucleic acids may be another biological function of lysozyme. Here, PCR was used as a research tool to detect the effects of lysozyme on the replication and transcription of nucleic acids after treatment in different ways. We found that lysozyme and its hydrolysate can enter cells and inhibit PCR to varying degrees in vitro, and degraded lysozyme inhibited nucleic acid replication more effectively than intact lysozyme. The inhibition of lysozyme may be related to polymerase binding, and the sensitivity of different polymerases to lysozyme is inconsistent. Our findings provide a theoretical basis for further explaining the pharmacological effects of lysozyme, such as antibacterial, antiviral, anticancer, and immune regulatory activities, and directions for the development of new pharmacological effects of lysozyme and its metabolites.
Collapse
Affiliation(s)
- Lu Liu
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637007, People's Republic of China
| | - Xu Jia
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Xiaoyang Zhao
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637007, People's Republic of China
| | - Ting Li
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637007, People's Republic of China
| | - Ziren Luo
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637007, People's Republic of China
| | - Ranxi Deng
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637007, People's Republic of China
| | - Bijia Peng
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637007, People's Republic of China
| | - Danting Mao
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637007, People's Republic of China
| | - Hong Liu
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637007, People's Republic of China.
| | - Qian Zheng
- Medical Functional Experiment Center, North Sichuan Medical College, Nanchong, 637007, People's Republic of China.
| |
Collapse
|
6
|
Tan SW, Gooran N, Lim HM, Yoon BK, Jackman JA. Tethered Bilayer Lipid Membrane Platform for Screening Triton X-100 Detergent Replacements by Electrochemical Impedance Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:874. [PMID: 36903751 PMCID: PMC10005542 DOI: 10.3390/nano13050874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
In light of regulatory considerations, there are ongoing efforts to identify Triton X-100 (TX-100) detergent alternatives for use in the biological manufacturing industry to mitigate membrane-enveloped pathogen contamination. Until now, the efficacy of antimicrobial detergent candidates to replace TX-100 has been tested regarding pathogen inhibition in endpoint biological assays or probing lipid membrane disruption in real-time biophysical testing platforms. The latter approach has proven especially useful to test compound potency and mechanism of action, however, existing analytical approaches have been limited to studying indirect effects of lipid membrane disruption such as membrane morphological changes. A direct readout of lipid membrane disruption by TX-100 detergent alternatives would be more practical to obtain biologically relevant information to guide compound discovery and optimization. Herein, we report the use of electrochemical impedance spectroscopy (EIS) to investigate how TX-100 and selected replacement candidates-Simulsol SL 11W (Simulsol) and cetyltrimethyl ammonium bromide (CTAB)-affect the ionic permeability of tethered bilayer lipid membrane (tBLM) platforms. The EIS results revealed that all three detergents exhibited dose-dependent effects mainly above their respective critical micelle concentration (CMC) values while displaying distinct membrane-disruptive behaviors. TX-100 caused irreversible membrane disruption leading to complete solubilization, whereas Simulsol caused reversible membrane disruption and CTAB induced irreversible, partial membrane defect formation. These findings establish that the EIS technique is useful for screening the membrane-disruptive behaviors of TX-100 detergent alternatives with multiplex formatting possibilities, rapid response, and quantitative readouts relevant to antimicrobial functions.
Collapse
Affiliation(s)
- Sue Woon Tan
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Negin Gooran
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hye Min Lim
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
- Interdisciplinary Program of Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
- Interdisciplinary Program of Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Cho Y, Son Y, Ahn J, Lim H, Ahn S, Lee J, Bae PK, Kim ID. Multifunctional Filter Membranes Based on Self-Assembled Core-Shell Biodegradable Nanofibers for Persistent Electrostatic Filtration through the Triboelectric Effect. ACS NANO 2022; 16:19451-19463. [PMID: 36374248 DOI: 10.1021/acsnano.2c09165] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The massive production of polymer-based respiratory masks during the COVID-19 pandemic has rekindled the issue of environmental pollution from nonrecyclable plastic waste. To mitigate this problem, conventional filters should be redesigned with improved filtration performance over the entire operational life while also being naturally degradable at the end. Herein, we developed a functional and biodegradable polymeric filter membrane consisting of a polybutylene adipate terephthalate (PBAT) matrix blended with cetyltrimethylammonium bromide (CTAB) and montmorillonite (MMT) clay, whose surface properties have been modified through cation exchange reactions for good miscibility with PBAT in an organic solvent. Particularly, the spontaneous evolution of a partial core-shell structure (i.e., PBAT core encased by CTAB-MMT shell) during the electrospinning process amplified the triboelectric effect as well as the antibacterial/antiviral activity that was not observed in naive PBAT. Unlike the conventional face mask filter that relies on the electrostatic adsorption mechanism, which deteriorates over time and/or due to external environmental factors, the PBAT@CTAB-MMT nanofiber membrane (NFM)-based filter continuously retains electrostatic charges on the surface due to the triboelectric effect of CTAB-MMT. As a result, the PBAT@CTAB-MMT NFM-based filter showed high filtration efficiencies (98.3%, PM0.3) even at a low differential pressure of 40 Pa or less over its lifetime. Altogether, we not only propose an effective and practical solution to improve the performance of filter membranes while minimizing their environmental footprint but also provide valuable insight into the synergetic functionalities of organic-inorganic hybrid materials for applications beyond filter membranes.
Collapse
Affiliation(s)
- Yujang Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Yongkoo Son
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Haeseong Lim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Seongcheol Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Jiyoung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Pan Kee Bae
- BioNano Health Guard Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Republic of Korea
| |
Collapse
|
8
|
Bunnoy A, Thangsunan P, Chokmangmeepisarn P, Yata T, Klongklaew N, Pirarat N, Kitiyodom S, Srisapoome P, Rodkhum C. Mucoadhesive cationic lipid-based Flavobacterium oreochromis nanoencapsulation enhanced the efficacy of mucoadhesive immersion vaccination against columnaris disease and strengthened immunity in Asian sea bass (Lates calcarifer). FISH & SHELLFISH IMMUNOLOGY 2022; 127:633-646. [PMID: 35779812 DOI: 10.1016/j.fsi.2022.06.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/29/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Columnaris is a bacterial disease, found in freshwater fish, caused by Flavobacterium oreochromis. The disease has a devastating impact on a range of cultured and wild freshwater fish species e.g. Lates calcarifer (Asian sea bass), which is a serious economic losses to the freshwater aquaculture in Thailand. The disease can be prevented by an efficacious vaccine, however, no licensed effective vaccine is available to date. Current study was based on the development of a novel mucoadhesive nano-encapsulated vaccine (EncapFlavoNP++), where, cationic lipid-based nanoparticles were combined with an antigen obtained from F. oreochromis. Various parameters including transmission electron microscopy (TEM), physiochemical properties; zeta potential, and polydispersity index were determined. The TEM results depicted well-formed circular-shaped nano-encapsulates complexed with cationic lipid surfactants. The average diameter of the molecules was 200 nm, having a zeta potential of 31.82 mV, while, the polydispersity index (PDI) was 0.31. The in vivo study lasted for 8 weeks, the immunologic and protective potentials of the prepared molecules were determined by challenging the fish for 8 weeks. The most effective dilutions of EncapFlavoNP++ solution were 1:100 and 1:200, which significantly improved the efficacy of the immunity by increasing the level of antibody specific to F. oreochromis. A trend of upregulation was found in the immune-related genes including immunoglobulin M heavy chain (IgM), major histocompatibility complex class IIα molecules (MHC-IIα), and dendritic cell specific transcript (DCs) in gills, skin, liver, peripheral blood lymphocytes (PBLs), head kidneys, and spleen as compared to the control group (P < 0.05 and P < 0.01). Upon immunization with EncapFlavoNP++ solution at the dilution of 1:100 and 1:200, the significant increase in survival rate (SR) and relative percent survival (RPS) were found in fish challenged with virulent F. oreochromis bacterium (SR 72.50% and RPS 62.07) and (SR 65.83% and RPS 52.87), respectively as compared to the control group (P < 0.05). It can be concluded that immunization with EncapFlavoNP++ solution has significant immunologic and protective effects against Columnaris disease. Furthermore, the prepared vaccine candidate has more potential as compared to whole-cell immersion vaccination (FK-WC). It can be used on a large scale in the freshwater aquaculture industry to boost immunity against Columnaris disease.
Collapse
Affiliation(s)
- Anurak Bunnoy
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Patcharapong Thangsunan
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Putita Chokmangmeepisarn
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Nawanith Klongklaew
- Phetchaburi Coastal Aquaculture Research and Development Center, Department of Fisheries, Thailand.
| | - Nopadon Pirarat
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Sirikorn Kitiyodom
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand.
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
9
|
Furer LA, Clement P, Herwig G, Rossi RM, Bhoelan F, Amacker M, Stegmann T, Buerki-Thurnherr T, Wick P. A novel inactivated virus system (InViS) for a fast and inexpensive assessment of viral disintegration. Sci Rep 2022; 12:11583. [PMID: 35803968 PMCID: PMC9270431 DOI: 10.1038/s41598-022-15471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022] Open
Abstract
The COVID-19 pandemic has caused considerable interest worldwide in antiviral surfaces, and there has been a dramatic increase in the research and development of innovative material systems to reduce virus transmission in the past few years. The International Organization for Standardization (ISO) norms 18,184 and 21,702 are two standard methods to characterize the antiviral properties of porous and non-porous surfaces. However, during the last years of the pandemic, a need for faster and inexpensive characterization of antiviral material was identified. Therefore, a complementary method based on an Inactivated Virus System (InViS) was developed to facilitate the early-stage development of antiviral technologies and quality surveillance of the production of antiviral materials safely and efficiently. The InViS is loaded with a self-quenched fluorescent dye that produces a measurable increase in fluorescence when the viral envelope disintegrates. In the present work, the sensitivity of InViS to viral disintegration by known antiviral agents is demonstrated and its potential to characterize novel materials and surfaces is explored. Finally, the InViS is used to determine the fate of viral particles within facemasks layers, rendering it an interesting tool to support the development of antiviral surface systems for technical and medical applications.
Collapse
Affiliation(s)
- Lea A Furer
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014, St. Gallen, Switzerland
| | - Pietro Clement
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014, St. Gallen, Switzerland
| | - Gordon Herwig
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014, St. Gallen, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014, St. Gallen, Switzerland
| | | | | | - Toon Stegmann
- Mymetics BV, 2333 CH, Leiden, The Netherlands
- Department of Pulmonary Medicine, Bern University Hospital, University of Bern, 3012, Bern, Switzerland
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014, St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014, St. Gallen, Switzerland.
| |
Collapse
|
10
|
Sajewicz-Krukowska J, Jastrzębski JP, Grzybek M, Domańska-Blicharz K, Tarasiuk K, Marzec-Kotarska B. Transcriptome Sequencing of the Spleen Reveals Antiviral Response Genes in Chickens Infected with CAstV. Viruses 2021; 13:2374. [PMID: 34960643 PMCID: PMC8708055 DOI: 10.3390/v13122374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Astrovirus infections pose a significant problem in the poultry industry, leading to multiple adverse effects such as a decreased egg production, breeding disorders, poor weight gain, and even increased mortality. The commonly observed chicken astrovirus (CAstV) was recently reported to be responsible for the "white chicks syndrome" associated with an increased embryo/chick mortality. CAstV-mediated pathogenesis in chickens occurs due to complex interactions between the infectious pathogen and the immune system. Many aspects of CAstV-chicken interactions remain unclear, and there is no information available regarding possible changes in gene expression in the chicken spleen in response to CAstV infection. We aim to investigate changes in gene expression triggered by CAstV infection. Ten 21-day-old SPF White Leghorn chickens were divided into two groups of five birds each. One group was inoculated with CAstV, and the other used as the negative control. At 4 days post infection, spleen samples were collected and immediately frozen at -70 °C for RNA isolation. We analyzed the isolated RNA, using RNA-seq to generate transcriptional profiles of the chickens' spleens and identify differentially expressed genes (DEGs). The RNA-seq findings were verified by quantitative reverse-transcription PCR (qRT-PCR). A total of 31,959 genes was identified in response to CAstV infection. Eventually, 45 DEGs (p-value < 0.05; log2 fold change > 1) were recognized in the spleen after CAstV infection (26 upregulated DEGs and 19 downregulated DEGs). qRT-PCR performed on four genes (IFIT5, OASL, RASD1, and DDX60) confirmed the RNA-seq results. The most differentially expressed genes encode putative IFN-induced CAstV restriction factors. Most DEGs were associated with the RIG-I-like signaling pathway or more generally with an innate antiviral response (upregulated: BLEC3, CMPK2, IFIT5, OASL, DDX60, and IFI6; downregulated: SPIK5, SELENOP, HSPA2, TMEM158, RASD1, and YWHAB). The study provides a global analysis of host transcriptional changes that occur during CAstV infection in vivo and proves that, in the spleen, CAstV infection in chickens predominantly affects the cell cycle and immune signaling.
Collapse
Affiliation(s)
- Joanna Sajewicz-Krukowska
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland; (K.D.-B.); (K.T.)
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Maciej Grzybek
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 81-519 Gdynia, Poland;
| | - Katarzyna Domańska-Blicharz
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland; (K.D.-B.); (K.T.)
| | - Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland; (K.D.-B.); (K.T.)
| | - Barbara Marzec-Kotarska
- Department of Clinical Pathomorphology, The Medical University of Lublin, 20-090 Lublin, Poland;
| |
Collapse
|
11
|
Richter Ł, Paszkowska K, Cendrowska U, Olgiati F, Silva PJ, Gasbarri M, Guven ZP, Paczesny J, Stellacci F. Broad-spectrum nanoparticles against bacteriophage infections. NANOSCALE 2021; 13:18684-18694. [PMID: 34738613 PMCID: PMC8601202 DOI: 10.1039/d1nr04936d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Viral infections caused by bacteriophages, i.e., viruses that kill bacteria are one of the most dangerous and common threats for bacteria-based bioreactors. More than 70% of biotechnology companies have admitted to encountering this problem. Despite phage infections being such a dangerous and widespread risk, there are no effective methods to avoid them to date. Herein, we present a novel technology based on nanoparticles that irreversibly deactivates bacteriophages and is safe for bacteria. Our method allows for the unsupervised protection of bacterial processes in the biotechnology industry. Gold nanoparticles coated with a mixture of negatively charged 11-mercapto 1-undecanesulfonic acid (MUS) and hydrophobic 1-octanethiol (OT) ligands are effective at deactivating various types of Escherichia coli-selective phages: T1, T4, and T7. The nanoparticles can lower the titer of phages up to 2 and 5 logs in 6 and 24 h at 50 °C, respectively. A comparative analysis of nanoparticles with different ligand shells illustrates the importance of the combination of negatively charged and hydrophobic ligands that is the key to achieving a good inhibitory concentration (EC50 ≤ 1 μg mL-1) for all tested phages. We show that the nanoparticles are harmless for the commonly used bacteria in industry Escherichia coli and are effective under conditions simulating the environment of bioreactors.
Collapse
Affiliation(s)
- Łukasz Richter
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Karolina Paszkowska
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Urszula Cendrowska
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Francesca Olgiati
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Paulo Jacob Silva
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Matteo Gasbarri
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Zekiye Pelin Guven
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Jan Paczesny
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Brycki BE, Szulc A, Kowalczyk I, Koziróg A, Sobolewska E. Antimicrobial Activity of Gemini Surfactants with Ether Group in the Spacer Part. Molecules 2021; 26:molecules26195759. [PMID: 34641303 PMCID: PMC8510121 DOI: 10.3390/molecules26195759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
Due to their large possibility of the structure modification, alkylammonium gemini surfactants are a rapidly growing class of compounds. They exhibit significant surface, aggregation and antimicrobial properties. Due to the fact that, in order to achieve the desired utility effect, the minimal concentration of compounds are used, they are in line with the principle of greenolution (green evolution) in chemistry. In this study, we present innovative synthesis of the homologous series of gemini surfactants modified at the spacer by the ether group, i.e., 3-oxa-1,5-pentane-bis(N-alkyl-N,N-dimethylammonium bromides). The critical micelle concentrations were determined. The minimal inhibitory concentrations of the synthesized compounds were determined against bacteria Escherichia coli ATCC 10536 and Staphylococcus aureus ATCC 6538; yeast Candida albicans ATCC 10231; and molds Aspergillus niger ATCC 16401 and Penicillium chrysogenum ATCC 60739. We also investigated the relationship between antimicrobial activity and alkyl chain length or the nature of the spacer. The obtained results indicate that the synthesized compounds are effective microbicides with a broad spectrum of biocidal activity.
Collapse
Affiliation(s)
- Bogumil Eugene Brycki
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (A.S.); (I.K.)
- Correspondence: ; Tel.: +48-61-829-1694
| | - Adrianna Szulc
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (A.S.); (I.K.)
| | - Iwona Kowalczyk
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (A.S.); (I.K.)
| | - Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Ewelina Sobolewska
- Interdisciplinary Doctoral School of the Lodz University of Technology, Lodz University of Technology, 90-924 Lodz, Poland;
| |
Collapse
|
13
|
Sharma N, Modak C, Singh PK, Kumar R, Khatri D, Singh SB. Underscoring the immense potential of chitosan in fighting a wide spectrum of viruses: A plausible molecule against SARS-CoV-2? Int J Biol Macromol 2021; 179:33-44. [PMID: 33607132 PMCID: PMC7885638 DOI: 10.1016/j.ijbiomac.2021.02.090] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022]
Abstract
Chitosan is a deacetylated polycationic polysaccharide derived from chitin. It is structurally constituted of N-acetyl-D-glucosamine and β-(1-4)-linked D-glucosamine where acetyl groups are randomly distributed across the polymer. The parameters of deacetylation and depolymerization process greatly influence various physico-chemical properties of chitosan and thus, offer a great degree of manipulation to synthesize chitosan of interest for various industrial and biomedical applications. Chitosan and its various derivatives have been a potential molecule of investigation in the area of anti-microbials especially anti-fungal, anti-bacterial and antiviral. The current review predominantly highlights and discusses about the antiviral activities of chitosan and its various substituted derivatives against a wide spectrum of human, animal, plants and bacteriophage viruses. The extrinsic and intrinsic factors that affect antiviral efficacy of chitosan have also been talked about. With the rapid unfolding of COVID-19 pandemic across the globe, we look for chitosan as a plausible potent antiviral molecule for fighting this disease. Through this review, we present enough literature data supporting role of chitosan against different strains of SARS viruses and also chitosan targeting CD147 receptors, a novel route for invasion of SARS-CoV-2 into host cells. We speculate the possibility of using chitosan as potential molecule against SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Nivya Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chandrima Modak
- Birla Institute of Technology and Sciences (BITS), PILANI, Pilani campus, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmender Khatri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
14
|
Gondil VS, Chhibber S. Bacteriophage and Endolysin Encapsulation Systems: A Promising Strategy to Improve Therapeutic Outcomes. Front Pharmacol 2021; 12:675440. [PMID: 34025436 PMCID: PMC8138158 DOI: 10.3389/fphar.2021.675440] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Vijay Singh Gondil
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India.,Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Basic Medical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
15
|
Marongiu L, Burkard M, Venturelli S, Allgayer H. Dietary Modulation of Bacteriophages as an Additional Player in Inflammation and Cancer. Cancers (Basel) 2021; 13:cancers13092036. [PMID: 33922485 PMCID: PMC8122878 DOI: 10.3390/cancers13092036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 01/06/2023] Open
Abstract
Natural compounds such as essential oils and tea have been used successfully in naturopathy and folk medicine for hundreds of years. Current research is unveiling the molecular role of their antibacterial, anti-inflammatory, and anticancer properties. Nevertheless, the effect of these compounds on bacteriophages is still poorly understood. The application of bacteriophages against bacteria has gained a particular interest in recent years due to, e.g., the constant rise of antimicrobial resistance to antibiotics, or an increasing awareness of different types of microbiota and their potential contribution to gastrointestinal diseases, including inflammatory and malignant conditions. Thus, a better knowledge of how dietary products can affect bacteriophages and, in turn, the whole gut microbiome can help maintain healthy homeostasis, reducing the risk of developing diseases such as diverse types of gastroenteritis, inflammatory bowel disease, or even cancer. The present review summarizes the effect of dietary compounds on the physiology of bacteriophages. In a majority of works, the substance class of polyphenols showed a particular activity against bacteriophages, and the primary mechanism of action involved structural damage of the capsid, inhibiting bacteriophage activity and infectivity. Some further dietary compounds such as caffeine, salt or oregano have been shown to induce or suppress prophages, whereas others, such as the natural sweeter stevia, promoted species-specific phage responses. A better understanding of how dietary compounds could selectively, and specifically, modulate the activity of individual phages opens the possibility to reorganize the microbial network as an additional strategy to support in the combat, or in prevention, of gastrointestinal diseases, including inflammation and cancer.
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Experimental Surgery—Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany;
| | - Markus Burkard
- Department of Biochemistry of Nutrition, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
| | - Sascha Venturelli
- Department of Biochemistry of Nutrition, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
- Department of Vegetative and Clinical Physiology, University Hospital of Tuebingen, Otfried-Müllerstr. 27, 72076 Tuebingen, Germany
- Correspondence: (S.V.); (H.A.); Tel.: +49-(0)711-459-24113 (ext. 24195) (S.V.); +49-(0)621-383-71630 (ext. 71635) (H.A.); Fax: +49-(0)-711-459-23822 (S.V.); +49-(0)-621-383-71631 (H.A.)
| | - Heike Allgayer
- Department of Experimental Surgery—Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany;
- Correspondence: (S.V.); (H.A.); Tel.: +49-(0)711-459-24113 (ext. 24195) (S.V.); +49-(0)621-383-71630 (ext. 71635) (H.A.); Fax: +49-(0)-711-459-23822 (S.V.); +49-(0)-621-383-71631 (H.A.)
| |
Collapse
|
16
|
Fu Y, Jaarsma AH, Kuipers OP. Antiviral activities and applications of ribosomally synthesized and post-translationally modified peptides (RiPPs). Cell Mol Life Sci 2021; 78:3921-3940. [PMID: 33532865 PMCID: PMC7853169 DOI: 10.1007/s00018-021-03759-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
The emergence and re-emergence of viral epidemics and the risks of antiviral drug resistance are a serious threat to global public health. New options to supplement or replace currently used drugs for antiviral therapy are urgently needed. The research in the field of ribosomally synthesized and post-translationally modified peptides (RiPPs) has been booming in the last few decades, in particular in view of their strong antimicrobial activities and high stability. The RiPPs with antiviral activity, especially those against enveloped viruses, are now also gaining more interest. RiPPs have a number of advantages over small molecule drugs in terms of specificity and affinity for targets, and over protein-based drugs in terms of cellular penetrability, stability and size. Moreover, the great engineering potential of RiPPs provides an efficient way to optimize them as potent antiviral drugs candidates. These intrinsic advantages underscore the good therapeutic prospects of RiPPs in viral treatment. With the aim to highlight the underrated antiviral potential of RiPPs and explore their development as antiviral drugs, we review the current literature describing the antiviral activities and mechanisms of action of RiPPs, discussing the ongoing efforts to improve their antiviral potential and demonstrate their suitability as antiviral therapeutics. We propose that antiviral RiPPs may overcome the limits of peptide-based antiviral therapy, providing an innovative option for the treatment of viral disease.
Collapse
Affiliation(s)
- Yuxin Fu
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Ate H Jaarsma
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
17
|
Duval JFL, van Leeuwen HP, Norde W, Town RM. Chemodynamic features of nanoparticles: Application to understanding the dynamic life cycle of SARS-CoV-2 in aerosols and aqueous biointerfacial zones. Adv Colloid Interface Sci 2021; 290:102400. [PMID: 33713994 PMCID: PMC7931671 DOI: 10.1016/j.cis.2021.102400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022]
Abstract
We review concepts involved in describing the chemodynamic features of nanoparticles and apply the framework to gain physicochemical insights into interactions between SARS-CoV-2 virions and airborne particulate matter (PM). Our analysis is highly pertinent given that the World Health Organisation acknowledges that SARS-CoV-2 may be transmitted by respiratory droplets, and the US Center for Disease Control and Prevention recognises that airborne transmission of SARS-CoV-2 can occur. In our theoretical treatment, the virion is assimilated to a core-shell nanoparticle, and contributions of various interaction energies to the virion-PM association (electrostatic, hydrophobic, London-van der Waals, etc.) are generically included. We review the limited available literature on the physicochemical features of the SARS-CoV-2 virion and identify knowledge gaps. Despite the lack of quantitative data, our conceptual framework qualitatively predicts that virion-PM entities are largely able to maintain equilibrium on the timescale of their diffusion towards the host cell surface. Comparison of the relevant mass transport coefficients reveals that virion biointernalization demand by alveolar host cells may be greater than the diffusive supply. Under such conditions both the free and PM-sorbed virions may contribute to the transmitted dose. This result points to the potential for PM to serve as a shuttle for delivery of virions to host cell targets. Thus, our critical review reveals that the chemodynamics of virion-PM interactions may play a crucial role in the transmission of COVID-19, and provides a sound basis for explaining reported correlations between episodes of air pollution and outbreaks of COVID-19.
Collapse
Affiliation(s)
| | - Herman P van Leeuwen
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Willem Norde
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Raewyn M Town
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands; Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium..
| |
Collapse
|
18
|
Rotman SG, Sumrall E, Ziadlou R, Grijpma DW, Richards RG, Eglin D, Moriarty TF. Local Bacteriophage Delivery for Treatment and Prevention of Bacterial Infections. Front Microbiol 2020; 11:538060. [PMID: 33072008 PMCID: PMC7531225 DOI: 10.3389/fmicb.2020.538060] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
As viruses with high specificity for their bacterial hosts, bacteriophages (phages) are an attractive means to eradicate bacteria, and their potential has been recognized by a broad range of industries. Against a background of increasing rates of antibiotic resistance in pathogenic bacteria, bacteriophages have received much attention as a possible "last-resort" strategy to treat infections. The use of bacteriophages in human patients is limited by their sensitivity to acidic pH, enzymatic attack and short serum half-life. Loading phage within a biomaterial can shield the incorporated phage against many of these harmful environmental factors, and in addition, provide controlled release for prolonged therapeutic activity. In this review, we assess the different classes of biomaterials (i.e., biopolymers, synthetic polymers, and ceramics) that have been used for phage delivery and describe the processing methodologies that are compatible with phage embedding or encapsulation. We also elaborate on the clinical or pre-clinical data generated using these materials. While a primary focus is placed on the application of phage-loaded materials for treatment of infection, we also include studies from other translatable fields such as food preservation and animal husbandry. Finally, we summarize trends in the literature and identify current barriers that currently prevent clinical application of phage-loaded biomaterials.
Collapse
Affiliation(s)
- Stijn Gerard Rotman
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, Netherlands
| | - Eric Sumrall
- AO Research Institute Davos, AO Foundation, Davos, Switzerland
| | - Reihane Ziadlou
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Dirk W Grijpma
- MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, Netherlands
| | | | - David Eglin
- AO Research Institute Davos, AO Foundation, Davos, Switzerland.,MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, Netherlands
| | | |
Collapse
|
19
|
Myeloperoxidase and Lysozymes as a Pivotal Hallmark of Immunity Status in Rabbits. Animals (Basel) 2020; 10:ani10091581. [PMID: 32899838 PMCID: PMC7552177 DOI: 10.3390/ani10091581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Rabbit breeding is a very important element in the context of broadly understood industrial breeding, as rabbits are one of the main and most frequently chosen economic directions. Effective rabbit breeding, however, requires full control over the health of these animals, which is particularly related to the orientation regarding their immune status. There are many indicators that can be used to assess the immune system, but the greatest attention should be paid to those that change rapidly over time and reflect the body’s first line of defense. Peripheral blood granulocytes contain enzymes with strong antimicrobial properties, the level of which changes as a result of various external factors, e.g., viral infection, which was assessed in this study. The aim of the study was to evaluate the dynamics of myeloperoxidase (MPO) and lysozyme (LZM) in the experimental infection of rabbits with the Lagovirus europaeus/GI.1a virus, which is a pathogen causing high mortality, decimating rabbit farms all over the world in a short time. The results obtained in the dynamic system show that the levels of assessed enzymes significantly change in the blood during infection. Assessing the immune system using these indicators could therefore be a potential biomarker for the immune status of rabbits. Abstract Infectious diseases, due to their massive scale, are the greatest pain for all rabbit breeders. Viral infections cause enormous economic losses in farms. Treating sick rabbits is very difficult and expensive, so it is very important to prevent disease by vaccinating. In order to successfully fight viral infections, it is important to know about the immune response of an infected animal. The aim of this study was to analyze the immune response mediated by antimicrobial peptides (myeloperoxidase (MPO) and lysozyme (LZM)) in peripheral blood neutrophils and rabbit serum by non-invasive immunological methods. The study was carried out on mixed breed rabbits that were experimentally infected with two strains (Erfurt and Rossi) of the Lagovirus europaeus/GI.1a virus. It has been observed that virus infection causes changes in the form of statistically significant increases in the activity of MPO and LZM concentration, while in the case of LZM activity only statistically significant decreases were noted. Additionally, clinical symptoms typical for the course of the disease were noted, and the probability of survival of the animals at 60 h p.i. (post infection) was 30% for the Erfurt strain, and −60% for the Rossi strain. The obtained results of MPO and LZMs suggest that these enzymes, especially MPO, may serve as a prognostic marker of the state of the immune system of rabbits.
Collapse
|
20
|
Tiwari SK, Dicks LMT, Popov IV, Karaseva A, Ermakov AM, Suvorov A, Tagg JR, Weeks R, Chikindas ML. Probiotics at War Against Viruses: What Is Missing From the Picture? Front Microbiol 2020; 11:1877. [PMID: 32973697 PMCID: PMC7468459 DOI: 10.3389/fmicb.2020.01877] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023] Open
Abstract
Our world is now facing a multitude of novel infectious diseases. Bacterial infections are treated with antibiotics, albeit with increasing difficulty as many of the more common causes of infection have now developed broad spectrum antimicrobial resistance. However, there is now an even greater challenge from both old and new viruses capable of causing respiratory, enteric, and urogenital infections. Reports of viruses resistant to frontline therapeutic drugs are steadily increasing and there is an urgent need to develop novel antiviral agents. Although this all makes sense, it seems rather strange that relatively little attention has been given to the antiviral capabilities of probiotics. Over the years, beneficial strains of lactic acid bacteria (LAB) have been successfully used to treat gastrointestinal, oral, and vaginal infections, and some can also effect a reduction in serum cholesterol levels. Some probiotics prevent gastrointestinal dysbiosis and, by doing so, reduce the risk of developing secondary infections. Other probiotics exhibit anti-tumor and immunomodulating properties, and in some studies, antiviral activities have been reported for probiotic bacteria and/or their metabolites. Unfortunately, the mechanistic basis of the observed beneficial effects of probiotics in countering viral infections is sometimes unclear. Interestingly, in COVID-19 patients, a clear decrease has been observed in cell numbers of Lactobacillus and Bifidobacterium spp., both of which are common sources of intestinal probiotics. The present review, specifically motivated by the need to implement effective new counters to SARS-CoV-2, focusses attention on viruses capable of co-infecting humans and other animals and specifically explores the potential of probiotic bacteria and their metabolites to intervene with the process of virus infection. The goal is to help to provide a more informed background for the planning of future probiotic-based antiviral research.
Collapse
Affiliation(s)
- Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, India,*Correspondence: Santosh Kumar Tiwari,
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Igor V. Popov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alena Karaseva
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexey M. Ermakov
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia
| | - Alexander Suvorov
- Institute of Experimental Medicine, Saint Petersburg, Russia,Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| | - Michael L. Chikindas
- Center for Agro-Biotechnology, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, Rostov-on-Don, Russia,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, Brunswick, NJ, United States
| |
Collapse
|
21
|
García-Anaya MC, Sepúlveda DR, Rios-Velasco C, Zamudio-Flores PB, Sáenz-Mendoza AI, Acosta-Muñiz CH. The role of food compounds and emerging technologies on phage stability. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Patil V, Mahajan S, Kulkarni M, Patil K, Rode C, Coronas A, Yi GR. Synthesis of silver nanoparticles colloids in imidazolium halide ionic liquids and their antibacterial activities for gram-positive and gram-negative bacteria. CHEMOSPHERE 2020; 243:125302. [PMID: 31726264 DOI: 10.1016/j.chemosphere.2019.125302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/15/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Four 1-butyl-3-methylimidazolium halide ionic liquids were synthesized via metathesis and anion exchange reactions. Silver nanoparticles (AgNPs) colloids were synthesized in four ionic liquids in the pressurized reactor by reduction of silver nitrate with hydrogen gas, without adding solvents or stabilizing agents. Antibacterial activities of base ionic liquids and AgNPs colloids in ionic liquids were reviewed by well-diffusion method for gram-positive Bacillus cereus (NCIM-2155) and gram-negative Escherichia coli (NCIM-2931) bacteria. Antibacterial activities of ionic liquids and AgNPs colloids in ionic liquids were observed to be controlled by ionic liquids anions and AgNPs particle size. The 1-butyl-3-methylimidazolium iodide ionic liquid exhibited higher antibacterial activities among the studied ionic liquids. Further, the presence of AgNPs in 1-butyl-3-methylimidazolium iodide, ionic liquid enhanced its antibacterial activity for Bacillus cereus and Escherichia coli bacteria.
Collapse
Affiliation(s)
- Virendra Patil
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Swapnil Mahajan
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, India
| | - Mohan Kulkarni
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, India
| | - Kashinath Patil
- Centre for Materials Characterization Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Chandrashekhar Rode
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Alberto Coronas
- Rovira I Virgili University, Mechanical Engineering Dept., Av. Països Catalans, 26, 43007, Tarragona, Spain
| | - Gi-Ra Yi
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
23
|
Małaczewska J, Kaczorek-Łukowska E, Wójcik R, Siwicki AK. Antiviral effects of nisin, lysozyme, lactoferrin and their mixtures against bovine viral diarrhoea virus. BMC Vet Res 2019; 15:318. [PMID: 31488163 PMCID: PMC6727482 DOI: 10.1186/s12917-019-2067-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/29/2019] [Indexed: 01/01/2023] Open
Abstract
Background Bovine viral diarrhoea virus (BVDV), an enveloped, single-stranded, positive-sense RNA virus from the Flaviviridae family, is a globally distributed bovine pathogen. BVDV infection in cattle, despite having a wide range of clinical manifestations, is invariably responsible for significant economic losses. To counteract these losses, various schemes to control and eradicate BVDV have been implemented, although safe drugs effectively inhibiting the replication of the virus are still lacking. The purpose of this study was to characterize the antiviral effect of naturally occurring proteins and peptide, such as bovine lactoferrin, chicken egg lysozyme, and nisin from Lactococcus lactis, used both individually and in combination, against the cytopathic NADL strain of BVDV in vitro. After determining the cytotoxicity level of each protein or peptide to MDBK cells, its antiviral effects were evaluated using virucidal, cytopathic effect inhibition and viral yield reduction assays. In addition, the influence of the tested compounds on the intracellular viral RNA level was determined. Results The highest efficacy among the single treatments was achieved by bovine lactoferrin, which was effective both at the early stages of viral infection and during its entire course, although the effect weakened over time. Nisin and lysozyme were effective at later stages of infection, and the intensity of their effect did not diminish with time. Nisin+lactoferrin and lysozyme+lactoferrin combinations demonstrated stronger antiviral effects than did the single substances. The nisin+lactoferrin mixture present during the whole period of infection produced the strongest anti-BVDV effect in our entire research on both the extracellular viral titre (titre reduction up to 2.875 log ≈ 99.9%) and the intracellular viral RNA level (reduction up to 89%), and this effect intensified over the incubation time. Conclusions The tested substances could be applied in bovine viral diarrhoea prevention and therapy, especially when used in combination. Electronic supplementary material The online version of this article (10.1186/s12917-019-2067-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joanna Małaczewska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 13, 10-718, Olsztyn, Poland.
| | - Edyta Kaczorek-Łukowska
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 13, 10-718, Olsztyn, Poland
| | - Roman Wójcik
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 13, 10-718, Olsztyn, Poland
| | - Andrzej Krzysztof Siwicki
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 13, 10-718, Olsztyn, Poland
| |
Collapse
|
24
|
Sommer J, Trautner C, Witte AK, Fister S, Schoder D, Rossmanith P, Mester PJ. Don't Shut the Stable Door after the Phage Has Bolted-The Importance of Bacteriophage Inactivation in Food Environments. Viruses 2019; 11:E468. [PMID: 31121941 PMCID: PMC6563225 DOI: 10.3390/v11050468] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/05/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
In recent years, a new potential measure against foodborne pathogenic bacteria was rediscovered-bacteriophages. However, despite all their advantages, in connection to their widespread application in the food industry, negative consequences such as an uncontrolled phage spread as well as a development of phage resistant bacteria can occur. These problems are mostly a result of long-term persistence of phages in the food production environment. As this topic has been neglected so far, this article reviews the current knowledge regarding the effectiveness of disinfectant strategies for phage inactivation and removal. For this purpose, the main commercial phage products, as well as their application fields are first discussed in terms of applicable inactivation strategies and legal regulations. Secondly, an overview of the effectiveness of disinfectants for bacteriophage inactivation in general and commercial phages in particular is given. Finally, this review outlines a possible strategy for users of commercial phage products in order to improve the effectiveness of phage inactivation and removal after application.
Collapse
Affiliation(s)
- Julia Sommer
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Christoph Trautner
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Anna Kristina Witte
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
- HTK Hygiene Technologie Kompetenzzentrum GmbH, Buger Str. 80, 96049 Bamberg, Germany.
| | - Susanne Fister
- Former member of Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animal and Public Veterinary Health, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Dagmar Schoder
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Peter Rossmanith
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Patrick-Julian Mester
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Department for Farm Animal and Public Health in Veterinary Medicine, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
25
|
Torres AG, Amaral MM, Bentancor L, Galli L, Goldstein J, Krüger A, Rojas-Lopez M. Recent Advances in Shiga Toxin-Producing Escherichia coli Research in Latin America. Microorganisms 2018; 6:microorganisms6040100. [PMID: 30274180 PMCID: PMC6313304 DOI: 10.3390/microorganisms6040100] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/01/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Pathogenic Escherichia coli are known to be a common cause of diarrheal disease and a frequently occurring bacterial infection in children and adults in Latin America. Despite the effort to combat diarrheal infections, the south of the American continent remains a hot spot for infections and sequelae associated with the acquisition of one category of pathogenic E. coli, the Shiga toxin-producing E. coli (STEC). This review will focus on an overview of the prevalence of different STEC serotypes in human, animals and food products, focusing on recent reports from Latin America outlining the recent research progress achieved in this region to combat disease and endemicity in affected countries and to improve understanding on emerging serotypes and their virulence factors. Furthermore, this review will highlight the progress done in vaccine development and treatment and will also discuss the effort of the Latin American investigators to respond to the thread of STEC infections by establishing a multidisciplinary network of experts that are addressing STEC-associated animal, human and environmental health issues, while trying to reduce human disease. Regardless of the significant scientific contributions to understand and combat STEC infections worldwide, many significant challenges still exist and this review has focus in the Latin American efforts as an example of what can be accomplished when multiple groups have a common goal.
Collapse
Affiliation(s)
- Alfredo G Torres
- Department of Microbiology and Immunology, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Maria M Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| | - Leticia Bentancor
- Laboratory of Genetic Engineering and Molecular Biology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires 1876, Argentina.
| | - Lucia Galli
- Instituto de Genética Veterinaria Ing. Fernando N. Dulout (UNLP-CONICET, La Plata), Facultad de Ciencias Veterinarias, La Plata 1900, Argentina.
| | - Jorge Goldstein
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Houssay, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina.
| | - Alejandra Krüger
- Centro de Investigación Veterinaria de Tandil (CONICET-CIC-UNCPBA), Facultad de Ciencias Veterinarias, Tandil 7000, Argentina.
| | - Maricarmen Rojas-Lopez
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Virucidal or Not Virucidal? That Is the Question-Predictability of Ionic Liquid's Virucidal Potential in Biological Test Systems. Int J Mol Sci 2018. [PMID: 29522483 PMCID: PMC5877651 DOI: 10.3390/ijms19030790] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
For three decades now, ionic liquids (ILs), organic salts comprising only ions, have emerged as a new class of pharmaceuticals. Although recognition of the antimicrobial effects of ILs is growing rapidly, there is almost nothing known about their possible virucidal activities. This probably reflects the paucity of understanding virus inactivation. In this study, we performed a systematic analysis to determine the effect of specific structural motifs of ILs on three different biological test systems (viruses, bacteria and enzymes). Overall, the effects of 27 different ILs on two non-enveloped and one enveloped virus (P100, MS2 and Phi6), two Gram negative and one Gram positive bacteria (E. coli, P. syringae and L. monocytogenes) and one enzyme (Taq DNA polymerase) were investigated. Results show that while some ILs were virucidal, no clear structure activity relationships (SARs) could be identified for the non-enveloped viruses P100 and MS2. However, for the first time, a correlation has been demonstrated between the effects of ILs on enveloped viruses, bacteria and enzyme inhibition. These identified SARs serve as a sound starting point for further studies.
Collapse
|
27
|
Loeb S, Li C, Kim JH. Solar Photothermal Disinfection using Broadband-Light Absorbing Gold Nanoparticles and Carbon Black. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:205-213. [PMID: 29240431 DOI: 10.1021/acs.est.7b04442] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A simple heat treatment, perhaps the most globally recognized point-of-use water sterilization method, is seemingly effective against all major pathogens of concern, but bulk water boiling is not energy efficient or sustainable. Herein, we present the first application of solar-to-thermal converting nanomaterials for the direct inactivation of bacteria and viruses in drinking water through the application of Au nanorods, carbon black, and Au nanorod-carbon black composite materials as light absorbers. With broad absorption bands spanning the visible and near-infrared wavelengths, at sufficient concentrations, these nanoparticles induce multiple scattering events, increasing photon absorption probability and concentrating the light within a small spatial domain, leading to localized, intense heating that inactivates microorganisms in close proximity. Moving toward practical device design, we have developed a facile silane immobilization approach to fabricate films with densely packed layers of photothermal nanomaterials. Our results suggest that upon irraditaion with simulated solar light, these films can thermally inactivate bacteria and viruses, as demonstrated through the inactivation of surrogate organisms Escherichia coli K-12, and bacteriophages MS2 and PR772.
Collapse
Affiliation(s)
- Stephanie Loeb
- Department of Chemical and Environmental Engineering and Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University , 17 Hillhouse Ave, New Haven, Connecticut 06511, United States
| | - Chuanhao Li
- Department of Chemical and Environmental Engineering and Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University , 17 Hillhouse Ave, New Haven, Connecticut 06511, United States
- Department of Environmental Science and Engineering, Sun Yat-sen University , Guangzhou, Guangdong China
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering and Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University , 17 Hillhouse Ave, New Haven, Connecticut 06511, United States
| |
Collapse
|
28
|
Fister S, Mester P, Sommer J, Witte AK, Kalb R, Wagner M, Rossmanith P. Virucidal Influence of Ionic Liquids on Phages P100 and MS2. Front Microbiol 2017; 8:1608. [PMID: 28883814 PMCID: PMC5573800 DOI: 10.3389/fmicb.2017.01608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
An increasing number of publications describe the potential of ionic liquids (ILs) as novel antimicrobials, antibacterial coatings and even as active pharmaceutical ingredients. Nevertheless, a major research area, notably their impact on viruses, has so far been neglected. Consequently the aim of this study was to examine the effects of ILs on the infectivity of viruses. A systematic analysis to investigate the effects of defined structural elements of ILs on virus activity was performed using 55 ILs. All structure activity relationships (SARs) were tested on the human norovirus surrogate phage MS2 and phage P100 representing non-enveloped DNA viruses. Results demonstrate that IL SAR conclusions, established for prokaryotes and eukaryotes, are not readily applicable to the examined phages. A virus-type-dependent IL influence was also apparent. Overall, four ILs, covering different structural elements, were found to reduce phage P100 infectivity by ≥4 log10 units, indicating a virucidal effect, whereas the highest reduction for phage MS2 was about 3 log10 units. Results indicate that future applications of ILs as virucidal agents will require development of novel SARs and the obtained results serve as a good starting point for future studies.
Collapse
Affiliation(s)
- Susanne Fister
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary MedicineVienna, Austria
| | - Patrick Mester
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary MedicineVienna, Austria
| | - Julia Sommer
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary MedicineVienna, Austria
| | - Anna K Witte
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary MedicineVienna, Austria
| | - Roland Kalb
- Proionic Production of Ionic Substances GmbHGrambach, Austria
| | - Martin Wagner
- Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary MedicineVienna, Austria
| | - Peter Rossmanith
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary MedicineVienna, Austria.,Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Public Veterinary Health, University of Veterinary MedicineVienna, Austria
| |
Collapse
|
29
|
Jurczak-Kurek A, Gąsior T, Nejman-Faleńczyk B, Bloch S, Dydecka A, Topka G, Necel A, Jakubowska-Deredas M, Narajczyk M, Richert M, Mieszkowska A, Wróbel B, Węgrzyn G, Węgrzyn A. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Sci Rep 2016; 6:34338. [PMID: 27698408 PMCID: PMC5048108 DOI: 10.1038/srep34338] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
A large scale analysis presented in this article focuses on biological and physiological variety of bacteriophages. A collection of 83 bacteriophages, isolated from urban sewage and able to propagate in cells of different bacterial hosts, has been obtained (60 infecting Escherichia coli, 10 infecting Pseudomonas aeruginosa, 4 infecting Salmonella enterica, 3 infecting Staphylococcus sciuri, and 6 infecting Enterococcus faecalis). High biological diversity of the collection is indicated by its characteristics, both morphological (electron microscopic analyses) and biological (host range, plaque size and morphology, growth at various temperatures, thermal inactivation, sensitivity to low and high pH, sensitivity to osmotic stress, survivability upon treatment with organic solvents and detergents), and further supported by hierarchical cluster analysis. By the end of the research no larger collection of phages from a single environmental source investigated by these means had been found. The finding was confirmed by whole genome analysis of 7 selected bacteriophages. Moreover, particular bacteriophages revealed unusual biological features, like the ability to form plaques at low temperature (4 °C), resist high temperature (62 °C or 95 °C) or survive in the presence of an organic solvents (ethanol, acetone, DMSO, chloroform) or detergent (SDS, CTAB, sarkosyl) making them potentially interesting in the context of biotechnological applications.
Collapse
Affiliation(s)
- Agata Jurczak-Kurek
- Department of Molecular Evolution University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Tomasz Gąsior
- Laboratory of Molecular Biology (affiliated with University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Sylwia Bloch
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Aleksandra Dydecka
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Gracja Topka
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Agnieszka Necel
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Magdalena Jakubowska-Deredas
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Malwina Richert
- Laboratory of Electron Microscopy, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Agata Mieszkowska
- Department of Molecular Evolution University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Borys Wróbel
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology (affiliated with University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
30
|
Amorim JH, Del Cogliano ME, Fernandez-Brando RJ, Bilen MF, Jesus MR, Luiz WB, Palermo MS, Ferreira RCC, Servat EG, Ghiringhelli PD, Ferreira LCS, Bentancor LV. Role of bacteriophages in STEC infections: new implications for the design of prophylactic and treatment approaches. F1000Res 2014; 3:74. [PMID: 25580222 PMCID: PMC4288416 DOI: 10.12688/f1000research.3718.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2014] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin (Stx) is considered the main virulence factor in Shiga toxin-producing
Escherichia coli (STEC) infections. Previously we reported the expression of biologically active Stx by eukaryotic cells
in vitro and
in vivo following transfection with plasmids encoding Stx under control of the native bacterial promoter
1,2. Since
stx genes are present in the genome of lysogenic bacteriophages, here we evaluated the relevance of bacteriophages during STEC infection. We used the non-pathogenic
E. coli C600 strain carrying a lysogenic 933W mutant bacteriophage in which the
stx operon was replaced by a gene encoding the green fluorescent protein (GFP). Tracking GFP expression using an
In Vivo Imaging System (IVIS), we detected fluorescence in liver, kidney, and intestine of mice infected with the recombinant
E. coli strain after treatment with ciprofloxacin, which induces the lytic replication and release of bacteriophages. In addition, we showed that chitosan, a linear polysaccharide composed of d-glucosamine residues and with a number of commercial and biomedical uses, had strong anti-bacteriophage effects, as demonstrated at
in vitro and
in vivo conditions. These findings bring promising perspectives for the prevention and treatment of haemolytic uremic syndrome (HUS) cases.
Collapse
Affiliation(s)
- Jaime H Amorim
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-060, Brazil
| | - Manuel E Del Cogliano
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Universidad Nacional de Quilmes, Buenos Aires, 1876, Argentina
| | - Romina J Fernandez-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX) (CONICET), Academia Nacional de Medicina, Buenos Aires, 1425, Argentina
| | - Marcos F Bilen
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Universidad Nacional de Quilmes, Buenos Aires, 1876, Argentina
| | - Monica R Jesus
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-060, Brazil
| | - Wilson B Luiz
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-060, Brazil
| | - Marina S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX) (CONICET), Academia Nacional de Medicina, Buenos Aires, 1425, Argentina
| | - Rita C C Ferreira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-060, Brazil
| | - Esteban G Servat
- BioSur, Ciudad Autónoma de Buenos Aires, Buenos Aires, 1406, Argentina
| | - Pablo D Ghiringhelli
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Universidad Nacional de Quilmes, Buenos Aires, 1876, Argentina
| | - Luis C S Ferreira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-060, Brazil
| | - Leticia V Bentancor
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Universidad Nacional de Quilmes, Buenos Aires, 1876, Argentina
| |
Collapse
|