1
|
Uberoi A, McCready-Vangi A, Grice EA. The wound microbiota: microbial mechanisms of impaired wound healing and infection. Nat Rev Microbiol 2024; 22:507-521. [PMID: 38575708 DOI: 10.1038/s41579-024-01035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
The skin barrier protects the human body from invasion by exogenous and pathogenic microorganisms. A breach in this barrier exposes the underlying tissue to microbial contamination, which can lead to infection, delayed healing, and further loss of tissue and organ integrity. Delayed wound healing and chronic wounds are associated with comorbidities, including diabetes, advanced age, immunosuppression and autoimmune disease. The wound microbiota can influence each stage of the multi-factorial repair process and influence the likelihood of an infection. Pathogens that commonly infect wounds, such as Staphylococcus aureus and Pseudomonas aeruginosa, express specialized virulence factors that facilitate adherence and invasion. Biofilm formation and other polymicrobial interactions contribute to host immunity evasion and resistance to antimicrobial therapies. Anaerobic organisms, fungal and viral pathogens, and emerging drug-resistant microorganisms present unique challenges for diagnosis and therapy. In this Review, we explore the current understanding of how microorganisms present in wounds impact the process of skin repair and lead to infection through their actions on the host and the other microbial wound inhabitants.
Collapse
Affiliation(s)
- Aayushi Uberoi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amelia McCready-Vangi
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Grice
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Kunimitsu M, Kataoka Y, Nakagami G, Weller CD, Sanada H. Factors related to the composition and diversity of wound microbiota investigated using culture-independent molecular methods: a scoping review. Drug Discov Ther 2021; 15:78-86. [PMID: 33952764 DOI: 10.5582/ddt.2021.01036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
All open wounds are often colonized by commensal microbes as a loss of skin can provide a ready portal of entry for microorganisms. Although the wound microbiota is known to be associated with wound infection and with delayed healing, the factors related to the formations of wound microbiota contributing to such poor clinical outcomes are not clear and have not led to effective infection prevention interventions. This review aimed to scope the factors related to the composition and diversity of wound microbiota that have been investigated using culture-independent molecular methods. Original articles on wound microbiota published from January 1986 to February 2020 were included in this review. Thirty-one articles met the inclusion criteria and were grouped according to wound types: chronic, acute, and animal model wounds. The factors identified were categorized according to patient characteristics, wound characteristics, treatment, and sampling. Although some studies reported the effect size of the factors, the values were small. No studies elucidated the mechanism of wound microbiota formation. The results of this scoping review highlight that the factors associated with the diversity of wound microbiota are poorly understood and that further studies are needed.
Collapse
Affiliation(s)
- Mao Kunimitsu
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yukie Kataoka
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Carolina D Weller
- School of Nursing and Midwifery, Monash University, Melbourne, Australia
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Trojani MC, Lamy B, Ruimy R, Amoretti N, Risso K, Roux C. An unusual Staphylococcus saccharolyticus spondylodiscitis post kyphoplasty: a case report. BMC Infect Dis 2020; 20:539. [PMID: 32703263 PMCID: PMC7379344 DOI: 10.1186/s12879-020-05263-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022] Open
Abstract
Background Staphylococcus saccharolyticus is a rarely encountered coagulase-negative, which grows slowly and its strictly anaerobic staphylococcus from the skin. It is usually considered a contaminant, but some rare reports have described deep-seated infections. Virulence factors remain poorly known, although, genomic analysis highlights pathogenic potential. Case presentation We report a case of Staphylococcus saccharolyticus spondylodiscitis that followed kyphoplasty, a procedure associated with a low rate but possible severe infectious complication (0.46%), and have reviewed the literature. This case specifically stresses the risk of healthcare-associated S. saccharolyticus infection in high-risk patients (those with a history of alcoholism and heavy smoking). Conclusion S. saccharolyticus infection is difficult to diagnose due to microbiological characteristics of this bacterium; it requires timely treatment, and improved infection control procedure should be encouraged for high-risk patients.
Collapse
Affiliation(s)
| | - Brigitte Lamy
- Laboratoire de Bactériologie, Hôpital L'archet 2, CHU de Nice, Nice, France.,INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Equipe 6, Nice, France.,Faculté de Médecine, Université Côte d'Azur, Nice, France
| | - Raymond Ruimy
- Laboratoire de Bactériologie, Hôpital L'archet 2, CHU de Nice, Nice, France.,INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Equipe 6, Nice, France.,Faculté de Médecine, Université Côte d'Azur, Nice, France
| | - Nicolas Amoretti
- Département de Radiologie, Université Cote d'Azur, CHU de Nice, Nice, France
| | - Karine Risso
- Service d'infectiologie, Université Nice Côte d'Azur, CHU de Nice, Nice, France
| | - Christian Roux
- Département de Rhumatologie, Université Cote d'Azur, LAHMESS EA6309, CNRS, iBV UMR 7277, CHU de Nice, Nice, France
| |
Collapse
|
4
|
Liu SH, Huang YC, Chen LY, Yu SC, Yu HY, Chuang SS. The skin microbiome of wound scars and unaffected skin in patients with moderate to severe burns in the subacute phase. Wound Repair Regen 2018; 26:182-191. [DOI: 10.1111/wrr.12632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/09/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Su-Hsun Liu
- College of Medicine; Chang Gung University; Taoyuan Taiwan
- Department of Family Medicine; Chang Gung Memorial Hospital; Taoyuan Taiwan
| | - Yhu-Chering Huang
- College of Medicine; Chang Gung University; Taoyuan Taiwan
- Department of Pediatrics; Chang Gung Memorial Hospital; Taoyuan Taiwan
| | - Leslie Y Chen
- Department of Research and Development; Chang Gung Memorial Hospital; Taoyuan Taiwan
| | - Shu-Chuan Yu
- Department of Family Medicine; Chang Gung Memorial Hospital; Taoyuan Taiwan
| | - Hsiao-Yun Yu
- College of Medicine; Chang Gung University; Taoyuan Taiwan
| | - Shiow-Shuh Chuang
- College of Medicine; Chang Gung University; Taoyuan Taiwan
- Department of Plastic and Reconstructive Surgery; The Burn Center, Chang Gung Memorial Hospital; Taoyuan Taiwan
| |
Collapse
|
5
|
Stavnsbjerg C, Frimodt-Møller N, Moser C, Bjarnsholt T. Comparison of two commercial broad-range PCR and sequencing assays for identification of bacteria in culture-negative clinical samples. BMC Infect Dis 2017; 17:233. [PMID: 28347280 PMCID: PMC5368927 DOI: 10.1186/s12879-017-2333-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/21/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Culturing has long been the gold standard for detecting aetiologic agents in bacterial infections. In some cases, however, culturing fails to detect the infection. To further investigate culture-negative samples, amplification and subsequent sequencing of the 16S rRNA gene is often applied. The aim of the present study was to compare the current method used at our Department of Clinical Microbiology, based on the MicroSeq ID system (Applied Biosystems, USA) with the Universal Microbe Detection (UMD) SelectNA kit (Molzym, Germany). METHODS 76 culture-negative samples were first processed with the MicroSeq ID analysis, where total DNA was extracted and the 16S gene amplified and sequenced with the MicroSeq ID system. Samples were subsequently processed with the UMD SelectNA analysis, where human DNA was removed during the DNA extraction procedure and the 16S gene amplified in a real-time PCR and sequenced. RESULTS 22 of 76 samples (28.9%) were positive for bacteria with the UMD SelectNA, which was significantly more (p = 0.0055) than the MicroSeq ID where 11 of 76 samples (14.5%) were positive. The UMD SelectNA assay identified more relevant bacterial pathogens than the MicroSeq ID analysis (p = 0.0233), but also found a number of species that were considered contaminations. CONCLUSIONS The UMD SelectNA assay was valuable for the identification of pathogens in culture-negative samples; however, due to the sensitive nature of the assay, extreme care is suggested in order to avoid false positives.
Collapse
Affiliation(s)
- Camilla Stavnsbjerg
- Department of Clinical Microbiology, Centre for Diagnostics, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Frimodt-Møller
- Department of Clinical Microbiology, Centre for Diagnostics, Rigshospitalet, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Centre for Diagnostics, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Centre for Diagnostics, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Ngo CT, Romano-Bertrand S, Manguin S, Jumas-Bilak E. Diversity of the Bacterial Microbiota of Anopheles Mosquitoes from Binh Phuoc Province, Vietnam. Front Microbiol 2016; 7:2095. [PMID: 28066401 PMCID: PMC5181100 DOI: 10.3389/fmicb.2016.02095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 12/12/2016] [Indexed: 11/13/2022] Open
Abstract
The naturally acquired microbiota of Anopheles can influence vector’s susceptibility to Plasmodium and its capacity to transmit them. Microbiota modification is a new challenge to limit disease transmission but it still needs advanced knowledges on bacterial community in Anopheles, especially in wild and infected specimens from diverse origin and species. Bacterial culture and 16S rRNA gene-PCR associated to Temporal Temperature Gradient Electrophoresis (TTGE) were applied to explore the bacterial diversity in the abdomen of 100 wild specimens (eight Anopheles species) collected in the Binh Phuoc Province, Vietnam. Culture and PCR-TTGE were complementary. The bacterial richness of the mosquito collection encompassed 105 genera belonging to seven phyla, mostly Proteobacteria, Firmicutes, and Actinobacteria. Staphylococcus, Clostridium, and Bacillus in Firmicutes were the most prevalent genera. However, Proteobacteria represented by 57 genera was the most diversified phylum in Anopheles microbiota. The high overall of Anopheles-associated bacteria is confirmed with, to our knowledge, 51 genera described for the first time in Anopheles microbiota. However, the diversity per specimen was low with average diversity index and the average Shannon–Wiener score (H) of 4.843 and 5.569, respectively. The most represented bacterial genera were present in <30% of the specimens. Consequently, the core microbiota share by Anopheles from Binh Phuoc was very narrow, suggesting that Anopheles microbiota was greatly influenced by local environments. The repertory of bacterial genera in two specimens of An. dirus and An. pampanai naturally infected by Plasmodium vivax was also described as preliminary results. Finally, this study completed the repertory of bacteria associated to wild Anopheles. Anopheles associated-bacteria appeared specimen-dependent rather than mosquitoe species- or group-dependent. Their origin and the existence of Anopheles-specific bacterial taxa are discussed.
Collapse
Affiliation(s)
- Chung T Ngo
- Institut de Recherche pour le Développement France, UMR-MD3, Faculté de PharmacieMontpellier, France; National Institute of Veterinary ResearchHanoi, Vietnam
| | - Sara Romano-Bertrand
- UMR 5569 Hydrosciences, Equipe Pathogènes Hydriques, Santé et Environnements, Faculté de Pharmacie, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Universitaire de MontpellierMontpellier, France
| | - Sylvie Manguin
- Institut de Recherche pour le Développement France, UMR-MD3, Faculté de Pharmacie Montpellier, France
| | - Estelle Jumas-Bilak
- UMR 5569 Hydrosciences, Equipe Pathogènes Hydriques, Santé et Environnements, Faculté de Pharmacie, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Universitaire de MontpellierMontpellier, France
| |
Collapse
|
7
|
Ngo CT, Romano-Bertrand S, Manguin S, Jumas-Bilak E. Diversity of the Bacterial Microbiota of Anopheles Mosquitoes from Binh Phuoc Province, Vietnam. Front Microbiol 2016; 7:2095. [PMID: 28066401 DOI: 10.3389/fmicb.2016.02095/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 12/12/2016] [Indexed: 05/19/2023] Open
Abstract
The naturally acquired microbiota of Anopheles can influence vector's susceptibility to Plasmodium and its capacity to transmit them. Microbiota modification is a new challenge to limit disease transmission but it still needs advanced knowledges on bacterial community in Anopheles, especially in wild and infected specimens from diverse origin and species. Bacterial culture and 16S rRNA gene-PCR associated to Temporal Temperature Gradient Electrophoresis (TTGE) were applied to explore the bacterial diversity in the abdomen of 100 wild specimens (eight Anopheles species) collected in the Binh Phuoc Province, Vietnam. Culture and PCR-TTGE were complementary. The bacterial richness of the mosquito collection encompassed 105 genera belonging to seven phyla, mostly Proteobacteria, Firmicutes, and Actinobacteria. Staphylococcus, Clostridium, and Bacillus in Firmicutes were the most prevalent genera. However, Proteobacteria represented by 57 genera was the most diversified phylum in Anopheles microbiota. The high overall of Anopheles-associated bacteria is confirmed with, to our knowledge, 51 genera described for the first time in Anopheles microbiota. However, the diversity per specimen was low with average diversity index and the average Shannon-Wiener score (H) of 4.843 and 5.569, respectively. The most represented bacterial genera were present in <30% of the specimens. Consequently, the core microbiota share by Anopheles from Binh Phuoc was very narrow, suggesting that Anopheles microbiota was greatly influenced by local environments. The repertory of bacterial genera in two specimens of An. dirus and An. pampanai naturally infected by Plasmodium vivax was also described as preliminary results. Finally, this study completed the repertory of bacteria associated to wild Anopheles. Anopheles associated-bacteria appeared specimen-dependent rather than mosquitoe species- or group-dependent. Their origin and the existence of Anopheles-specific bacterial taxa are discussed.
Collapse
Affiliation(s)
- Chung T Ngo
- Institut de Recherche pour le Développement France, UMR-MD3, Faculté de PharmacieMontpellier, France; National Institute of Veterinary ResearchHanoi, Vietnam
| | - Sara Romano-Bertrand
- UMR 5569 Hydrosciences, Equipe Pathogènes Hydriques, Santé et Environnements, Faculté de Pharmacie, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Universitaire de MontpellierMontpellier, France
| | - Sylvie Manguin
- Institut de Recherche pour le Développement France, UMR-MD3, Faculté de Pharmacie Montpellier, France
| | - Estelle Jumas-Bilak
- UMR 5569 Hydrosciences, Equipe Pathogènes Hydriques, Santé et Environnements, Faculté de Pharmacie, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Universitaire de MontpellierMontpellier, France
| |
Collapse
|