1
|
Ferrante M, Leite BMM, Fontes LBC, Santos Moreira A, Nascimento de Almeida ÉM, Brodskyn CI, Lima IDS, dos Santos WLC, Pacheco LV, Cardoso da Silva V, dos Anjos JP, Guarieiro LLN, Landoni F, de Menezes JPB, Fraga DBM, Santos Júnior ADF, Veras PST. Pharmacokinetics, Dose-Proportionality, and Tolerability of Intravenous Tanespimycin (17-AAG) in Single and Multiple Doses in Dogs: A Potential Novel Treatment for Canine Visceral Leishmaniasis. Pharmaceuticals (Basel) 2024; 17:767. [PMID: 38931434 PMCID: PMC11206245 DOI: 10.3390/ph17060767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
In the New World, dogs are considered the main reservoir of visceral leishmaniasis (VL). Due to inefficacies in existing treatments and the lack of an efficient vaccine, dog culling is one of the main strategies used to control disease, making the development of new therapeutic interventions mandatory. We previously showed that Tanespimycin (17-AAG), a Hsp90 inhibitor, demonstrated potential for use in leishmaniasis treatment. The present study aimed to test the safety of 17-AAG in dogs by evaluating plasma pharmacokinetics, dose-proportionality, and the tolerability of 17-AAG in response to a dose-escalation protocol and multiple administrations at a single dose in healthy dogs. Two protocols were used: Study A: four dogs received variable intravenous (IV) doses (50, 100, 150, 200, or 250 mg/m2) of 17-AAG or a placebo (n = 4/dose level), using a cross-over design with a 7-day "wash-out" period; Study B: nine dogs received three IV doses of 150 mg/m2 of 17-AAG administered at 48 h intervals. 17-AAG concentrations were determined by a validated high-performance liquid chromatographic (HPLC) method: linearity (R2 = 0.9964), intra-day precision with a coefficient of variation (CV) ≤ 8%, inter-day precision (CV ≤ 20%), and detection and quantification limits of 12.5 and 25 ng/mL, respectively. In Study A, 17-AAG was generally well tolerated. However, increased levels of liver enzymes-alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT)-and bloody diarrhea were observed in all four dogs receiving the highest dosage of 250 mg/m2. After single doses of 17-AAG (50-250 mg/m2), maximum plasma concentrations (Cmax) ranged between 1405 ± 686 and 9439 ± 991 ng/mL, and the area under the curve (AUC) plotting plasma concentration against time ranged between 1483 ± 694 and 11,902 ± 1962 AUC 0-8 h μg/mL × h, respectively. Cmax and AUC parameters were dose-proportionate between the 50 and 200 mg/m2 doses. Regarding Study B, 17-AAG was found to be well tolerated at multiple doses of 150 mg/m2. Increased levels of liver enzymes-ALT (28.57 ± 4.29 to 173.33 ± 49.56 U/L), AST (27.85 ± 3.80 to 248.20 ± 85.80 U/L), and GGT (1.60 ± 0.06 to 12.70 ± 0.50 U/L)-and bloody diarrhea were observed in only 3/9 of these dogs. After the administration of multiple doses, Cmax and AUC 0-48 h were 5254 ± 2784 μg/mL and 6850 ± 469 μg/mL × h in plasma and 736 ± 294 μg/mL and 7382 ± 1357 μg/mL × h in tissue transudate, respectively. In conclusion, our results demonstrate the potential of 17-AAG in the treatment of CVL, using a regimen of three doses at 150 mg/m2, since it presents the maintenance of high concentrations in subcutaneous interstitial fluid, low toxicity, and reversible hepatotoxicity.
Collapse
Affiliation(s)
- Marcos Ferrante
- Laboratory of Physiology and Pharmacology, Department of Veterinary Medicine, Federal University of Lavras, Lavras 37200-000, Minas Gerais, Brazil;
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
| | - Bruna Martins Macedo Leite
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
| | - Lívia Brito Coelho Fontes
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
| | - Alice Santos Moreira
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
| | - Élder Muller Nascimento de Almeida
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
| | - Claudia Ida Brodskyn
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
| | - Isadora dos Santos Lima
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (I.d.S.L.); (W.L.C.d.S.)
| | - Washington Luís Conrado dos Santos
- Laboratory of Structural and Molecular Pathology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (I.d.S.L.); (W.L.C.d.S.)
- Department of Pathology and Forensic Medicine, Bahia Medical School, Federal University of Bahia, Salvador 40110-906, Bahia, Brazil
| | - Luciano Vasconcellos Pacheco
- Department of Life Sciences, State University of Bahia, Salvador 41150-000, Bahia, Brazil; (L.V.P.); (V.C.d.S.); (A.d.F.S.J.)
| | - Vagner Cardoso da Silva
- Department of Life Sciences, State University of Bahia, Salvador 41150-000, Bahia, Brazil; (L.V.P.); (V.C.d.S.); (A.d.F.S.J.)
| | - Jeancarlo Pereira dos Anjos
- Integrated Campus of Manufacturing and Technology, SENAI CIMATEC University Center, Salvador 41650-010, Bahia, Brazil; (J.P.d.A.); (L.L.N.G.)
| | - Lílian Lefol Nani Guarieiro
- Integrated Campus of Manufacturing and Technology, SENAI CIMATEC University Center, Salvador 41650-010, Bahia, Brazil; (J.P.d.A.); (L.L.N.G.)
| | - Fabiana Landoni
- Department of Pharmacology, Faculty of Veterinary Science, National University of La Plata, Buenos Aires 1900, Argentina;
| | - Juliana P. B. de Menezes
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
| | - Deborah Bittencourt Mothé Fraga
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador 40170-110, Bahia, Brazil
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq)
| | - Aníbal de Freitas Santos Júnior
- Department of Life Sciences, State University of Bahia, Salvador 41150-000, Bahia, Brazil; (L.V.P.); (V.C.d.S.); (A.d.F.S.J.)
| | - Patrícia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador 40296-710, Bahia, Brazil; (B.M.M.L.); (L.B.C.F.); (A.S.M.); (É.M.N.d.A.); (C.I.B.); (J.P.B.d.M.); (D.B.M.F.)
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq)
| |
Collapse
|
2
|
Rigueira LL, Perecmanis S. Concerns about the use of antimicrobials in swine herds and alternative trends. Transl Anim Sci 2024; 8:txae039. [PMID: 38685989 PMCID: PMC11056889 DOI: 10.1093/tas/txae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
Pig productivity in Brazil has advanced a lot in recent decades. Specialized breeds are more vulnerable to pathogens, which has boosted the use of antimicrobials by farmers. The selective pressure generated favors the emergence of resistant bacteria, which compromises the effectiveness of this treatment and limits therapeutic options. In addition to increasing costs and mortality rates in the production system, public awareness of this issue has increased. The authorities have imposed restrictive measures to control the use of antimicrobials and have banned their use as growth promoters. This literature review highlights biosecurity and animal welfare to prevent pig diseases. Hence, we describe alternatives to the use of antimicrobials in pig production for the selection of effective non-antibiotic feed additives that help maintain good health and help the pig resist disease when infection occurs.
Collapse
Affiliation(s)
- Luciana L Rigueira
- Department of Animal Health, Brasília University, 70910-900, Brasília, Brazil
- Secretary of Agriculture of Federal District, 70770-914, Brasília, Brazil
| | - Simone Perecmanis
- Department of Animal Health, Brasília University, 70910-900, Brasília, Brazil
| |
Collapse
|
3
|
Co-delivery of gentiopicroside and thymoquinone using electrospun m-PEG/PVP nanofibers: In-vitro and In vivo studies for antibacterial wound dressing in diabetic rats. Int J Pharm 2022; 625:122106. [PMID: 36029993 DOI: 10.1016/j.ijpharm.2022.122106] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/24/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
Nanofibers (NFs) provide several delivery advantages like their great flexibility and similarity with extracellular matrix (ECM) which qualify them to be the unique model of a wound dressing. NFs could create mats of polymeric matrix loaded with an active agent enhancing its solubility and stability. In our study, Gentiopicroside (GPS) and Thymoquinone (TQ) loaded in NFs polymeric mats composed of coblended polyvinyl pyrrolidine (PVP) and methyl ether Polyethylene glycol (m-PEG) were fabricated via electrospinning technique. A morphological study using Scanning Electron Microscopy (SEM) was performed for all formulae as well as in vitro release study using High-performance Liquid chromatography (HPLC) for sample analysis. The optimized formula (F3) was chosen for further assays using Fourier-Transform Infrared Spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC). Study of the antibacterial effect, and in vivo healing action for diabetic infected wounds to quantify Tumor necrosis factor-alpha and Cyclooxygenase-2 were also investigated. F3 achieved the highest % cumulative release (99.79 ± 6.47 for GPS and 96.89 ± 6.87 for TQ) at 60 min, and a smaller diameter (200 nm) showing significant anti-bacterial effects with well-organized skin architecture demonstrating great healing signs. Our results revealed that m-PEG/PVP NFs mats loaded with GPS and TQ could be considered an optimal wound care dressing.
Collapse
|
4
|
Zhang L, Xie H, Wang Y, Wang H, Hu J, Zhang G. Pharmacodynamic Parameters of Pharmacokinetic/Pharmacodynamic (PK/PD) Integration Models. Front Vet Sci 2022; 9:860472. [PMID: 35400105 PMCID: PMC8989418 DOI: 10.3389/fvets.2022.860472] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
Pharmacokinetic/pharmacodynamic (PK/PD) integration models are used to investigate the antimicrobial activity characteristics of drugs targeting pathogenic bacteria through comprehensive analysis of the interactions between PK and PD parameters. PK/PD models have been widely applied in the development of new drugs, optimization of the dosage regimen, and prevention and treatment of drug-resistant bacteria. In PK/PD analysis, minimal inhibitory concentration (MIC) is the most commonly applied PD parameter. However, accurately determining MIC is challenging and this can influence the therapeutic effect. Therefore, it is necessary to optimize PD indices to generate more rational results. Researchers have attempted to optimize PD parameters using mutant prevention concentration (MPC)-based PK/PD models, multiple PD parameter-based PK/PD models, kill rate-based PK/PD models, and others. In this review, we discuss progress on PD parameters for PK/PD models to provide a valuable reference for drug development, determining the dosage regimen, and preventing drug-resistant mutations.
Collapse
Affiliation(s)
- Longfei Zhang
- Postdoctoral Research Station, Henan Agriculture University, Zhengzhou, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongbing Xie
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yongqiang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongjuan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Jianhe Hu ;
| | - Gaiping Zhang
- Postdoctoral Research Station, Henan Agriculture University, Zhengzhou, China
- Gaiping Zhang
| |
Collapse
|
5
|
Luo W, Chen D, Wu M, Li Z, Tao Y, Liu Q, Pan Y, Qu W, Yuan Z, Xie S. Pharmacokinetics/Pharmacodynamics models of veterinary antimicrobial agents. J Vet Sci 2020; 20:e40. [PMID: 31565887 PMCID: PMC6769327 DOI: 10.4142/jvs.2019.20.e40] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 05/21/2019] [Indexed: 12/29/2022] Open
Abstract
Misuse and abuse of veterinary antimicrobial agents have led to an alarming increase in bacterial resistance, clinical treatment failure, and drug residues. To address these problems, consistent and appropriate dosage regimens for veterinary antimicrobial agents are needed. Pharmacokinetics/Pharmacodynamics (PK/PD) models have been widely used to establish rational dosage regimens for veterinary antimicrobial agents that can achieve effective prevention and treatment of bacterial diseases and avoid the development of bacterial resistance. This review introduces building methods for PK/PD models and describes current PK/PD research progress toward rational dosage regimens for veterinary antimicrobial agents. Finally, the challenges and prospects of PK/PD models in the design of dosage regimens for veterinary antimicrobial agents are reviewed. This review will help to increase awareness of PK/PD modeling among veterinarians and hopefully promote its development and future use.
Collapse
Affiliation(s)
- Wanhe Luo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengru Wu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenxia Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanfei Tao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qianying Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
6
|
Xiao X, Lan W, Wang Y, Jiang L, Jiang Y, Wang Z. Comparative pharmacokinetics of danofloxacin in healthy and Pasteurella multocida infected ducks. J Vet Pharmacol Ther 2018; 41:912-918. [PMID: 30182430 DOI: 10.1111/jvp.12712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/24/2018] [Accepted: 07/12/2018] [Indexed: 11/30/2022]
Abstract
Pasteurella multocida (P. multocida) infection causes substantial economic loss in the duck industry. Danofloxacin, a fluoroquinolone solely used in animals, shows good antibacterial activity against P. multocida. In this study, the in vitro pharmacodynamics of danofloxacin against P. multocida was studied. The serum and lung tissue pharmacokinetics of danofloxacin were studied in healthy and P. multocida infected ducks following oral administration of a single dose of 5 mg/kg body weight (b.w.). The MIC, MBC and MPC of danofloxacin against P. multocida (C48-1 ) were 0.25, 1 and 3.2 μg/ml, respectively. The Cmax was 0.34 μg/ml, attained at 2.03 hr in healthy ducks, and was 0.35 μg/ml, attained at 2.87 hr in diseased ducks. Compared to the serum pharmacokinetics of danofloxacin in healthy ducks, the absorption rate and extent were similar in healthy and diseased animals. In contrast, the elimination rate was slower, with an elimination half-life (T1/2β ) of 13.17 and 16.18 hr for healthy and infected animals, respectively; the AUCs in the two groups were 5.70 and 7.68 μg hr/ml, respectively, which means the total amount of drug in the circulation was increased in the infected ducks. The maximum concentration in lung tissues between healthy and infected animals was not significantly different (8.96 vs. 8.93 μg/g). However, the Tmax in healthy ducks was longer than that in infected ducks (4 hr vs. 1.75 hr), which means that the distribution rate of danofloxacin was slower in healthy ducks. The concentration of danofloxacin in lung tissues was approximately 24-fold higher than that in the serum. In the serum pharmacokinetic profiles, the ƒAUC0-24 hr /MIC was 18.19 in healthy ducks and was 25.04 in P. multocida infected ducks at the clinical recommended dose, which is far from the PK/PD target (125 hr) of fluoroquinolones. Danofloxacin, at a dose of 5 mg/kg b.w., seems to be insufficient for ducks infected with P. multocida, with an MIC equal to 0.25 μg/ml.
Collapse
Affiliation(s)
- Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou, Jiangsu, China
| | - Weixuan Lan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ying Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Lijie Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yongjia Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Xiao X, Jiang L, Lan W, Jiang Y, Wang Z. In vivo pharmacokinetic/Pharmacodynamic modeling of Enrofloxacin against Escherichia coli in broiler chickens. BMC Vet Res 2018; 14:374. [PMID: 30497453 PMCID: PMC6267815 DOI: 10.1186/s12917-018-1698-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/19/2018] [Indexed: 11/10/2022] Open
Abstract
Background Systemic Escherichia coli infections cause early mortality of commercial broiler chickens. Although enrofloxacin has long been used in poultry, the in vivo pharmacokinetic/pharmacodynamic (PK/PD) relationship of enrofloxacin against E. coli is unclear. The present study aimed to establish an in vivo PK/PD model of enrofloxacin against E. coli in seven-day-old chicks and to ascertain whether the selection of target organ for PD determination is critical for parameter magnitude calculation in enrofloxacin PK/PD modeling. Results The in vivo effectiveness of enrofloxacin against E. coli in different organs varied, with the Emax ranging from − 4.4 to − 5.8 Log10 colony forming units (cfu)/mL or cfu/g. Both the surrogate AUC0–24/MIC of enrofloxacin or AUC0–24/MIC of the combination of enrofloxacin and ciprofloxacin correlated well with effectiveness in each organ. The AUC0–24/MIC ratio of the combination of enrofloxacin and ciprofloxacin producing bactericidal and elimination effects were 21.29 and 32.13 in blood; 41.68, and 58.52 in the liver; and 27.65 and 46.22 in the lung, respectively. Conclusions The in vivo effectiveness of enrofloxacin against E. coli in different organs was not identical after administration of the same dosage. To describe the magnitude of PK/PD parameter exactly, bacterial loading reduction in different organs as PD endpoints should be evaluated and compared in PK/PD modeling. The selection of a target organ to evaluate PDs is critical for rational dosage recommendation.
Collapse
Affiliation(s)
- Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China.,Institutes of Agricultural Science and Technology Development, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Lijie Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Weixuan Lan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yongjia Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Institutes of Agricultural Science and Technology Development, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.
| |
Collapse
|
8
|
Zhang L, Wu X, Huang Z, Kang Z, Chen Y, Shen X, Cai Q, Ding H. Pharmacokinetic/pharmacodynamic integration of cefquinome against Pasteurella Multocida
in a piglet tissue cage model. J Vet Pharmacol Ther 2018; 42:60-66. [DOI: 10.1111/jvp.12705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/04/2018] [Accepted: 07/23/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Longfei Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation; South China Agricultural University; Guangzhou China
| | - Xun Wu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation; South China Agricultural University; Guangzhou China
| | - Zilong Huang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation; South China Agricultural University; Guangzhou China
| | - Zheng Kang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation; South China Agricultural University; Guangzhou China
| | - Yuqin Chen
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation; South China Agricultural University; Guangzhou China
| | - Xiangguang Shen
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation; South China Agricultural University; Guangzhou China
| | - Qinren Cai
- Technical Center for Inspection and Quarantine; Zhuhai Entry-Exit Inspection and Quarantine Bureau; Zhuhai China
| | - Huanzhong Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation; South China Agricultural University; Guangzhou China
| |
Collapse
|
9
|
Rubio-Langre S, Aguilar-Sola S, Lorenzutti AM, San Andrés MI, De Lucas JJ, Litterio NJ. Pharmacokinetic evaluation of marbofloxacin after intravenous administration at different ages in llama crias, and pharmacokinetic/pharmacodynamic analysis by Monte Carlo simulation. J Vet Pharmacol Ther 2018; 41:861-870. [DOI: 10.1111/jvp.12698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Sonia Rubio-Langre
- Departamento de Toxicología y Farmacología; Facultad de Veterinaria; Universidad Complutense de Madrid; Madrid Spain
| | - Soledad Aguilar-Sola
- Facultad de Ciencias Agropecuarias; IRNASUS CONICET-Universidad Católica de Córdoba; Córdoba Argentina
| | - Augusto Matías Lorenzutti
- Facultad de Ciencias Agropecuarias; IRNASUS CONICET-Universidad Católica de Córdoba; Córdoba Argentina
| | - Manuel I. San Andrés
- Departamento de Toxicología y Farmacología; Facultad de Veterinaria; Universidad Complutense de Madrid; Madrid Spain
| | - José J. De Lucas
- Departamento de Toxicología y Farmacología; Facultad de Veterinaria; Universidad Complutense de Madrid; Madrid Spain
| | - Nicolás J. Litterio
- Facultad de Ciencias Agropecuarias; IRNASUS CONICET-Universidad Católica de Córdoba; Córdoba Argentina
| |
Collapse
|
10
|
Lei Z, Liu Q, Yang B, Khaliq H, Cao J, He Q. PK-PD Analysis of Marbofloxacin against Streptococcus suis in Pigs. Front Pharmacol 2017; 8:856. [PMID: 29209222 PMCID: PMC5701813 DOI: 10.3389/fphar.2017.00856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022] Open
Abstract
Marbofloxacin is a fluoroquinolone antibiotic and highly effective treatment for respiratory diseases. Here we aimed to evaluate the ex vivo activity of marbofloxacin against Streptococcus suis in pig serum, as well as the optimal dosages scheme for avoiding the fluoroquinolone resistance development. A single dose of 8 mg/kg body weight (bw) was administrated orally to healthy pigs and serum samples were collected during the next 72 h. Serum marbofloxacin content was determined by high-performance liquid chromatography. We estimated the Cmax (6.28 μg/ml), AUC0-24 h (60.30 μg.h/ml), AUC0-∞ (88.94 μg.h/ml), T1/2ke, (12.48 h), Tmax (0.75 h) and Clb (0.104 L/h) of marbofloxacin in pigs, as well as the bioavailability of marbofloxacin (94.21%) after a single 8 mg/kg oral administration. We also determined the pharmacodynamic of marbofloxacin against 134 Streptococcus suis strains isolated from Chinese cities in TSB and serum. These isolated strains had a MIC90 of 1 μg/ml. HB2, a virulent, serotype 2 isolate of SS, was selected for having antibacterial activity in TSB and serum to marbofloxacin. We determined the minimum inhibitory concentration (MIC, 1 μg/ml in TSB, 2 μg/ml in serum), minimum bactericidal concentration (MBC, 4 μg/ml in TSB, 4 μg/ml in serum), and mutant prevention concentration (2.56 μg/ml in TSB) for marbofloxacin against Streptococcus suis (HB2). In serum, by inhibitory sigmoid Emax modeling, the AUC0-24h/MIC values for marbofloxacin against HB2 were 25.23 (bacteriostatic), 35.64 (bactericidal), and 39.71 (elimination) h. Based on Monte Carlo simulations, the predicted optimal oral doses of marbofloxacin curing Streptococcus suis were 5.88 (bacteriostatic), 8.34 (bactericidal), and 9.36 (elimination) mg/kg.bw for a 50% target attainment ratio, and 8.16 (bacteriostatic), 11.31 (bactericidal), and 12.35 (elimination) mg/kg.bw for a 90% target attainment ratio. The data presented here provides optimized dosage information for clinical use; however, these predicted dosages should also be validated in clinical practice.
Collapse
Affiliation(s)
- Zhixin Lei
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Qianying Liu
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Haseeb Khaliq
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiyue Cao
- Department of Veterinary Pharmacology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Qigai He
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Integrated pharmacokinetic-Pharmacodynamic (PK/PD) model to evaluate the in vivo antimicrobial activity of Marbofloxacin against Pasteurella multocida in piglets. BMC Vet Res 2017; 13:178. [PMID: 28619095 PMCID: PMC5471993 DOI: 10.1186/s12917-017-1099-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
Background Marbofloxacin is a veterinary fluoroquinolone with high activity against Pasteurella multocida. We evaluated it’s in vivo activity against P. multocida based on in vivo time-kill data in swine using a tissue-cage model. A series of dosages ranging from 0.15 to 2.5 mg/kg were administered intramuscularly after challenge with P. multocida type B, serotype 2. Results The ratio of the 24 h area under the concentration-time curve divided by the minimum inhibitory concentration (AUC24TCF/MIC) was the best PK/PD index correlated with the in vivo antibacterial effectiveness of marbofloxacin (R2 = 0.9279). The AUC24TCF/MIC necessary to achieve a 1-log10 CFU/ml reduction and a 3-log10 CFU/ml (90% of the maximum response) reduction as calculated by an inhibitory sigmoid Emax model were 13.48 h and 57.70 h, respectively. Conclusions Marbofloxacin is adequate for the treatment of swine infected with P. multocida. The tissue-cage model played a significant role in achieving these PK/PD results.
Collapse
|
12
|
Lorenzutti AM, Litterio NJ, Himelfarb MA, Zarazaga MDP, San Andrés MI, De Lucas JJ. Pharmacokinetics, milk penetration and PK/PD analysis by Monte Carlo simulation of marbofloxacin, after intravenous and intramuscular administration to lactating goats. J Vet Pharmacol Ther 2017; 40:629-640. [PMID: 28470723 DOI: 10.1111/jvp.12409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/22/2017] [Indexed: 11/27/2022]
Abstract
The main objectives of this study were (i) to evaluate the serum pharmacokinetic behaviour and milk penetration of marbofloxacin (MFX; 5 mg/kg), after intravenous (IV) and intramuscular (IM) administration in lactating goats and simulate a multidose regimen on steady-state conditions, (ii) to determine the minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) of coagulase negative staphylococci (CNS) isolated from caprine mastitis in Córdoba, Argentina and (iii) to make a PK/PD analysis by Monte Carlo simulation from steady-state pharmacokinetic parameters of MFX by IV and IM routes to evaluate the efficacy and risk of the emergence of resistance. The study was carried out with six healthy, female, adult Anglo Nubian lactating goats. Marbofloxacin was administered at 5 mg/kg bw by IV and IM route. Serum and milk concentrations of MFX were determined with HPLC/uv. From 106 regional strains of CNS isolated from caprine mastitis in herds from Córdoba, Argentina, MICs and MPCs were determined. MIC90 and MPC90 were 0.4 and 6.4 μg/ml, respectively. MIC and MPC-based PK/PD analysis by Monte Carlo simulation indicates that IV and IM administration of MFX in lactating goats may not be adequate to recommend it as an empirical therapy against CNS, because the most exigent endpoints were not reached. Moreover, this dose regimen could increase the probability of selecting mutants and resulting in emergence of resistance. Based on the results of Monte Carlo simulation, the optimal dose of MFX to achieve an adequate antimicrobial efficacy should be 10 mg/kg, but it is important take into account that fluoroquinolones are substrates of efflux pumps, and this fact may determine that assumption of linear pharmacokinetics at high doses of MFX may be incorrect.
Collapse
Affiliation(s)
- A M Lorenzutti
- Facultad de Ciencias Agropecuarias-Unidad Asociada al CONICET, Universidad Católica de Córdoba, Córdoba, Argentina
| | - N J Litterio
- Facultad de Ciencias Agropecuarias-Unidad Asociada al CONICET, Universidad Católica de Córdoba, Córdoba, Argentina
| | - M A Himelfarb
- Facultad de Ciencias Agropecuarias-Unidad Asociada al CONICET, Universidad Católica de Córdoba, Córdoba, Argentina
| | - M D P Zarazaga
- Facultad de Ciencias Agropecuarias-Unidad Asociada al CONICET, Universidad Católica de Córdoba, Córdoba, Argentina
| | - M I San Andrés
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - J J De Lucas
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Sun J, Xiao X, Huang RJ, Yang T, Chen Y, Fang X, Huang T, Zhou YF, Liu YH. In vitro Dynamic Pharmacokinetic/Pharmacodynamic (PK/PD) study and COPD of Marbofloxacin against Haemophilus parasuis. BMC Vet Res 2015; 11:293. [PMID: 26626889 PMCID: PMC4666160 DOI: 10.1186/s12917-015-0604-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/24/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Haemophilus parasuis (H. parasuis) can invade the body and cause systemic infection under stress conditions. Marbofloxacin has been recommended for the treatment of swine infections. However, few studies have investigated the PK/PD characteristics and PK/PD cutoff (COPD) of this drug against H. parasuis. RESULTS MICs of marbofloxacin against 198 H. parasuis isolates were determined. The MIC50 and MIC90 were 2 and 8 mg/L, respectively. An in vitro dynamic PK/PD model was established to study the PK/PD relationship of marbofloxacin against H. parasuis. The PK/PD surrogate markers Cmax/MIC, Cmax/MPC (the maximum concentration divided by MIC or mutant prevention concentration (MPC)) and AUC 24h/MIC, AUC 24h/MPC (the area under the curve during the first 24 h divided by MIC or MPC) simulated the antimicrobial effect of marbofloxacin successfully with the R(2) of 0.9928 and 0.9911, respectively. The target values of 3-log10-unit and 4-log10-unit reduction for AUC 24h/MPC were 33 and 42, while the same efficacy for AUC 24h/MIC were 88 and 110. The COPD deduced from Monte Carlo simulation (MCS) for marbofloxacin against H. parasuis was 0.5 mg/L. The recommended dose of marbofloxacin against H. parasuis with MIC ≤ 2 mg/L was 16 mg/kg body weight (BW). CONCLUSIONS The PK/PD surrogate markers AUC 24h/MIC, Cmax/MIC and AUC 24h/MPC, Cmax/MPC properly described the effects of marbofloxacin. Marbofloxacin can achieve the best efficacy at dosage of 16 mg/kg BW for strains with MIC values ≤ 2 mg/L, therefore, it is obligatory to know the sensitivity of the pathogen and to treat animals as early as possible. The very first COPD provide fundamental data for marbofloxacin breakpoint determination.
Collapse
Affiliation(s)
- Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.
| | - Xia Xiao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.
- Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China.
| | - Rui-Juan Huang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.
| | - Tao Yang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.
| | - Yi Chen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.
| | - Xi Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.
| | - Ting Huang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.
| | - Yu-Feng Zhou
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.
- Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, People's Republic of China.
| |
Collapse
|