1
|
Eco-evolutionary implications of helminth microbiomes. J Helminthol 2023; 97:e22. [PMID: 36790127 DOI: 10.1017/s0022149x23000056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The evolution of helminth parasites has long been seen as an interplay between host resistance to infection and the parasite's capacity to bypass such resistance. However, there has recently been an increasing appreciation of the role of symbiotic microbes in the interaction of helminth parasites and their hosts. It is now clear that helminths have a different microbiome from the organisms they parasitize, and sometimes amid large variability, components of the microbiome are shared among different life stages or among populations of the parasite. Helminths have been shown to acquire microbes from their parent generations (vertical transmission) and from their surroundings (horizontal transmission). In this latter case, natural selection has been strongly linked to the fact that helminth-associated microbiota is not simply a random assemblage of the pool of microbes available from their organismal hosts or environments. Indeed, some helminth parasites and specific microbial taxa have evolved complex ecological relationships, ranging from obligate mutualism to reproductive manipulation of the helminth by associated microbes. However, our understanding is still very elementary regarding the net effect of all microbiome components in the eco-evolution of helminths and their interaction with hosts. In this non-exhaustible review, we focus on the bacterial microbiome associated with helminths (as opposed to the microbiome of their hosts) and highlight relevant concepts and key findings in bacterial transmission, ecological associations, and taxonomic and functional diversity of the bacteriome. We integrate the microbiome dimension in a discussion of the evolution of helminth parasites and identify fundamental knowledge gaps, finally suggesting research avenues for understanding the eco-evolutionary impacts of the microbiome in host-parasite interactions in light of new technological developments.
Collapse
|
2
|
Bell K, Bordenstein SR. A Margulian View of Symbiosis and Speciation: the Nasonia Wasp System. Symbiosis 2022. [DOI: 10.1007/s13199-022-00843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractSpecies are fundamental units of biology that exemplify lineage diversification, while symbiosis of microbes and macrobial hosts exemplify lineage unification between the domains of life. While these conceptual differences between speciation and symbiosis often dominate the narrative of the respective fields, Lynn Margulis argued for interconnection between these two subdisciplines of biology in a manner that left a legacy for scholars and students alike to pursue, detail, and discover. The Margulian perspective has always been that host evolutionary processes such as speciation are more impacted by microbial symbioses than typically appreciated. In this article, we present and review the case system that she long envisioned, one in which layers of microbial symbiosis reduce species interbreeding and assist species diversification among a closely related group of small, metallic green, parasitoid wasps from the genus Nasonia.
Collapse
|
3
|
Abstract
We develop a method to artificially select for rhizosphere microbiomes that confer salt tolerance to the model grass Brachypodium distachyon grown under sodium salt stress or aluminum salt stress. In a controlled greenhouse environment, we differentially propagated rhizosphere microbiomes between plants of a nonevolving, highly inbred plant population; therefore, only microbiomes evolved in our experiment, but the plants did not evolve in parallel. To maximize microbiome perpetuation when transplanting microbiomes between plants and, thus, maximize response to microbiome selection, we improved earlier methods by (i) controlling microbiome assembly when inoculating seeds at the beginning of each selection cycle; (ii) fractionating microbiomes before transfer between plants to harvest, perpetuate, and select on only bacterial and viral microbiome components; (iii) ramping of salt stress gradually from minor to extreme salt stress with each selection cycle to minimize the chance of overstressing plants; (iv) using two nonselection control treatments (e.g., nonselection microbial enrichment and null inoculation) that permit comparison to the improving fitness benefits that selected microbiomes impart on plants. Unlike previous methods, our selection protocol generated microbiomes that enhance plant fitness after only 1 to 3 rounds of microbiome selection. After nine rounds of microbiome selection, the effect of microbiomes selected to confer tolerance to aluminum salt stress was nonspecific (these artificially selected microbiomes equally ameliorate sodium and aluminum salt stresses), but the effect of microbiomes selected to confer tolerance to sodium salt stress was specific (these artificially selected microbiomes do not confer tolerance to aluminum salt stress). Plants with artificially selected microbiomes had 55 to 205% greater seed production than plants with unselected control microbiomes. IMPORTANCE We developed an experimental protocol that improves earlier methods of artificial selection on microbiomes and then tested the efficacy of our protocol to breed root-associated bacterial microbiomes that confer salt tolerance to a plant. Salt stress limits growth and seed production of crop plants, and artificially selected microbiomes conferring salt tolerance may ultimately help improve agricultural productivity. Unlike previous experiments of microbiome selection, our selection protocol generated microbiomes that enhance plant productivity after only 1 to 3 rounds of artificial selection on root-associated microbiomes, increasing seed production under extreme salt stress by 55 to 205% after nine rounds of microbiome selection. Although we artificially selected microbiomes under controlled greenhouse conditions that differ from outdoor conditions, increasing seed production by 55 to 205% under extreme salt stress is a remarkable enhancement of plant productivity compared to traditional plant breeding. We describe a series of additional experimental protocols that will advance insights into key parameters that determine efficacy and response to microbiome selection.
Collapse
|
4
|
Mullon C, Wakano JY, Ohtsuki H. Coevolutionary dynamics of genetic traits and their long-term extended effects under non-random interactions. J Theor Biol 2021; 525:110750. [PMID: 33957155 DOI: 10.1016/j.jtbi.2021.110750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 11/15/2022]
Abstract
Organisms continuously modify their living conditions via extended genetic effects on their environment, microbiome, and in some species culture. These effects can impact the fitness of current but also future conspecifics due to non-genetic transmission via ecological or cultural inheritance. In this case, selection on a gene with extended effects depends on the degree to which current and future genetic relatives are exposed to modified conditions. Here, we detail the selection gradient on a quantitative trait with extended effects in a patch-structured population, when gene flow between patches is limited and ecological inheritance within patches can be biased towards offspring. Such a situation is relevant to understand evolutionary driven changes in individual condition that can be preferentially transmitted from parent to offspring, such as cellular state, micro-environments (e.g., nests), pathogens, microbiome, or culture. Our analysis quantifies how the interaction between limited gene flow and biased ecological inheritance influences the joint evolutionary dynamics of traits together with the conditions they modify, helping understand adaptation via non-genetic modifications. As an illustration, we apply our analysis to a gene-culture coevolution scenario in which genetically-determined learning strategies coevolve with adaptive knowledge. In particular, we show that when social learning is synergistic, selection can favour strategies that generate remarkable levels of knowledge under intermediate levels of both vertical cultural transmission and limited dispersal. More broadly, our theory yields insights into the interplay between genetic and non-genetic inheritance, with implications for how organisms evolve to transform their environments.
Collapse
Affiliation(s)
- Charles Mullon
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan.
| | - Joe Yuichiro Wakano
- Meiji Institute for Advanced Study of Mathematical Sciences, Nakano, Tokyo 164-8525, Japan
| | - Hisashi Ohtsuki
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
5
|
Huitzil S, Sandoval-Motta S, Frank A, Aldana M. Modeling the Role of the Microbiome in Evolution. Front Physiol 2018; 9:1836. [PMID: 30618841 PMCID: PMC6307544 DOI: 10.3389/fphys.2018.01836] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022] Open
Abstract
There is undeniable evidence showing that bacteria have strongly influenced the evolution and biological functions of multicellular organisms. It has been hypothesized that many host-microbial interactions have emerged so as to increase the adaptive fitness of the holobiont (the host plus its microbiota). Although this association has been corroborated for many specific cases, general mechanisms explaining the role of the microbiota in the evolution of the host are yet to be understood. Here we present an evolutionary model in which a network representing the host adapts in order to perform a predefined function. During its adaptation, the host network (HN) can interact with other networks representing its microbiota. We show that this interaction greatly accelerates and improves the adaptability of the HN without decreasing the adaptation of the microbial networks. Furthermore, the adaptation of the HN to perform several functions is possible only when it interacts with many different bacterial networks in a specialized way (each bacterial network participating in the adaptation of one function). Disrupting these interactions often leads to non-adaptive states, reminiscent of dysbiosis, where none of the networks the holobiont consists of can perform their respective functions. By considering the holobiont as a unit of selection and focusing on the adaptation of the host to predefined but arbitrary functions, our model predicts the need for specialized diversity in the microbiota. This structural and dynamical complexity in the holobiont facilitates its adaptation, whereas a homogeneous (non-specialized) microbiota is inconsequential or even detrimental to the holobiont's evolution. To our knowledge, this is the first model in which symbiotic interactions, diversity, specialization and dysbiosis in an ecosystem emerge as a result of coevolution. It also helps us understand the emergence of complex organisms, as they adapt more easily to perform multiple tasks than non-complex ones.
Collapse
Affiliation(s)
- Saúl Huitzil
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Santiago Sandoval-Motta
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto Nacional de Medicina Genómica, Mexico City, Mexico.,Consejo Nacional de Ciencia y Tecnología, Cátedras CONACyT, Mexico City, Mexico
| | - Alejandro Frank
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Member of El Colegio Nacional, Mexico City, Mexico
| | - Maximino Aldana
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Osmanovic D, Kessler DA, Rabin Y, Soen Y. Darwinian selection of host and bacteria supports emergence of Lamarckian-like adaptation of the system as a whole. Biol Direct 2018; 13:24. [PMID: 30621755 PMCID: PMC6889200 DOI: 10.1186/s13062-018-0224-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Background The relatively fast selection of symbiotic bacteria within hosts and the potential transmission of these bacteria across generations of hosts raise the question of whether interactions between host and bacteria support emergent adaptive capabilities beyond those of germ-free hosts. Results To investigate possibilities for emergent adaptations that may distinguish composite host-microbiome systems from germ-free hosts, we introduce a population genetics model of a host-microbiome system with vertical transmission of bacteria. The host and its bacteria are jointly exposed to a toxic agent, creating a toxic stress that can be alleviated by selection of resistant individuals and by secretion of a detoxification agent (“detox”). We show that toxic exposure in one generation of hosts leads to selection of resistant bacteria, which in turn, increases the toxic tolerance of the host’s offspring. Prolonged exposure to toxin over many host generations promotes anadditional form of emergent adaptation due to selection of hosts based on detox produced by their bacterial community as a whole (as opposed to properties of individual bacteria). Conclusions These findings show that interactions between pure Darwinian selections of host and its bacteria can give rise to emergent adaptive capabilities, including Lamarckian-like adaptation of the host-microbiome system. Reviewers This article was reviewed by Eugene Koonin, Yuri Wolf and Philippe Huneman. Electronic supplementary material The online version of this article (10.1186/s13062-018-0224-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dino Osmanovic
- Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - David A Kessler
- Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Yitzhak Rabin
- Department of Physics, Bar-Ilan University, 52900, Ramat Gan, Israel.,NYU-ECNU Institute of Physics at NYU, Shanghai, 200062, China
| | - Yoav Soen
- Department of Biological Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel. .,Department of Physics, Massachusetts Institute of Technology (MIT), MA, 02139, Cambridge, USA.
| |
Collapse
|
7
|
Abstract
All multicellular organisms are colonized by microbes, but a gestalt study of the composition of microbiome communities and their influence on the ecology and evolution of their macroscopic hosts has only recently become possible. One approach to thinking about the topic is to view the host–microbiome ecosystem as a “holobiont”. Because natural selection acts on an organism’s realized phenotype, and the phenotype of a holobiont is the result of the integrated activities of both the host and all of its microbiome inhabitants, it is reasonable to think that evolution can act at the level of the holobiont and cause changes in the “hologenome”, or the collective genomic content of all the individual bionts within the holobiont. This relatively simple assertion has nevertheless been controversial within the microbiome community. Here, I provide a review of recent work on the hologenome concept of evolution. I attempt to provide a clear definition of the concept and its implications and to clarify common points of disagreement.
Collapse
Affiliation(s)
- J Jeffrey Morris
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Klassen JL. Defining microbiome function. Nat Microbiol 2018; 3:864-869. [PMID: 30046174 DOI: 10.1038/s41564-018-0189-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
Why does a microorganism associate with a host? What function does it perform? Such questions are difficult to unequivocally address and remain hotly debated. This is partially because scientists often use different philosophical definitions of 'function' ambiguously and interchangeably, as exemplified by the controversy surrounding the Encyclopedia of DNA Elements (ENCODE) project. Here, I argue that research studying host-associated microbial communities and their genomes (that is, microbiomes) faces similar pitfalls and that unclear or misapplied conceptions of function underpin many controversies in this field. In particular, experiments that support phenomenological models of function can inappropriately be used to support functional models that instead require specific measurements of evolutionary selection. Microbiome research also requires uniquely clear definitions of 'who the function is for', in contrast to most single-organism systems where this is implicit. I illustrate how obscuring either of these issues can lead to substantial confusion and misinterpretation of microbiome function, using the varied conceptions of the holobiont as a current and cogent example. Using clear functional definitions and appropriate types of evidence are essential to effectively communicate microbiome research and foster host health.
Collapse
Affiliation(s)
- Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
9
|
Vorburger C, Perlman SJ. The role of defensive symbionts in host-parasite coevolution. Biol Rev Camb Philos Soc 2018; 93:1747-1764. [PMID: 29663622 DOI: 10.1111/brv.12417] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 02/06/2023]
Abstract
Understanding the coevolution of hosts and parasites is a long-standing goal of evolutionary biology. There is a well-developed theoretical framework to describe the evolution of host-parasite interactions under the assumption of direct, two-species interactions, which can result in arms race dynamics or sustained genotype fluctuations driven by negative frequency dependence (Red Queen dynamics). However, many hosts rely on symbionts for defence against parasites. Whilst the ubiquity of defensive symbionts and their potential importance for disease control are increasingly recognized, there is still a gap in our understanding of how symbionts mediate or possibly take part in host-parasite coevolution. Herein we address this question by synthesizing information already available from theoretical and empirical studies. First, we briefly introduce current hypotheses on how defensive mutualisms evolved from more parasitic relationships and highlight exciting new experimental evidence showing that this can occur very rapidly. We go on to show that defensive symbionts influence virtually all important determinants of coevolutionary dynamics, namely the variation in host resistance available to selection by parasites, the specificity of host resistance, and the trade-off structure between host resistance and other components of fitness. In light of these findings, we turn to the limited theory and experiments available for such three-species interactions to assess the role of defensive symbionts in host-parasite coevolution. Specifically, we discuss under which conditions the defensive symbiont may take over from the host the reciprocal adaptation with parasites and undergo its own selection dynamics, thereby altering or relaxing selection on the hosts' own immune defences. Finally, we address potential effects of defensive symbionts on the evolution of parasite virulence. This is an important problem for which there is no single, clear-cut prediction. The selection on parasite virulence resulting from the presence of defensive symbionts in their hosts will depend on the underlying mechanism of defence. We identify the evolutionary predictions for different functional categories of symbiont-conferred resistance and we evaluate the empirical literature for supporting evidence. We end this review with outstanding questions and promising avenues for future research to improve our understanding of symbiont-mediated coevolution between hosts and parasites.
Collapse
Affiliation(s)
- Christoph Vorburger
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 16, 8092, Zürich, Switzerland
| | - Steve J Perlman
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
10
|
Haag KL. Holobionts and their hologenomes: Evolution with mixed modes of inheritance. Genet Mol Biol 2018; 41:189-197. [PMID: 29505062 PMCID: PMC5913720 DOI: 10.1590/1678-4685-gmb-2017-0070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Symbioses are ubiquitous and have played an influential role in the evolution of life on Earth. Genomic studies are now revealing a huge diversity of associations among hosts and their microbiotas, allowing us to characterize their complex ecological and evolutionary dynamics. The different transmission modes and the asynchronous cell proliferation of the numerous symbionts associated with one host generate a genomic conflict ought to be solved. Two disputing views have been used to model and predict the outcome of such conflicts. The traditional view is based on community ecology, and considers that selection at the level of individuals is sufficient to explain longstanding associations among species. A new perspective considers that the host and its associated microbiota constitute a biological entity called holobiont, and that regarding it as a higher-level unit of selection is unavoidable to understand phenotypic evolution. Novel extended phenotypes are often built through symbiotic interactions, allowing the holobiont to explore and survive in distinct environmental conditions, and may evolve in a Lamarckian fashion.
Collapse
Affiliation(s)
- Karen Luisa Haag
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Elgart M, Soen Y. Microbiome-Germline Interactions and Their Transgenerational Implications. Bioessays 2017; 40:e1700018. [DOI: 10.1002/bies.201700018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 10/30/2017] [Indexed: 01/16/2023]
Affiliation(s)
| | - Yoav Soen
- Biomolecular Sciences; Rehovot Israel
| |
Collapse
|
12
|
Abstract
Many aspects of an individual's biology derive from its interaction with symbiotic microbes, which further define many aspects of the ecology and evolution of the host species. The centrality of microbes in the function of individual organisms has given rise to the concept of the holobiont—that an individual's biology is best understood as a composite of the ‘host organism’ and symbionts within. This concept has been further elaborated to posit the holobiont as a unit of selection. In this review, I critically examine whether it is useful to consider holobionts as a unit of selection. I argue that microbial heredity—the direct passage of microbes from parent to offspring—is a key factor determining the degree to which the holobiont can usefully be considered a level of selection. Where direct vertical transmission (VT) is common, microbes form part of extended genomes whose dynamics can be modelled with simple population genetics, but that nevertheless have subtle quantitative distinctions from the classic mutation/selection model for nuclear genes. Without direct VT, the correlation between microbial fitness and host individual fitness erodes, and microbe fitness becomes associated with host survival only (rather than reproduction). Furthermore, turnover of microbes within a host may lessen associations between microbial fitness with host survival, and in polymicrobial communities, microbial fitness may derive largely from the ability to outcompete other microbes, to avoid host immune clearance and to minimize mortality through phage infection. These competing selection pressures make holobiont fitness a very minor consideration in determining symbiont evolution. Nevertheless, the importance of non-heritable microbes in organismal function is undoubted—and as such the evolutionary and ecological processes giving rise to variation and evolution of the microbes within and between host individuals represent a key research area in biology.
Collapse
Affiliation(s)
- Gregory D D Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
13
|
Getting the Hologenome Concept Right: an Eco-Evolutionary Framework for Hosts and Their Microbiomes. mSystems 2016; 1:mSystems00028-16. [PMID: 27822520 PMCID: PMC5069740 DOI: 10.1128/msystems.00028-16] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Given the complexity of host-microbiota symbioses, scientists and philosophers are asking questions at new biological levels of hierarchical organization—what is a holobiont and hologenome? When should this vocabulary be applied? Are these concepts a null hypothesis for host-microbe systems or limited to a certain spectrum of symbiotic interactions such as host-microbial coevolution? Critical discourse is necessary in this nascent area, but productive discourse requires that skeptics and proponents use the same lexicon. Given the complexity of host-microbiota symbioses, scientists and philosophers are asking questions at new biological levels of hierarchical organization—what is a holobiont and hologenome? When should this vocabulary be applied? Are these concepts a null hypothesis for host-microbe systems or limited to a certain spectrum of symbiotic interactions such as host-microbial coevolution? Critical discourse is necessary in this nascent area, but productive discourse requires that skeptics and proponents use the same lexicon. For instance, critiquing the hologenome concept is not synonymous with critiquing coevolution, and arguing that an entity is not a primary unit of selection dismisses the fact that the hologenome concept has always embraced multilevel selection. Holobionts and hologenomes are incontrovertible, multipartite entities that result from ecological, evolutionary, and genetic processes at various levels. They are not restricted to one special process but constitute a wider vocabulary and framework for host biology in light of the microbiome.
Collapse
|
14
|
Benítez-Burraco A, Uriagereka J. The Immune Syntax Revisited: Opening New Windows on Language Evolution. Front Mol Neurosci 2016; 8:84. [PMID: 26793054 PMCID: PMC4707268 DOI: 10.3389/fnmol.2015.00084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/14/2015] [Indexed: 01/29/2023] Open
Abstract
Recent research has added new dimensions to our understanding of classical evolution, according to which evolutionary novelties result from gene mutations inherited from parents to offspring. Language is surely one such novelty. Together with specific changes in our genome and epigenome, we suggest that two other (related) mechanisms may have contributed to the brain rewiring underlying human cognitive evolution and, specifically, the changes in brain connectivity that prompted the emergence of our species-specific linguistic abilities: the horizontal transfer of genetic material by viral and non-viral vectors and the brain/immune system crosstalk (more generally, the dialogue between the microbiota, the immune system, and the brain).
Collapse
Affiliation(s)
| | - Juan Uriagereka
- Department of Linguistics, University of Maryland College Park, MD, USA
| |
Collapse
|
15
|
Mueller U, Sachs J. Engineering Microbiomes to Improve Plant and Animal Health. Trends Microbiol 2015; 23:606-617. [DOI: 10.1016/j.tim.2015.07.009] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/08/2015] [Accepted: 07/22/2015] [Indexed: 12/22/2022]
|
16
|
Abstract
Groundbreaking research on the universality and diversity of microorganisms is now challenging the life sciences to upgrade fundamental theories that once seemed untouchable. To fully appreciate the change that the field is now undergoing, one has to place the epochs and foundational principles of Darwin, Mendel, and the modern synthesis in light of the current advances that are enabling a new vision for the central importance of microbiology. Animals and plants are no longer heralded as autonomous entities but rather as biomolecular networks composed of the host plus its associated microbes, i.e., "holobionts." As such, their collective genomes forge a "hologenome," and models of animal and plant biology that do not account for these intergenomic associations are incomplete. Here, we integrate these concepts into historical and contemporary visions of biology and summarize a predictive and refutable framework for their evaluation. Specifically, we present ten principles that clarify and append what these concepts are and are not, explain how they both support and extend existing theory in the life sciences, and discuss their potential ramifications for the multifaceted approaches of zoology and botany. We anticipate that the conceptual and evidence-based foundation provided in this essay will serve as a roadmap for hypothesis-driven, experimentally validated research on holobionts and their hologenomes, thereby catalyzing the continued fusion of biology's subdisciplines. At a time when symbiotic microbes are recognized as fundamental to all aspects of animal and plant biology, the holobiont and hologenome concepts afford a holistic view of biological complexity that is consistent with the generally reductionist approaches of biology.
Collapse
Affiliation(s)
- Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kevin R. Theis
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
17
|
The brain's Geppetto-microbes as puppeteers of neural function and behaviour? J Neurovirol 2015; 22:14-21. [PMID: 26047662 DOI: 10.1007/s13365-015-0355-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/27/2015] [Accepted: 05/20/2015] [Indexed: 02/06/2023]
Abstract
Research on the microbiome and its interaction with various host organs, including the brain, is increasingly gaining momentum. With more evidence establishing a comprehensive microbiota-gut-brain axis, questions have been raised as to the extent to which microbes influence brain physiology and behaviour. In parallel, there is a growing literature showing active behavioural manipulation in favour of the microbe for certain parasites. However, it seems unclear where the hidden majority of microbes are localised on the parasitism-mutualism spectrum. A long evolutionary history intimately connects host and microbiota, which complicates this classification. In this conceptual minireview, we discuss current hypotheses on host-microbe interaction and argue that novel experimental approaches and theoretical concepts, such as the hologenome theory, are necessary to incorporate transgenerational epigenetic inheritance of the microbiome into evolutionary theories.
Collapse
|
18
|
Affiliation(s)
- Andrew G. Zink
- Department of Biology; San Francisco State University; San Francisco CA USA
| |
Collapse
|
19
|
Stilling RM, Bordenstein SR, Dinan TG, Cryan JF. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front Cell Infect Microbiol 2014; 4:147. [PMID: 25401092 PMCID: PMC4212686 DOI: 10.3389/fcimb.2014.00147] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/03/2014] [Indexed: 12/21/2022] Open
Abstract
The tight association of the human body with trillions of colonizing microbes that we observe today is the result of a long evolutionary history. Only very recently have we started to understand how this symbiosis also affects brain function and behavior. In this hypothesis and theory article, we propose how host-microbe associations potentially influenced mammalian brain evolution and development. In particular, we explore the integration of human brain development with evolution, symbiosis, and RNA biology, which together represent a “social triangle” that drives human social behavior and cognition. We argue that, in order to understand how inter-kingdom communication can affect brain adaptation and plasticity, it is inevitable to consider epigenetic mechanisms as important mediators of genome-microbiome interactions on an individual as well as a transgenerational time scale. Finally, we unite these interpretations with the hologenome theory of evolution. Taken together, we propose a tighter integration of neuroscience fields with host-associated microbiology by taking an evolutionary perspective.
Collapse
Affiliation(s)
- Roman M Stilling
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; Department Anatomy and Neuroscience, University College Cork Cork, Ireland
| | - Seth R Bordenstein
- Departments of Biological Sciences and Pathology, Microbiology, and Immunology, Vanderbilt University Nashville, TN, USA
| | - Timothy G Dinan
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; Department of Psychiatry, University College Cork Cork, Ireland
| | - John F Cryan
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; Department Anatomy and Neuroscience, University College Cork Cork, Ireland
| |
Collapse
|
20
|
Drown DM, Wade MJ. Runaway coevolution: adaptation to heritable and nonheritable environments. Evolution 2014; 68:3039-46. [PMID: 24916074 DOI: 10.1111/evo.12470] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/04/2014] [Indexed: 12/20/2022]
Abstract
Populations evolve in response to the external environment, whether abiotic (e.g., climate) or biotic (e.g., other conspecifics). We investigated how adaptation to biotic, heritable environments differs from adaptation to abiotic, nonheritable environments. We found that, for the same selection coefficients, the coadaptive process between genes and heritable environments is much faster than genetic adaptation to an abiotic nonheritable environment. The increased rate of adaptation results from the positive association generated by reciprocal selection between the heritable environment and the genes responding to it. These associations result in a runaway process of adaptive coevolution, even when the genes creating the heritable environment and genes responding to the heritable environment are unlinked. Although tightening the degree of linkage accelerates the coadaptive process, the acceleration caused by a comparable amount of inbreeding is greater, because inbreeding has a cumulative effect on reducing functional recombination over generations. Our results suggest that that adaptation to local abiotic environmental variation may result in the rapid diversification of populations and subsequent reproductive isolation not directly but rather via its effects on heritable environments and the genes responding to them.
Collapse
Affiliation(s)
- Devin M Drown
- Department of Biology, Indiana University, Bloomington, Indiana, 47405.
| | | |
Collapse
|