1
|
Li X, Wang Q, Li X, Wang C, Lu J, Zhang E, Liang C, Wang W, Fu Y, Li C, Zhang L, Li T. Carbon nanospheres dual spectral-overlapped fluorescence quenching lateral flow immunoassay for rapid diagnosis of toxoplasmosis in humans. J Pharm Biomed Anal 2024; 241:115986. [PMID: 38310830 DOI: 10.1016/j.jpba.2024.115986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 02/06/2024]
Abstract
Toxoplasmosis is a common zoonotic disease caused by a protozoan parasite Toxoplasma gondii (Tox), approximately infecting one-third of human populations worldwide. This study developed the carbon nanospheres (CNPs) based dual spectral-overlapped fluorescence quenching lateral flow immunoassay (CNPs-FQLFIA) for detection of Tox antibodies (ToxAbs). The CNPs have been effectively coupled with Tox antigen (ToxAg), which can completely overlap the excitation and emission spectra of europium nanospheres (EuNPs) and CdSe/ZnS quantum dots (QDs) in testing strips of CNPs-QDs-FQLFIA or CNPs-EuNPs-FQLFIA. The sensitivity of CNPs-EuNPs-FQLFIA or CNPs-QDs-FQLFIA was 4 or 8 IU/mL under natural light readout, or both 4 IU/mL ToxAbs under ultraviolet (UV) light readout by the naked eyes, respectively. The limit of detection (LOD) of two types of CNPs-FQLFIA was both 1 IU/mL ToxAbs under UV light by a dry fluorescence analyzer, but no cross-reaction was found with other antibodies. The intra-assay coefficient variation (CV) of both CNPs-EuNPs-FQLFIA and CNPs-QDs-FQLFIA was less than 8%, while the inter-assay CV was less than 14%, respectively. The correlation coefficient (R2) of CNPs-EuNPs-FQLFIA or CNPs-QDs-FQLFIA to measure the different concentrations of ToxAbs spiked serum samples was 0.99712 and 0.99896, respectively. The CNPs-FQLFIA presented a characteristics of 94.3% sensitivity, 100% specificity and 98% accuracy for detection of ToxAbs in clinical serum samples. In conclusion, CNPs-FQLFIA with EuNPs or QDs fluorescence reporter was an easy, rapid, sensitive, precise and quantitative assay for detecting Tox antibodies in human blood samples.
Collapse
Affiliation(s)
- Xiaozhou Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qi Wang
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xintong Li
- Guangzhou Blood Center, Guangzhou, China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou 510000, China
| | - Jinhui Lu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Enhui Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chaolan Liang
- Department of Blood Transfusion, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Wenjing Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yongshui Fu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; Guangzhou Blood Center, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Antil N, Arefian M, Kandiyil MK, Awasthi K, Prasad TSK, Raju R. The Core Human MicroRNAs Regulated by Toxoplasma gondii. Microrna 2022; 11:163-174. [PMID: 35507793 DOI: 10.2174/2211536611666220428130250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/14/2022] [Accepted: 03/10/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is an intracellular zoonotic protozoan parasite known to effectively modulate the host system for its survival. A large number of microRNAs (miRNAs) regulated by different strains of T. gondii in diverse types of host cells/tissues/organs have been reported across multiple studies. OBJECTIVE We aimed to decipher the complexity of T. gondii regulated spectrum of miRNAs to derive a set of core miRNAs central to different strains of T. gondii infection in diverse human cell lines. METHODS We first assembled miRNAs hat are regulated by T. gondii altered across the various assortment of infections and time points of T. gondii infection in multiple cell types. For these assembled datasets, we employed specific criteria to filter the core miRNAs regulated by T. gondii. Subsequently, accounting for the spectrum of miRNA-mRNA target combinations, we applied a novel confidence criterion to extract their core experimentally-validated mRNA targets in human cell systems. RESULTS This analysis resulted in the extraction of 74 core differentially regulated miRNAs and their 319 high-confidence mRNA targets. Based on these core miRNA-mRNA pairs, we derived the central biological processes perturbed by T. gondii in diverse human cell systems. Further, our analysis also resulted in the identification of novel autocrine/paracrine signalling factors that could be associated with host response modulated by T. gondii. CONCLUSION The current analysis derived a set of core miRNAs, their targets, and associated biological processes fine-tuned by T. gondii for its survival within the invaded cells.
Collapse
Affiliation(s)
- Neelam Antil
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.,Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Mohammad Arefian
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Mrudula Kinarulla Kandiyil
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kriti Awasthi
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | | - Rajesh Raju
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.,Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
3
|
Cruz SFSD, Gauch IR, Cruz MFSD, Araújo ACMD, Cruz NFSD, Bichara CNC. Ultra-wide field imaging for ophthalmological evaluation of pregnant women with positive serology for toxoplasmosis. REVISTA BRASILEIRA DE OFTALMOLOGIA 2021. [DOI: 10.37039/1982.8551.20210056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Sánchez-López EF, Corigliano MG, Oliferuk S, Ramos-Duarte VA, Rivera M, Mendoza-Morales LF, Angel SO, Sander VA, Clemente M. Oral Immunization With a Plant HSP90-SAG1 Fusion Protein Produced in Tobacco Elicits Strong Immune Responses and Reduces Cyst Number and Clinical Signs of Toxoplasmosis in Mice. FRONTIERS IN PLANT SCIENCE 2021; 12:726910. [PMID: 34675949 PMCID: PMC8525317 DOI: 10.3389/fpls.2021.726910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 05/17/2023]
Abstract
Plant 90kDa heat shock protein (HSP90) is a potent adjuvant that increases both humoral and cellular immune responses to diverse proteins and peptides. In this study, we explored whether Arabidopsis thaliana HSP90 (AtHsp81.2) can improve the immune effects of a Toxoplasma gondii surface antigen 1 (SAG1). We designed two constructs containing the sequence of mature antigen (SAG1m), from aa77 to aa322, and B- and T-cell antigenic epitope-containing SAG1HC, from aa221 to aa319 fused to AtHsp81.2 sequence. When comparing the transient expression in Nicotiana tabacum X-27-8 leaves, which overexpress the suppressor helper component protease HC-Pro-tobacco etch virus (TEV), to that in N. benthamiana leaves, co-agroinfiltrated with the suppressor p19, optimal conditions included 6-week-old N. benthamiana plants, 7-day time to harvest, Agrobacterium tumefaciens cultures with an OD600nm of 0.6 for binary vectors and LED lights. While AtHsp81.2-SAG1m fusion protein was undetectable by Western blot in any of the evaluated conditions, AtHsp81.2-SAG1HC was expressed as intact fusion protein, yielding up to 90μg/g of fresh weight. Besides, the AtHsp81.2-SAG1HC mRNA was strongly expressed compared to the endogenous Nicotiana tabacum elongation factor-alpha (NtEFα) gene, whereas the AtHsp81.2-SAG1m mRNA was almost undetectable. Finally, mice were orally immunized with AtHsp81.2-SAG1HC-infiltrated fresh leaves (plAtHsp81.2-SAG1HC group), recombinant AtHsp81.2-SAG1HC purified from infiltrated leaves (rAtHsp81.2-SAG1HC group), non-infiltrated fresh leaves (control group), or phosphate-buffered saline (PBS group). Serum samples from plAtHsp81.2-SAG1HC-immunized mice had significantly higher levels of IgGt, IgG2a, and IgG2b anti-SAG1HC antibodies than serum from rAtHsp81.2-SAG1HC, control, and PBS groups. The number of cysts per brain in the plAtHsp81.2-SAG1HC-immunized mice was significantly reduced, and the parasite load in brain tissue was also lower in this group compared with the remaining groups. In an immunoblot assay, plant-expressed AtHsp81.2-SAG1HC was shown to react with antibodies present in sera from T. gondii-infected people. Therefore, the plant expression of a T. gondii antigen fused to the non-pathogenic adjuvant and carrier plant HSP90 as formulations against T. gondii can improve the vaccine efficacy, and plant extract can be directly used for vaccination without the need to purify the protein, making this platform a suitable and powerful biotechnological system for immunogenic antigen expression against toxoplasmosis.
Collapse
Affiliation(s)
- Edwin F. Sánchez-López
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Mariana G. Corigliano
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Sonia Oliferuk
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Victor A. Ramos-Duarte
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Maximiliano Rivera
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Luisa F. Mendoza-Morales
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Sergio O. Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Valeria A. Sander
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Marina Clemente
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| |
Collapse
|
5
|
Lazarte-Rantes C, Rodríguez-Anccasi R, Rivas-Campos C, Silva E. Congenital Toxoplasmosis: Findings in Fetal MRI. Cureus 2021; 13:e16894. [PMID: 34513467 PMCID: PMC8417349 DOI: 10.7759/cureus.16894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/27/2022] Open
Abstract
Toxoplasma gondii infection, when acquired as an acute infection during pregnancy, can have substantial adverse effects on fetuses. We present the case of a 19-year-old pregnant woman with no previous relevant medical history. The ultrasound in the third trimester showed brain and abdominal abnormalities such as congenital hydrocephalus, volume loss of the brain parenchyma, and hepatosplenomegaly. The laboratory test showed positive IgM for Toxoplasma gondii. MRI was performed for better assessment and it shows the lesions in the central nervous system and other organs with more details.
Collapse
Affiliation(s)
- Claudia Lazarte-Rantes
- Pediatric Radiology, Instituto Nacional de Salud del Niño San Borja, Lima, PER.,Pediatric Radiology, Resocentro, Lima, PER
| | | | | | | |
Collapse
|
6
|
Cruz-Mirón R, Ramírez-Flores CJ, Lagunas-Cortés N, Mondragón-Castelán M, Ríos-Castro E, González-Pozos S, Aguirre-García MM, Mondragón-Flores R. Proteomic characterization of the pellicle of Toxoplasma gondii. J Proteomics 2021; 237:104146. [PMID: 33588107 DOI: 10.1016/j.jprot.2021.104146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023]
Abstract
Toxoplasma gondii is one of the most successful intracellular parasites in the world. The dynamic, adhesion, invasion, and even replication capabilities of Toxoplasma are based on dynamic machinery located in the pellicle, a three membrane complex that surrounds the parasite. Among the proteins that carry out these processes are inner membrane complex (IMC) proteins, gliding-associated proteins (GAP), diverse myosins, actin, tubulin, and SRS proteins. Despite the importance of the pellicle, the knowledge of its composition is limited. Broad protein identification from an enriched pellicle fraction was obtained by independent digestion with trypsin and chymotrypsin and quantified by mass spectrometry. By trypsin digestion, 548 proteins were identified, while by chymotrypsin digestion, additional 22 proteins were identified. Besides, a group of "sequences related to SAG1" proteins (SRS) were detected together with unidentified new proteins. From identified SRS proteins, SRS51 was chosen for analysis and modeling as its similarities with crystallized adhesion proteins, exhibiting the presence of a spatial groove that is apparently involved in adhesion and cell invasion. As SRS proteins have been reported to be involved in the activation of the host's immune response, further studies could consider them as targets in the design of vaccines or of drugs against Toxoplasma. SIGNIFICANCE: To date, the proteomic composition of the pellicle of Toxoplasma is unknown. Most proteins reported in Toxoplasma pellicle have been poorly studied, and many others remain unidentified. Herein, a group of new SRS proteins is described. Some SRS proteins previously described from pellicle fraction have adhesion properties to the host cell membrane, so their study would provide data related to invasion mechanism and to open possibilities for considering them as targets in the design of immunoprotective strategies or the design of new pharmacological treatments.
Collapse
Affiliation(s)
- Rosalba Cruz-Mirón
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | - Carlos J Ramírez-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Noé Lagunas-Cortés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | - Mónica Mondragón-Castelán
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico
| | | | | | - M Magdalena Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN No. 2508, Ciudad de México C.P. 07360, Mexico.
| |
Collapse
|
7
|
Costa IN, Ribeiro M, Silva Franco P, da Silva RJ, de Araújo TE, Milián ICB, Luz LC, Guirelli PM, Nakazato G, Mineo JR, Mineo TWP, Barbosa BF, Ferro EAV. Biogenic Silver Nanoparticles Can Control Toxoplasma gondii Infection in Both Human Trophoblast Cells and Villous Explants. Front Microbiol 2021; 11:623947. [PMID: 33552033 PMCID: PMC7858645 DOI: 10.3389/fmicb.2020.623947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/31/2020] [Indexed: 01/08/2023] Open
Abstract
The combination of sulfadiazine and pyrimethamine plus folinic acid is the conventional treatment for congenital toxoplasmosis. However, this classical treatment presents teratogenic effects and bone marrow suppression. In this sense, new therapeutic strategies are necessary to reduce these effects and improve the control of infection. In this context, biogenic silver nanoparticles (AgNp-Bio) appear as a promising alternative since they have antimicrobial, antiviral, and antiparasitic activity. The purpose of this study to investigate the action of AgNp-Bio in BeWo cells, HTR-8/SVneo cells and villous explants and its effects against Toxoplasma gondii infection. Both cells and villous explants were treated with different concentrations of AgNp-Bio or combination of sulfadiazine + pyrimethamine (SDZ + PYZ) in order to verify the viability. After, cells and villi were infected and treated with AgNp-Bio or SDZ + PYZ in different concentrations to ascertain the parasite proliferation and cytokine production profile. AgNp-Bio treatment did not reduce the cell viability and villous explants. Significant reduction was observed in parasite replication in both cells and villous explants treated with silver nanoparticles and classical treatment. The AgNp-Bio treatment increased of IL-4 and IL-10 by BeWo cells, while HTR8/SVneo cells produced macrophage migration inhibitory factor (MIF) and IL-4. In the presence of T. gondii, the treatment induced high levels of MIF production by BeWo cells and IL-6 by HTR8SV/neo. In villous explants, the AgNp-Bio treatment downregulated production of IL-4, IL-6, and IL-8 after infection. In conclusion, AgNp-Bio can decrease T. gondii infection in trophoblast cells and villous explants. Therefore, this treatment demonstrated the ability to reduce the T. gondii proliferation with induction of inflammatory mediators in the cells and independent of mediators in chorionic villus which we consider the use of AgNp-Bio promising in the treatment of toxoplasmosis in BeWo and HTR8/SVneo cell models and in chorionic villi.
Collapse
Affiliation(s)
- Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Mayara Ribeiro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Priscila Silva Franco
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rafaela José da Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Thádia Evelyn de Araújo
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Iliana Claudia Balga Milián
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Luana Carvalho Luz
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Pâmela Mendonça Guirelli
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gerson Nakazato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - José Roberto Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Tiago W. P. Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
8
|
Oschwald A, Petry P, Kierdorf K, Erny D. CNS Macrophages and Infant Infections. Front Immunol 2020; 11:2123. [PMID: 33072074 PMCID: PMC7531029 DOI: 10.3389/fimmu.2020.02123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) harbors its own immune system composed of microglia in the parenchyma and CNS-associated macrophages (CAMs) in the perivascular space, leptomeninges, dura mater, and choroid plexus. Recent advances in understanding the CNS resident immune cells gave new insights into development, maturation and function of its immune guard. Microglia and CAMs undergo essential steps of differentiation and maturation triggered by environmental factors as well as intrinsic transcriptional programs throughout embryonic and postnatal development. These shaping steps allow the macrophages to adapt to their specific physiological function as first line of defense of the CNS and its interfaces. During infancy, the CNS might be targeted by a plethora of different pathogens which can cause severe tissue damage with potentially long reaching defects. Therefore, an efficient immune response of infant CNS macrophages is required even at these early stages to clear the infections but may also lead to detrimental consequences for the developing CNS. Here, we highlight the recent knowledge of the infant CNS immune system during embryonic and postnatal infections and the consequences for the developing CNS.
Collapse
Affiliation(s)
- Alexander Oschwald
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philippe Petry
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,CIBBS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Erny
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
van der Colf BE, van Zyl GU, Noden BH, Ntirampeba D. Seroprevalence of Toxoplasma gondii infection among pregnant women in Windhoek, Namibia, in 2016. S Afr J Infect Dis 2020; 35:25. [PMID: 34485464 PMCID: PMC8378169 DOI: 10.4102/sajid.v35i1.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/16/2020] [Indexed: 11/29/2022] Open
Abstract
Background When a pregnant woman contracts Toxoplasma gondii (T. gondii) infection during pregnancy, it may be vertically transmitted to the foetus. Information on the incidence of congenital toxoplasmosis (CT) in developing countries is scarce. Most studies focus on the seroprevalence of T. gondii infection among pregnant women. This study aimed to determine the seroprevalence of T. gondii infection among pregnant women attending public antenatal care in Windhoek, Namibia, in 2016. Methods In this descriptive study, 344 urban pregnant women attending public antenatal care were voluntarily enrolled in the study. Seroprevalence of anti-T. gondii Immunoglobulin G (IgG) was determined by automated immunoassay. Samples with a positive T. gondii IgG result were tested for T. gondii Immunoglobulin M (IgM) and specific IgG avidity by using an enzyme-linked immunosorbent assay (ELISA) test. A questionnaire captured demographic data and exposure to risk factors. Data were analysed using Statistical Package for the Social Sciences (SPSS) and R. Results Anti-T. gondii IgG was found in nine (2.61%) pregnant women. There was no association of anti-T. gondii IgG with demographic characteristics or exposure to risk factors.Anti-T. gondii IgM was positive in one (0.3%) woman, while three (0.9%) women had borderline anti-T. gondii IgM results. Specific IgG avidity was low, equivocal and high in 0%, 33% and 67% of seropositive pregnant women, respectively. Conclusion Seroprevalence of anti-T. gondii IgG is much lower in Namibia than is reported in other developing countries. Investigation into specific IgM seropositivity and IgG avidity showed that pregnant women in the central region of Namibia are at low risk of vertical transmission and development of CT.
Collapse
Affiliation(s)
- Berta E van der Colf
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Gert U van Zyl
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Bruce H Noden
- Department of Entomology and Plant Pathology, Division of Agricultural Sciences and Natural Resources in the College of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, United States
| | - Dismas Ntirampeba
- Department of Mathematics and Statistics, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| |
Collapse
|
10
|
Tu V, Mayoral J, Yakubu RR, Tomita T, Sugi T, Han B, Williams T, Ma Y, Weiss LM. MAG2, a Toxoplasma gondii Bradyzoite Stage-Specific Cyst Matrix Protein. mSphere 2020; 5:e00100-20. [PMID: 32075884 PMCID: PMC7031614 DOI: 10.1128/msphere.00100-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii causes a chronic infection that affects a significant portion of the world's population, and this latent infection is the source of reactivation of toxoplasmosis. An attribute of the slowly growing bradyzoite stage of the parasite is the formation of a cyst within infected cells, allowing the parasite to escape the host's immune response. In this study, a new bradyzoite cyst matrix antigen (MAG) was identified through a hybridoma library screen. This cyst matrix antigen, matrix antigen 2 (MAG2), contains 14 tandem repeats consisting of acidic, basic, and proline residues. Immunoblotting revealed that MAG2 migrates at a level higher than its predicted molecular weight, and computational analysis showed that the structure of MAG2 is highly disordered. Cell fractionation studies indicated that MAG2 was associated with both insoluble and soluble cyst matrix material, suggesting that it interacts with the intracyst network (ICN). Examination of the kinetics of MAG2 within the cyst matrix using fluorescence recovery after photobleaching (FRAP) demonstrated that MAG2 does not readily diffuse within the cyst matrix. Kinetic studies of MAG1 demonstrated that this protein has different diffusion kinetics in tachyzoite and bradyzoite vacuoles and that its mobility is not altered in the absence of MAG2. In addition, deletion of MAG2 does not influence growth, cystogenesis, or cyst morphology.IMPORTANCE This report expands on the list of characterized Toxoplasma gondii cyst matrix proteins. Using fluorescence recovery after photobleaching (FRAP), we have shown that matrix proteins within the cyst matrix are not mainly in a mobile state, providing further evidence of how proteins behave within the cyst matrix. Understanding the proteins expressed during the bradyzoite stage of the parasite reveals how the parasite functions during chronic infection.
Collapse
Affiliation(s)
- Vincent Tu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joshua Mayoral
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rama R Yakubu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tatsuki Sugi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Bing Han
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tere Williams
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yanfen Ma
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
11
|
Maraghi S, Ghadiri AA, Tavalla M, Shojaee S, Abdizadeh R. Evaluation of immunogenicity and protective effect of DNA vaccine encoding surface antigen1 (SAG1) of Toxoplasma gondii and TLR-5 ligand as a genetic adjuvant against acute toxoplasmosis in BALB/c mice. Biologicals 2019; 62:39-49. [DOI: 10.1016/j.biologicals.2019.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022] Open
|
12
|
Khan K, Khan W. Congenital toxoplasmosis: An overview of the neurological and ocular manifestations. Parasitol Int 2018; 67:715-721. [PMID: 30041005 DOI: 10.1016/j.parint.2018.07.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite which is known to infect one-third of the total world population chronically though it is asymptomatic in immunocompetent patients. However, in an immunocompromised patient or an infected fetus, it may cause devastating effects. The parasite may cross the placenta of an infected pregnant woman and probably infect the fetus congenitally. The severity of the infection depends on the gestational age at which the infection has occurred i.e., if it has occurred in the early phase, the rate of transmission is low but the severity is high if the fetus is infected and if it has occurred in the later phase then transmission rate is higher while the severity would be low. Congenital toxoplasmosis may result in non-specific consequences like abortion, intra-uterine growth restriction, jaundice, hepatosplenomegaly or even intra-uterine death. It may also result in neurological or ocular manifestations like intracranial calcifications, hydrocephalus or retinochoroiditis. The diagnosis may be done by serological screening of anti-Toxoplasma antibodies (IgM and IgG) while PCR of the amniotic fluid or the placenta is the confirmatory test. Acute or chronic infections may be differentiated by IgG avidity tests. The treatment regimens include spiramycin to prevent congenital transmission from an infected mother, pyrimethamine, sulfadoxine and folinic acid to treat the infected fetus, CSF shunting for the treatment of hydrocephalus and a combination of pyrimethamine, azithromycin, and corticosteroids for treating ocular toxoplasmosis.
Collapse
Affiliation(s)
- Khadija Khan
- Department of Zoology, Section of Parasitology, Aligarh Muslim University, India
| | - Wajihullah Khan
- Department of Zoology, Section of Parasitology, Aligarh Muslim University, India.
| |
Collapse
|
13
|
Annexin A1 peptide is able to induce an anti-parasitic effect in human placental explants infected by Toxoplasma gondii. Microb Pathog 2018; 123:153-161. [PMID: 30003946 DOI: 10.1016/j.micpath.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/18/2018] [Accepted: 07/08/2018] [Indexed: 12/31/2022]
Abstract
This study was conducted to investigate annexin A1 (ANXA1) functions in human placental explants infected with Toxoplasma gondii (T. gondii). We examined the first and third trimester placental explants infected with T. gondii (n = 7 placentas/group) to identify the number and location of parasites, ANXA1 protein, potential involvement of formyl peptide receptors (FPR1 and FPR2), and COX-2 expressions by immunohistochemistry. Treatments with Ac2-26 mimetic peptide of ANXA1 were performed to verify the parasitism rate (β-galactosidase assay), prostaglandin E2 levels (ELISA assay), and ANXA1, FPR1 and COX-2 expression in third trimester placentas. Placental explants of third trimester expressed less ANXA1 and were more permissive to T. gondii infection than first trimester placentas that expressed more ANXA1. Ac2-26 treatment increases endogenous ANXA1 and decreases parasitism rate, COX-2, and prostaglandin E2 levels. Altogether, these data provide further insight into the anti-parasitic and anti-inflammatory effects of ANXA1 in placentas infected with T. gondii.
Collapse
|
14
|
Abstract
Toxoplasmosis is one of the most important causes of foodborne illnesses and inflammatory complications, as well as congenital disorders. Promiscuous Toxoplasma is transmitted by contaminated food and animal produce, water, vegetations, fruits and sexually through semen. Toxoplasma infects nucleated cells with a unique tropism for muscles and central nervous system and a mind bugging malicious effect. Pregnant women with acute or reactivated toxoplasmosis can transmit Toxoplasma via transplacental to the fetus. The severity of congenital toxoplasmosis depends on the gestation period, as infection in early pregnancy causes more severe consequences. Congenital toxoplasmosis complications include miscarriage, encephalitis, neurological retardation, mental illnesses, auditory and visual inflammatory disorders, cardiovascular abnormalities, and pains. Current therapies are inefficient for congenital and chronic toxoplasmosis or have severe side effects with life threatening complications. There is an urgent need for effective and safe therapeutic modalities to treat complications of toxoplasmosis and effective vaccines to eliminate the infectious agent. This investigation will discuss pathogenesis of feto-maternal, congenital and pediatric toxoplasmosis, the current available therapies in practice, and explore those therapeutic modalities in experimental stages for promising future trials.
Collapse
Affiliation(s)
- Helieh S. Oz
- Address for correspondence: Helieh S. Oz, DVM, PhD, AGAF, Department of Physiology and Internal Medicine, University of Kentucky Medical Center, Lexington, KY, United States ()
| |
Collapse
|
15
|
Nahouli H, El Arnaout N, Chalhoub E, Anastadiadis E, El Hajj H. Seroprevalence of Anti-Toxoplasma gondii Antibodies Among Lebanese Pregnant Women. Vector Borne Zoonotic Dis 2017; 17:785-790. [PMID: 29064352 DOI: 10.1089/vbz.2016.2092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Toxoplasma gondii, the causative agent of toxoplasmosis, is a zoonotic obligate intracellular protozoan parasite responsible for the infection of almost one-third of the world's population. T. gondii is particularly threatening for primo-infected pregnant women and may lead, following vertical transplacental transmission, to spontaneous abortion, miscarriage, or severe manifestations in the newborn. The aim of this study was to provide an updated estimate of the seroprevalence of anti-T. gondii antibodies among a group of Lebanese pregnant women and its seroconversion rate. METHODS This is a retrospective cohort study, in which medical records of 11,000 pregnant women were screened. These women visited a private Obstetrics and Gynecology clinic located in Beirut, the capital of Lebanon, during the period of January 1994 till September 2015. Serological results of anti-T. gondii immunoglobulin G (IgG) and immunoglobulin M (IgM) results of 2456 Lebanese pregnant women who fulfilled the inclusion criteria were included in the analysis. Seropositivity and seroconversion rates for women with repeated tests were reported according to age and area of residence. RESULTS The overall anti-T. gondii IgG and IgM seropositivity among 2456 Lebanese pregnant women was 82.6% and 1.8% respectively. The highest IgG seropositivity is among the age group of 35-44 years (87.81%) and at the governorate of "Mount Lebanon" (82.95%). Sixty-four seroconversions were detected and two abortions due to T. gondii infection during pregnancy were recorded. CONCLUSIONS The seroprevalence of anti-T. gondii IgG among the screened pregnant women in Lebanon is the highest in the Arab region. These results highlight the importance of running a national sample survey to estimate the real potential burden of this infection and its impact on maternal and fetal health.
Collapse
Affiliation(s)
- Hasan Nahouli
- 1 Faculty of Medicine, American University of Beirut , Beirut, Lebanon
| | - Nour El Arnaout
- 2 Global Health Institute, American University of Beirut , Beirut, Lebanon
| | - Elias Chalhoub
- 3 Faculty of Health Sciences, University of Balamand , Beirut, Lebanon
| | | | - Hiba El Hajj
- 5 Department of Internal Medicine/Experimental Pathology, Immunology and Microbiology, American University of Beirut , Beirut, Lebanon
| |
Collapse
|
16
|
Assolini JP, Concato VM, Gonçalves MD, Carloto ACM, Conchon-Costa I, Pavanelli WR, Melanda FN, Costa IN. Nanomedicine advances in toxoplasmosis: diagnostic, treatment, and vaccine applications. Parasitol Res 2017; 116:1603-1615. [PMID: 28477099 DOI: 10.1007/s00436-017-5458-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
Abstract
Toxoplasmosis is an infectious disease caused by the intracellular parasite Toxoplasma gondii that affects about one third of the world's population. The diagnosis of this disease is carried out by parasite isolation and host antibodies detection. However, the diagnosis presents problems in regard to test sensitivity and specificity. Currently, the most effective T. gondii treatment is a combination of pyrimethamine and sulfadiazine, although both drugs are toxic to the host. In addition to the problems that compromise the effective diagnosis and treatment of toxoplasmosis, there are no reports or indications of any vaccine capable of fully protecting against this infection. Nanomaterials, smaller than 1000 nm, are currently being investigated as an alternative tool in the management of T. gondii infection. This article reviews how recent nanotechnology advances indicate the utility of nanomaterials in toxoplasmosis diagnosis, treatment, and vaccine development.
Collapse
Affiliation(s)
- João Paulo Assolini
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Virginia Márcia Concato
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Manoela Daiele Gonçalves
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Wander Rogério Pavanelli
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Francine Nesello Melanda
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Idessania Nazareth Costa
- Departamento de Ciências Patológicas, Laboratório de Parasitologia, Universidade Estadual de Londrina, Londrina, PR, Brazil. .,Departamento de Ciências Patológicas - Laboratório de Parasitologia, Universidade Estadual de Londrina-UEL, Rodovia Celso Garcia Cid, Campus Universitário, Cx. Postal 6001, Londrina, PR, 86051-990, Brazil.
| |
Collapse
|
17
|
Korver AMH, Smith RJH, Van Camp G, Schleiss MR, Bitner-Glindzicz MAK, Lustig LR, Usami SI, Boudewyns AN. Congenital hearing loss. Nat Rev Dis Primers 2017; 3:16094. [PMID: 28079113 PMCID: PMC5675031 DOI: 10.1038/nrdp.2016.94] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital hearing loss (hearing loss that is present at birth) is one of the most prevalent chronic conditions in children. In the majority of developed countries, neonatal hearing screening programmes enable early detection; early intervention will prevent delays in speech and language development and has long-lasting beneficial effects on social and emotional development and quality of life. A diagnosis of hearing loss is usually followed by a search for an underlying aetiology. Congenital hearing loss might be attributed to environmental and prenatal factors, which prevail in low-income settings; congenital infections, particularly cytomegalovirus infection, are also a common risk factor for hearing loss. Genetic causes probably account for the majority of cases in developed countries; mutations can affect any component of the hearing pathway, in particular, inner ear homeostasis (endolymph production and maintenance) and mechano-electrical transduction (the conversion of a mechanical stimulus into electrochemical activity). Once the underlying cause of hearing loss is established, it might direct therapeutic decision making and guide prevention and (genetic) counselling. Management options include specific antimicrobial therapies, surgical treatment of craniofacial abnormalities and implantable or non-implantable hearing devices. An improved understanding of the pathophysiology and molecular mechanisms that underlie hearing loss and increased awareness of recent advances in genetic testing will promote the development of new treatment and screening strategies.
Collapse
Affiliation(s)
- Anna M H Korver
- Department of Pediatrics, St Antonius Hospital, PO BOX 2500, 3430 EM Nieuwegein, The Netherlands
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories and the Genetics PhD Program, University of Iowa, Iowa City, Iowa, USA
| | - Guy Van Camp
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Mark R Schleiss
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Maria A K Bitner-Glindzicz
- Genetics and Genomic Medicine Programme, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Lawrence R Lustig
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, New York, USA
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - An N Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Review of Experimental Compounds Demonstrating Anti-Toxoplasma Activity. Antimicrob Agents Chemother 2016; 60:7017-7034. [PMID: 27600037 DOI: 10.1128/aac.01176-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Toxoplasma gondii is a ubiquitous apicomplexan parasite capable of infecting humans and other animals. Current treatment options for T. gondii infection are limited and most have drawbacks, including high toxicity and low tolerability. Additionally, no FDA-approved treatments are available for pregnant women, a high-risk population due to transplacental infection. Therefore, the development of novel treatment options is needed. To aid this effort, this review highlights experimental compounds that, at a minimum, demonstrate inhibition of in vitro growth of T. gondii When available, host cell toxicity and in vivo data are also discussed. The purpose of this review is to facilitate additional development of anti-Toxoplasma compounds and potentially to extend our knowledge of the parasite.
Collapse
|
19
|
Human toxoplasmosis–Searching for novel chemotherapeutics. Biomed Pharmacother 2016; 82:677-84. [DOI: 10.1016/j.biopha.2016.05.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/22/2023] Open
|
20
|
Xin CF, Kim HS, Sato A, Lee HJ, Lee YW, Pyo KH, Shin EH. In vitro inhibition of Toxoplasma gondii by the anti-malarial candidate, 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol. Parasitol Int 2016; 65:494-9. [PMID: 27380994 DOI: 10.1016/j.parint.2016.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
An anti-malarial candidate, 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol (N-251), was studied to characterize its potential as a novel anti-Toxoplasma gondii drug. In the present study, IC50 and LC50 of N-251 on host cells and T. gondii were compared to those of artemisinin and sulfadiazine. The IC50 on Huh-7 cells was 10.19μg/ml, 67.69μg/ml and 310.17μg/ml for N-251, artemisinin, and sulfadiazine, respectively. The LC50 for anti-T. gondii effect was shown to be 1.11μg/ml, 5.79μg/ml, and 5.45μg/ml for N-251, artemisinin and sulfadiazine, respectively. N-251 concentration causing complete parasiticidal effect with minimal cytotoxicity on host cells was determined to be 5μg/ml. Additionally, the anti-T. gondii effect of N-251 was confirmed by ultrastructural changes, loss of organelles, degenerated morphology and the increase of amylopectin as detected by transmission electron microscope (TEM). Accordingly, the present study suggests that the anti-malarial synthetic endoperoxide, N-251, is an emerging drug candidate more effective than artemisinin and sulfadiazine.
Collapse
Affiliation(s)
- Chun-Feng Xin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea
| | - Hye-Sook Kim
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Akira Sato
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Hak-Jae Lee
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea
| | - You-Won Lee
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea
| | - Kyoung-Ho Pyo
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea
| | - Eun-Hee Shin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea; Seoul National University Bundang Hospital, Seongnam 463-707, Republic of Korea.
| |
Collapse
|
21
|
Seroprevalence and Associated Risk Factors for Toxoplasma gondii Infection in Healthy Blood Donors: A Cross-Sectional Study in Sonora, Mexico. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9597276. [PMID: 27446960 PMCID: PMC4944021 DOI: 10.1155/2016/9597276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 06/15/2016] [Indexed: 12/20/2022]
Abstract
Toxoplasma gondii (T. gondii) can be transmitted by blood transfusion. We determined the prevalence of T. gondii infection in healthy blood donors in Hermosillo city, Mexico, and the association of infection with T. gondii with the sociodemographic, clinical, and behavioral characteristics of blood donors. Four hundred and eight blood donors who attended two public blood banks in Hermosillo city were examined for anti-T. gondii IgG and IgM antibodies by using enzyme-linked immunoassays. Of the 408 blood donors (mean age 31.77 ± 9.52; range 18–60 years old) studied, 55 (13.5%) were positive for anti-T. gondii IgG antibodies, and 12 (21.8%) of them were also positive for anti-T. gondii IgM antibodies. Multivariate analysis showed that seropositivity to T. gondii was associated with age (OR = 1.74; 95% CI: 1.03–2.94; P = 0.03) and tobacco use (OR = 2.09; 95% CI: 1.02–4.29; P = 0.04). Seropositivity to T. gondii was correlated with the number of pregnancies, deliveries, and cesarean sections. The seroprevalence of T. gondii infection in blood donors in Sonora is the highest reported in blood donors in northern Mexico so far. This is the first report of an association of T. gondii exposure and tobacco use. Further research to confirm this association is needed.
Collapse
|
22
|
Alvarado-Esquivel C, Rascón-Careaga A, Hernández-Tinoco J, Corella-Madueño MAG, Sánchez-Anguiano LF, Aldana-Madrid ML, Almada-Balderrama GJ, Nuñez-Aguirre AD, Liesenfeld O. Seroprevalence and correlates of Toxoplasma gondii infection in Yoremes (Mayos) in Mexico: a cross-sectional study. BMJ Open 2016; 6:e010218. [PMID: 27173808 PMCID: PMC4874141 DOI: 10.1136/bmjopen-2015-010218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES We sought to determine the prevalence of anti-Toxoplasma gondii antibodies in Yoremes and to identify associations of T. gondii exposure with sociodemographic, clinical and behavioural characteristics of Yoremes. DESIGN A cross-sectional survey. SETTING Yoremes were enrolled in the locality of Tierra Blanca in the municipality of Navojoa in Sonora State, Mexico. PARTICIPANTS We studied 200 Yoremes (Mayos); they are an indigenous ethnic group living in a coastal region in northwestern Mexico. PRIMARY AND SECONDARY OUTCOME MEASURES We assessed the prevalence of anti-Toxoplasma IgG and IgM antibodies in participants using enzyme-linked immunoassays. We used a standardised questionnaire to obtain the characteristics of Yoremes. The association of T. gondii exposure and Yoremes' characteristics was assessed by bivariate and multivariate analyses. RESULTS Of the 200 Yoremes studied (mean age: 31.50±18.43 years), 26 (13.0%) were positive for anti-T. gondii IgG antibodies and 19 (73.1%) of them were also positive for anti-T. gondii IgM antibodies. Seroprevalence of T. gondii infection did not vary with sex, educational level, occupation or socioeconomic status. In contrast, multivariate analysis of sociodemographic and behavioural characteristics showed that T. gondii exposure was associated with increasing age (OR=1.02; 95% CI 1.00 to 1.04; p=0.03) and consumption of squirrel meat (OR=4.99; 95% CI 1.07 to 23.31; p=0.04). Furthermore, seroprevalence of T. gondii infection was significantly higher in Yoremes with a history of lymphadenopathy (p=0.03) and those suffering from frequent abdominal pain (p=0.03). In women, T. gondii exposure was associated with a history of caesarean sections (p=0.03) and miscarriages (p=0.02). CONCLUSIONS We demonstrate, for the first time, serological evidence of T. gondii exposure among Yoremes in Mexico. Results suggest that infection with T. gondii might be affecting the health of Yoremes. Results may be useful for an optimal design of preventive measures against T. gondii infection.
Collapse
Affiliation(s)
- Cosme Alvarado-Esquivel
- Faculty of Medicine and Nutrition, Biomedical Research Laboratory, Juárez University of Durango State, Durango, Mexico
| | - Antonio Rascón-Careaga
- Department of Chemical and Biological Sciences, University of Sonora, Hermosillo, Sonora, Mexico
| | - Jesús Hernández-Tinoco
- Institute for Scientific Research “Dr. Roberto Rivera-Damm”, Juárez University of Durango State, Durango, Mexico
| | | | | | | | | | | | - Oliver Liesenfeld
- Institute for Microbiology and Hygiene, Campus Benjamin Franklin, Charité Medical School, Berlin, Germany
- Roche Molecular Diagnostics, Pleasanton, California, USA
| |
Collapse
|
23
|
Heaslip AT, Nelson SR, Warshaw DM. Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments. Mol Biol Cell 2016; 27:2080-9. [PMID: 27146112 PMCID: PMC4927281 DOI: 10.1091/mbc.e15-12-0824] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/26/2016] [Indexed: 11/18/2022] Open
Abstract
The survival of Toxoplasma gondii within its host cell requires protein release from vesicles, called dense granules (DGs). Through imaging of the motions of DGs in live intracellular parasites, it is shown that DG transport is dependent on F-actin and a class 27 myosin, TgMyoF, thus uncovering new critical roles for these essential proteins in the parasite’s lytic cycle. The survival of Toxoplasma gondii within its host cell requires protein release from secretory vesicles, called dense granules, to maintain the parasite’s intracellular replicative niche. Despite the importance of DGs, nothing is known about the mechanisms underlying their transport. In higher eukaryotes, secretory vesicles are transported to the plasma membrane by molecular motors moving on their respective cytoskeletal tracks (i.e., microtubules and actin). Because the organization of these cytoskeletal structures differs substantially in T. gondii, the molecular motor dependence of DG trafficking is far from certain. By imaging the motions of green fluorescent protein–tagged DGs in intracellular parasites with high temporal and spatial resolution, we show through a combination of molecular genetics and chemical perturbations that directed DG transport is independent of microtubules and presumably their kinesin/dynein motors. However, directed DG transport is dependent on filamentous actin and a unique class 27 myosin, TgMyoF, which has structural similarity to myosin V, the prototypical cargo transporter. Actomyosin DG transport was unexpected, since filamentous parasite actin has yet to be visualized in vivo due in part to the prevailing model that parasite actin forms short, unstable filaments. Thus our data uncover new critical roles for these essential proteins in the lytic cycle of this devastating pathogen.
Collapse
Affiliation(s)
- Aoife T Heaslip
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Shane R Nelson
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
24
|
Abstract
Listeriosis and toxoplasmosis are foodborne illnesses that can have long-term consequences when contracted during pregnancy. Listeriosis is implicated in stillbirth, preterm labor, newborn sepsis, and meningitis, among other complications. Toxoplasmosis is associated with blindness, cognitive delays, seizures, and hearing loss, among other significant disabilities. Healthcare providers who understand the fundamentals of Listeria and Toxoplasma infection will have the tools to identify symptoms and high-risk behaviors, educate women to make safer decisions, and provide anticipatory guidance if a pregnant woman would become infected with either of these foodborne illnesses.
Collapse
|
25
|
Gontijo da Silva M, Clare Vinaud M, de Castro AM. Prevalence of toxoplasmosis in pregnant women and vertical transmission of Toxoplasma gondii in patients from basic units of health from Gurupi, Tocantins, Brazil, from 2012 to 2014. PLoS One 2015; 10:e0141700. [PMID: 26558622 PMCID: PMC4641701 DOI: 10.1371/journal.pone.0141700] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022] Open
Abstract
Introduction Toxoplasmosis is a parasitary disease that presents high rates of gestational and congenital infection worldwide being therefore considered a public health problem and a neglected disease. Objective To determine the prevalence of toxoplasmosis amongst pregnant women and vertical transmission of Toxoplasma gondii in their newborns attended in the Basic Units of Health (BUH) from the city of Gurupi, state of Tocantins, Brazil. Methods A prevalence study was performed, including 487 pregnant women and their newborns attended in the BUH of the urban zone of the city of Gurupi, state of Tocantins, Brazil, during the period from February 2012 to February 2014. The selection of the pregnant women occurred by convenience. In the antenatal admission they were invited to participate in this study. Three samples of peripheral blood were collected for the detection of specific anti-T. gondii IgG, IgM and IgA through ELISA, for the polimerase chain reaction (PCR) and IgG avidity during pregnancy. When IgM antibodies were detected the fetal and newborn infection investigation took place. The newborn was investigated right after birth and after one year of age through serology and PCR to confirm/exclude the vertical transmission. The analyses were performed in the Studies of the Host-Parasite Relationship Laboratory (LAERPH, IPTSP-UFG), Goiania, state of Goias, Brazil. The results were inserted in a data bank in Epi-Info 3.3.2 statistic software in which the analysis was performed with p≤5%. Results The toxoplasmosis infection was detected in 68.37% (333/487, CI95%: 64.62–72.86). The toxoplasmosis chronic infection prevalence was of 63.03% (307/487, CI95%: 58.74–67.32). The prevalence of maternal acute infection was of 5.33% (26/487; CI95%: 3.3–7.3) suspected by IgM antibodies detection in the peripheral blood. The prevalence of confirmed vertical transmission was of 28% (7/25; CI95%: 10.4–45.6). Conclusions These results show an elevated prevalence of toxoplasmosis in pregnant women and vertical transmission of T. gondii in the city of Gurupi, state of Tocantins, Brazil.
Collapse
Affiliation(s)
- Marcos Gontijo da Silva
- University Center UNIRG, Parasitology Laboratory, Av. Rio de Janeiro entre ruas 9 e 10, Centro, Gurupi—TO, Brazil
- * E-mail:
| | - Marina Clare Vinaud
- Federal University of Goias (UFG), Tropical Medicine and Public Health Institute (IPTSP), Tropical Medicine and Public Health Post-Graduation Programme, Studies of the Host-Parasite Relationship Laboratory (LAERPH), Rua 235 esq. 1a. Av. s/n Setor Leste Universitário, CEP 74605–050, Goiânia, Brazil
| | - Ana Maria de Castro
- Federal University of Goias (UFG), Tropical Medicine and Public Health Institute (IPTSP), Tropical Medicine and Public Health Post-Graduation Programme, Studies of the Host-Parasite Relationship Laboratory (LAERPH), Rua 235 esq. 1a. Av. s/n Setor Leste Universitário, CEP 74605–050, Goiânia, Brazil
| |
Collapse
|
26
|
Grzybowski MM, Gatkowska JM, Dziadek B, Dzitko K, Długońska H. Human toxoplasmosis: a comparative evaluation of the diagnostic potential of recombinant Toxoplasma gondii ROP5 and ROP18 antigens. J Med Microbiol 2015; 64:1201-1207. [PMID: 26242602 DOI: 10.1099/jmm.0.000148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Toxoplasmosis is one of the most common parasitic diseases worldwide and it poses a serious challenge regarding prevention, diagnosis and therapy. The commonly used diagnostic methods are mostly based on the detection of specific antibodies in sera. Since they are not always accurate enough and do not allow precise definition of the phase of the Toxoplasma gondii infection, there is an urgent need to find specific molecular markers of acute or chronic infection stages. This study provides a comparative assessment of recombinant ROP5 and ROP18 T. gondii proteins in the serodiagnosis of human toxoplasmosis. We found that both ROP5 and ROP18 proteins allowed the detection of specific IgM and IgG antibodies with a relatively low sensitivity; however, ROP18 IgM ELISA proved to be more sensitive than the SAG1 assay. This study also points to a relatively weak potential of the corresponding native ROP5 and ROP18 kinases in the generation of a strong antibody response in humans.
Collapse
Affiliation(s)
- Marcin M Grzybowski
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Justyna M Gatkowska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Bożena Dziadek
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Katarzyna Dzitko
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Henryka Długońska
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
27
|
de Souza W, Attias M. New views of the Toxoplasma gondii parasitophorous vacuole as revealed by Helium Ion Microscopy (HIM). J Struct Biol 2015; 191:76-85. [PMID: 26004092 DOI: 10.1016/j.jsb.2015.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 11/27/2022]
Abstract
The Helium Ion Microscope (HIM) is a new technology that uses a highly focused helium ion beam to scan and interact with the sample, which is not coated. The images have resolution and depth of field superior to field emission scanning electron microscopes. In this paper, we used HIM to study LLC-MK2 cells infected with Toxoplasma gondii. These samples were chemically fixed and, after critical point drying, were scraped with adhesive tape to expose the inner structure of the cell and parasitophorous vacuoles. We confirmed some of the previous findings made by field emission-scanning electron microscopy and showed that the surface of the parasite is rich in structures suggestive of secretion, that the nanotubules of the intravacuolar network (IVN) are not always straight, and that bifurcations are less frequent than previously thought. Fusion of the tubules with the parasite membrane or the parasitophorous vacuole membrane (PVM) was also infrequent. Tiny adhesive links were observed for the first time connecting the IVN tubules. The PVM showed openings of various sizes that even allowed the observation of endoplasmic reticulum membranes in the cytoplasm of the host cell. These findings are discussed in relation to current knowledge on the cell biology of T. gondii.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco G, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Biologia Estrutural e Biomagem-INBEB, and Centro Nacional de Biologia Estrutural e Biomagem-CENABIO, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Metrologia, Qualidade e Tecnologia-INMETRO, Duque de Caxias, RJ, Brazil
| | - Marcia Attias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco G, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Biologia Estrutural e Biomagem-INBEB, and Centro Nacional de Biologia Estrutural e Biomagem-CENABIO, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
28
|
Abstract
Apicomplexan parasites include some of the most prevalent and deadly human pathogens. Novel antiparasitic drugs are urgently needed. Synthesis and metabolism of isoprenoids may present multiple targets for therapeutic intervention. The apicoplast-localized methylerythritol phosphate (MEP) pathway for isoprenoid precursor biosynthesis is distinct from the mevalonate (MVA) pathway used by the mammalian host, and this pathway is apparently essential in most Apicomplexa. In this review, we discuss the current field of research on production and metabolic fates of isoprenoids in apicomplexan parasites, including the acquisition of host isoprenoid precursors and downstream products. We describe recent work identifying the first MEP pathway regulator in apicomplexan parasites, and introduce several promising areas for ongoing research into this well-validated antiparasitic target.
Collapse
Affiliation(s)
- Leah Imlay
- Department of Molecular Microbiology Washington University School of Medicine St. Louis, MO 63110 USA
| | - Audrey R Odom
- Department of Pediatrics Washington University School of Medicine St. Louis, MO 63110 USA & Department of Molecular Microbiology Washington University School of Medicine St. Louis, MO 63110 USA
| |
Collapse
|
29
|
Oz HS. Toxoplasmosis complications and novel therapeutic synergism combination of diclazuril plus atovaquone. Front Microbiol 2014; 5:484. [PMID: 25309522 PMCID: PMC4164033 DOI: 10.3389/fmicb.2014.00484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/28/2014] [Indexed: 12/31/2022] Open
Abstract
Toxoplasmosis is a major cause of foodborne disease, congenital complication, and morbidity. There is an urgent need for safe and effective therapies to encounter congenital and persisting toxoplasmosis. The hypothesis was: combination diclazuril plus atovaquone to exert a novel therapeutic synergy to prevent toxoplasmosis syndromes. Methods: Pregnant dams were treated with diclazuril and atovaquone monotherapy or combination therapy and infected i.p with Toxoplasma tachyzoites. Results: Infected dams developed severe toxoplasmosis associated syndrome with increases in the abdominal adiposity surrounding uteri, gansterointestinal and other internal organs and excessive weight gain. Numerous organisms along with infiltration of inflammatory cells were detected scattered into adipose tissues. Combination therapy (p < 0.01) and to a lesser extent diclazuril (p < 0.05) protected dams from inflammatory fat and excess weight gains. This was consistent with pancreatitis development in infected dams (versus normal p < 0.05) with infiltration of inflammatory cells, degeneration and necrosis of pancreatic cells followed by the degeneration and loss of islets. Combination and monotherapy protected dams from these inflammatory and pathological aspects of pancreatitis. Infected dams exhibited severe colitis, and colonic tissues significantly shortened in length. Brush border epithelial cells were replaced with infiltration of lymphocytes, granulocytes, and microabscess formations into cryptic microstructures. Combination therapy synergistically preserved colonic structure and normalized pathological damages (p < 0.001) and to a lesser degree diclazuril monotherapy protected dams from colitis (p < 0.05) and gastrointestinal toxoplasmosis. Other complications included severe splenitis (p < 0.001) and hepatitis (p < 0.001) which were normalized with combination therapy. Conclusion: Combination diclazuril plus atovaquone was safe and with a novel therapeutic synergism protected dams and fetuses from toxoplasmosis.
Collapse
Affiliation(s)
- Helieh S Oz
- Department of Internal Medicine, University of Kentucky Medical Center Lexington, KY, USA
| |
Collapse
|