1
|
Fenibo EO, Selvarajan R, Abia ALK, Matambo T. Medium-chain alkane biodegradation and its link to some unifying attributes of alkB genes diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162951. [PMID: 36948313 DOI: 10.1016/j.scitotenv.2023.162951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Hydrocarbon footprints in the environment, via biosynthesis, natural seepage, anthropogenic activities and accidents, affect the ecosystem and induce a shift in the healthy biogeochemical equilibrium that drives needed ecological services. In addition, these imbalances cause human diseases and reduce animal and microorganism diversity. Microbial bioremediation, which capitalizes on functional genes, is a sustainable mitigation option for cleaning hydrocarbon-impacted environments. This review focuses on the bacterial alkB functional gene, which codes for a non-heme di‑iron monooxygenase (AlkB) with a di‑iron active site that catalyzes C8-C16 medium-chain alkane metabolism. These enzymes are ubiquitous and share common attributes such as being controlled by global transcriptional regulators, being a component of most super hydrocarbon degraders, and their distributions linked to horizontal gene transfer (HGT) events. The phylogenetic approach used in the HGT detection suggests that AlkB tree topology clusters bacteria functionally and that a preferential gradient dictates gene distribution. The alkB gene also acts as a biomarker for bioremediation, although it is found in pristine environments and absent in some hydrocarbon degraders. For instance, a quantitative molecular method has failed to link alkB copy number to contamination concentration levels. This limitation may be due to AlkB homologues, which have other functions besides n-alkane assimilation. Thus, this review, which focuses on Pseudomonas putida GPo1 alkB, shows that AlkB proteins are diverse but have some unifying trends around hydrocarbon-degrading bacteria; it is erroneous to rely on alkB detection alone as a monitoring parameter for hydrocarbon degradation, alkB gene distribution are preferentially distributed among bacteria, and the plausible explanation for AlkB affiliation to broad-spectrum metabolism of hydrocarbons in super-degraders hitherto reported. Overall, this review provides a broad perspective of the ecology of alkB-carrying bacteria and their directed biodegradation pathways.
Collapse
Affiliation(s)
- Emmanuel Oliver Fenibo
- World Bank Africa Centre of Excellence, Centre for Oilfield Chemical Research, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Ramganesh Selvarajan
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Department of Environmental Science, University of South Africa, Florida Campus, 1710, South Africa
| | - Akebe Luther King Abia
- Department of Environmental Science, University of South Africa, Florida Campus, 1710, South Africa; Environmental Research Foundation, Westville 3630, South Africa
| | - Tonderayi Matambo
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort 1709, South Africa.
| |
Collapse
|
2
|
Guo X, Zhang J, Han L, Lee J, Williams SC, Forsberg A, Xu Y, Austin RN, Feng L. Structure and mechanism of the alkane-oxidizing enzyme AlkB. Nat Commun 2023; 14:2180. [PMID: 37069165 PMCID: PMC10110569 DOI: 10.1038/s41467-023-37869-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Alkanes are the most energy-rich form of carbon and are widely dispersed in the environment. Their transformation by microbes represents a key step in the global carbon cycle. Alkane monooxygenase (AlkB), a membrane-spanning metalloenzyme, converts straight chain alkanes to alcohols in the first step of the microbially-mediated degradation of alkanes, thereby playing a critical role in the global cycling of carbon and the bioremediation of oil. AlkB biodiversity is attributed to its ability to oxidize alkanes of various chain lengths, while individual AlkBs target a relatively narrow range. Mechanisms of substrate selectivity and catalytic activity remain elusive. Here we report the cryo-EM structure of AlkB, which provides a distinct architecture for membrane enzymes. Our structure and functional studies reveal an unexpected diiron center configuration and identify molecular determinants for substrate selectivity. These findings provide insight into the catalytic mechanism of AlkB and shed light on its function in alkane-degrading microorganisms.
Collapse
Affiliation(s)
- Xue Guo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lei Han
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Juliet Lee
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shoshana C Williams
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Allison Forsberg
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90007, USA
| | - Yan Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Wei M, Zeng X, Han X, Shao Z, Xie Q, Dong C, Wang Y, Qiu Z. Potential autotrophic carbon-fixer and Fe(II)-oxidizer Alcanivorax sp. MM125-6 isolated from Wocan hydrothermal field. Front Microbiol 2022; 13:930601. [PMID: 36316996 PMCID: PMC9616709 DOI: 10.3389/fmicb.2022.930601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
The genus Alcanivorax is common in various marine environments, including in hydrothermal fields. They were previously recognized as obligate hydrocarbonoclastic bacteria, but their potential for autotrophic carbon fixation and Fe(II)-oxidation remains largely elusive. In this study, an in situ enrichment experiment was performed using a hydrothermal massive sulfide slab deployed 300 m away from the Wocan hydrothermal vent. Furthermore, the biofilms on the surface of the slab were used as an inoculum, with hydrothermal massive sulfide powder from the same vent as an energy source, to enrich the potential iron oxidizer in the laboratory. Three dominant bacterial families, Alcanivoraceae, Pseudomonadaceae, and Rhizobiaceae, were enriched in the medium with hydrothermal massive sulfides. Subsequently, strain Alcanivorax sp. MM125-6 was isolated from the enrichment culture. It belongs to the genus Alcanivorax and is closely related to Alcanivorax profundimaris ST75FaO-1 T (98.9% sequence similarity) indicated by a phylogenetic analysis based on 16S rRNA gene sequences. Autotrophic growth experiments on strain MM125-6 revealed that the cell concentrations were increased from an initial 7.5 × 105 cells/ml to 3.13 × 108 cells/ml after 10 days, and that the δ13C VPDB in the cell biomass was also increased from 234.25‰ on day 2 to gradually 345.66 ‰ on day 10. The gradient tube incubation showed that bands of iron oxides and cells formed approximately 1 and 1.5 cm, respectively, below the air-agarose medium interface. In addition, the SEM-EDS data demonstrated that it can also secrete acidic exopolysaccharides and adhere to the surface of sulfide minerals to oxidize Fe(II) with NaHCO3 as the sole carbon source, which accelerates hydrothermal massive sulfide dissolution. These results support the conclusion that strain MM125-6 is capable of autotrophic carbon fixation and Fe(II) oxidization chemoautotrophically. This study expands our understanding of the metabolic versatility of the Alcanivorax genus as well as their important role(s) in coupling hydrothermal massive sulfide weathering and iron and carbon cycles in hydrothermal fields.
Collapse
Affiliation(s)
- Mingcong Wei
- Ocean College, Zhejiang University, Zhoushan, China
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiqiu Han
- Ocean College, Zhejiang University, Zhoushan, China
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Qian Xie
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanqi Dong
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Yejian Wang
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Zhongyan Qiu
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| |
Collapse
|
4
|
Shi H, Cheng J, Gao W, Ma M, Liu A, Hu T, Han B, Zheng L. Biodiversity and degradation potential of oil-degrading bacteria isolated from sediments of hydrothermal and non-hydrothermal areas of the Southwest Mid-Indian Ocean Ridge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26821-26834. [PMID: 34854009 DOI: 10.1007/s11356-021-17826-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, sediments from eight sites were collected from hydrothermal areas (e.g., the Tiancheng, Tianzuo, and Longqi hydrothermal areas) and non-hydrothermal area on the Southwest Mid-Indian Ocean Ridge. Using crude oil as the only carbon and energy source, 162 strains of culturable oil-degrading bacteria were isolated and obtained. The rate of oil degradation of the consortia was 39.48-46.00% in hydrothermal and non-hydrothermal areas. High-throughput sequencing found that the alpha diversity indices (e.g., Shannon and Simpson) of the communities in hydrothermal areas were higher than those in non-hydrothermal area. The species diversities of the oil-degrading bacteria were different among different hydrothermal areas. The composition of the oil-degrading bacterial species in the Tianzuo hydrothermal area tended to be more similar to that in the non-hydrothermal area. This similarity is attributed to the changes in the bacterial community that followed the cessation of hydrothermal vent eruptions at this site. The Alphaproteobacteria abundance of the oil-degrading bacteria was significantly different in oil-degrading bacteria between the hydrothermal and non-hydrothermal areas.
Collapse
Affiliation(s)
- Haolei Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266071, China
| | - Jiangfeng Cheng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266071, China
| | - Wei Gao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Ang Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Tianyi Hu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Bin Han
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Li Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
5
|
Porphyrins and Phthalocyanines on Solid-State Mesoporous Matrices as Catalysts in Oxidation Reactions. MATERIALS 2022; 15:ma15072532. [PMID: 35407864 PMCID: PMC8999812 DOI: 10.3390/ma15072532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022]
Abstract
The review presents recent examples of heterogenic catalysts based on porphyrins and phthalocyanines loaded on mesoporous materials, such as MCM-41, SBA-15, MCM-48, SBA-16 or Al-MCM-41. Heterogenic approach to catalysis eases recovery, reuse and prevent macrocycle aggregation. In this application, mesoporous silica is a promising candidate for anchoring macrocycle and obtaining a new catalyst. Introduction of porphyrin or phthalocyanine into the mesoporous material may be performed through adsorption of the macrocycle, or by its in situ formation—by reaction of substrates introduced to the pores of the catalytic material. Catalytic reactions studied are oxidation processes, focused on alkane, alkene or arene as substrates. The products obtained are usually epoxides, alcohols, ketones, aldehydes or acids. The greatest interest lies in oxidation of cyclohexane and cyclohexene, as a source of adypic acid and derivatives. Some of the reactions may be viewed as biomimetic processes, resembling processes that occur in vivo and are catalyzed by cytochrome P450 enzyme family.
Collapse
|
6
|
Hemamali EH, Weerasinghe LP, Tanaka H, Kurisu G, Perera IC. LcaR: a regulatory switch from Pseudomonas aeruginosa for bioengineering alkane degrading bacteria. Biodegradation 2022; 33:117-133. [PMID: 34989928 DOI: 10.1007/s10532-021-09970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/22/2021] [Indexed: 11/26/2022]
Abstract
Application of genetically engineered bacterial strains for biodegradation of hydrocarbons is a sustainable solution for treating pollutants as well as in industrial applications. However, the process of bioengineering should be carefully carried out to optimize the output. Investigation of regulatory genes for bioengineering is essential for developing synthetic circuits for effective biocatalysts. Here we focus on LcaR, a putative transcriptional regulator affecting the expression of alkB2 and lcaR operon that has a high potential to become a tool in designing such pathways. Four LcaR dimers bind specifically to the upstream regulatory region where divergent promoters of alkB2 and lcaR genes are located with high affinity at a Kd of 0.94 ± 0.17 nM and a Hill coefficient is 1.7 ± 0.3 demonstrating cooperativity in the association. Ligand binding alters the conformation of LcaR, which releases the regulator from its cognate DNA. Tetradecanal and hexadecanal act as natural ligands of LcaR with an IC50 values of 3.96 ± 0.59 µg/ml and 0.68 ± 0.21 µg/ml, respectively. The structure and function of transcription factors homologous to LcaR have not been characterized to date. This study provides insight into regulatory mechanisms of alkane degradation with a direction towards potential applications in bioengineering for bioremediation and industrial applications.
Collapse
Affiliation(s)
- Erandika H Hemamali
- Synthetic Biology Laboratory, Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Laksiri P Weerasinghe
- Department of Chemistry, Faculty of Applied Science, University of Sri Jayewardenapura, Colombo, Sri Lanka
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Inoka C Perera
- Synthetic Biology Laboratory, Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka.
| |
Collapse
|
7
|
The oxidation of hydrocarbons by diverse heterotrophic and mixotrophic bacteria that inhabit deep-sea hydrothermal ecosystems. ISME JOURNAL 2020; 14:1994-2006. [PMID: 32355200 PMCID: PMC7368058 DOI: 10.1038/s41396-020-0662-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 11/08/2022]
Abstract
Hydrothermal activity can generate numerous and diverse hydrocarbon compounds. However, little is known about the influence of such hydrocarbons on deep-sea hydrothermal microbial ecology. We hypothesize that certain bacteria live on these hydrocarbons. Therefore, in this study, the distribution of hydrocarbons and their associated hydrocarbon-degrading bacteria were investigated at deep-sea hydrothermal vents at the Southern Mid-Atlantic Ridge, the Southwest Indian Ridge, and the East Pacific Rise. A variety of hydrocarbon-degrading consortia were obtained from hydrothermal samples collected at the aforementioned sites after low-temperature enrichment under high hydrostatic pressures, and the bacteria responsible for the degradation of hydrocarbons were investigated by DNA-based stable-isotope probing with uniformly 13C-labeled hydrocarbons. Unusually, we identified several previously recognized sulfur-oxidizing chemoautotrophs as hydrocarbon-degrading bacteria, e.g., the SAR324 group, the SUP05 clade, and Sulfurimonas, and for the first time confirmed their ability to degrade hydrocarbons. In addition, Erythrobacter, Pusillimonas, and SAR202 clade were shown to degrade polycyclic aromatic hydrocarbons for the first time. These results together with relatively high abundance in situ of most of the above-described bacteria highlight the potential influence of hydrocarbons in configuring the vent microbial community, and have made the importance of mixotrophs in hydrothermal vent ecosystems evident.
Collapse
|
8
|
Park C, Park W. Survival and Energy Producing Strategies of Alkane Degraders Under Extreme Conditions and Their Biotechnological Potential. Front Microbiol 2018; 9:1081. [PMID: 29910779 PMCID: PMC5992423 DOI: 10.3389/fmicb.2018.01081] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/07/2018] [Indexed: 11/17/2022] Open
Abstract
Many petroleum-polluted areas are considered as extreme environments because of co-occurrence of low and high temperatures, high salt, and acidic and anaerobic conditions. Alkanes, which are major constituents of crude oils, can be degraded under extreme conditions, both aerobically and anaerobically by bacteria and archaea of different phyla. Alkane degraders possess exclusive metabolic pathways and survival strategies, which involve the use of protein and RNA chaperones, compatible solutes, biosurfactants, and exopolysaccharide production for self-protection during harsh environmental conditions such as oxidative and osmotic stress, and ionic nutrient-shortage. Recent findings suggest that the thermophilic sulfate-reducing archaeon Archaeoglobus fulgidus uses a novel alkylsuccinate synthase for long-chain alkane degradation, and the thermophilic Candidatus Syntrophoarchaeum butanivorans anaerobically oxidizes butane via alkyl-coenzyme M formation. In addition, gene expression data suggest that extremophiles produce energy via the glyoxylate shunt and the Pta-AckA pathway when grown on a diverse range of alkanes under stress conditions. Alkane degraders possess biotechnological potential for bioremediation because of their unusual characteristics. This review will provide genomic and molecular insights on alkane degraders under extreme conditions.
Collapse
Affiliation(s)
- Chulwoo Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
9
|
Characterization of Polyethylene Oxide and Sodium Alginate for Oil Contaminated-Sand Remediation. SUSTAINABILITY 2017. [DOI: 10.3390/su9010062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, Vidoudez C, Amann R, Meyerdierks A. HeterotrophicProteobacteriain the vicinity of diffuse hydrothermal venting. Environ Microbiol 2016; 18:4348-4368. [DOI: 10.1111/1462-2920.13304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/13/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Dimitri V. Meier
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Wolfgang Bach
- University of Bremen, MARUM - Center for Marine Environmental Sciences, Petrology of the Ocean Crust group; Leobener Str. D-28359 Bremen Germany
| | - Peter R. Girguis
- Harvard University, Department of Organismic & Evolutionary Biology; 16 Divinity Avenue Cambridge MA 02138-2020 USA
| | | | - Eoghan P. Reeves
- University of Bremen, MARUM - Center for Marine Environmental Sciences, Petrology of the Ocean Crust group; Leobener Str. D-28359 Bremen Germany
- University of Bergen, Department of Earth Science and Centre for Geobiology; Postboks 7803 N-5020 Bergen Norway
| | - Michael Richter
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Charles Vidoudez
- Harvard University, Department of Organismic & Evolutionary Biology; 16 Divinity Avenue Cambridge MA 02138-2020 USA
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Anke Meyerdierks
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| |
Collapse
|
11
|
Jung J, Jang J, Ahn J. Characterization of a Polyacrylamide Solution Used for Remediation of Petroleum Contaminated Soils. MATERIALS 2016; 9:ma9010016. [PMID: 28787815 PMCID: PMC5456553 DOI: 10.3390/ma9010016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022]
Abstract
Biopolymers are viewed as effective and eco-friendly agents in soil modification. This study focuses on the wettability analysis of polyacrylamide (PAM) solutions for soil remediation. The contact angle, surface tension, and viscosity of PAM solutions were experimentally evaluated in air- and decane-biopolymer solution systems. Furthermore, a micromodel was used to investigate the pore-scale displacement phenomena during the injection of the PAM solution in decane and or air saturated pores. The contact angle of the PAM solution linearly increases with increasing concentration in air but not in decane. The surface tension between the PAM solution and air decreases at increasing concentration. The viscosity of the PAM solution is highly dependent on the concentration of the solution, shear rate, and temperature. Low flow rate and low concentration result in a low displacement ratio level, which is defined as the volume ratio between the injected and the defended fluids in the pores. The displacement ratio is higher for PAM solutions than distilled water; however, a higher concentration does not necessarily guarantees a higher displacement ratio. Soil remediation could be conducted cost-efficiently at high flow rates but with moderate concentration levels.
Collapse
Affiliation(s)
- Jongwon Jung
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Jungyeon Jang
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Jaehun Ahn
- School of Urban, Architecture, and Civil Engineering, Pusan National University, Busan 609-735, Korea.
| |
Collapse
|
12
|
Austin RN, Callaghan AV. Microbial enzymes that oxidize hydrocarbons. Front Microbiol 2013; 4:338. [PMID: 24312086 PMCID: PMC3826110 DOI: 10.3389/fmicb.2013.00338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/25/2013] [Indexed: 12/17/2022] Open
|
13
|
Looper JK, Cotto A, Kim BY, Lee MK, Liles MR, Ní Chadhain SM, Son A. Microbial community analysis of Deepwater Horizon oil-spill impacted sites along the Gulf coast using functional and phylogenetic markers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:2068-2079. [PMID: 24061682 DOI: 10.1039/c3em00200d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We investigated the impact of the Deepwater Horizon oil spill on microbial communities in wetland sediment and seawater samples collected from sites along the Gulf shore. Based on GC/MS analysis, the sediment from Bay Jimmy, LA had detectable signs of hydrocarbon contamination, identified as n-alkanes in the GC/MS spectrum similar to that of the Deepwater Horizon source oil (MC-252). To identify changes in microbial assemblage structure and functional diversity in response to hydrocarbon contamination, five genes (bacterial 16S rRNA, Pseudomonas-specific 16S rRNA, alkB, P450, and PAH-RHDα) were selected based on the specific enzymes encoded by bacteria to degrade alkanes or polycyclic aromatic hydrocarbons. A quantitative PCR analysis revealed the presence of alkane and PAH-degrading genes in both contaminated and non-contaminated samples with no significant difference in gene content between contaminated and non-contaminated samples. However, the ribotype analysis based on pyrosequencing identified 17 bacteria genera known for their capacity to degrade hydrocarbons, including Mycobacterium, Novosphingobium, Parvibaculum, Pseudomonas, and Sphingomonas, in the contaminated sediment sample. Furthermore, the contaminated sample had a very high relative abundance of 16S rRNA gene sequences affiliated with the genus Parvibaculum, members of which have been characterized for their degradative abilities. These data suggest that specific bacterial taxa within the genus Parvibaculum have the capacity for hydrocarbon degradation and could use the hydrocarbons as a carbon and energy source, resulting in a dominant population in a hydrocarbon-contaminated soil. In summary, when exposed to the spilled oil, the distinct wetland microbial communities responded with decreased diversity and increased abundance of selective degradative species.
Collapse
Affiliation(s)
- Jessica K Looper
- Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA.
| | | | | | | | | | | | | |
Collapse
|