1
|
Tang Y, Liu X, Zeng C, Liu Y, Yang Y, Hu J, Li P, Zhou Z. Amonabactin Synthetase G Regulates Aeromonas hydrophila Pathogenicity Through Modulation of Host Wnt/β-catenin Signaling. Vaccines (Basel) 2025; 13:195. [PMID: 40006742 PMCID: PMC11861348 DOI: 10.3390/vaccines13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aeromonas hydrophila is a significant opportunistic pathogen with a broad host range. It produces a catecholate siderophore, amonabactin, during iron starvation, but the in vivo infection mechanism that involves amonabactin is unclear. This study aims to elucidate the role of amonabactin synthetase G (AmoG) in the pathogenicity of A. hydrophila and its impact on gut barrier function. METHODS ΔAmoG was generated by deleting the AMP-binding domain of AmoG in A. hydrophila CCL1. In vivo infection experiments were conducted to assess the mutant's iron-chelating ability and pathogenicity. Complementation of ΔAmoG with AmoG (ΔAmoG-C) was performed to confirm the observed phenotypes. Transcriptomic and qRT-PCR analyses were used to investigate gene expression changes in infected fish. Goblet cell counts, tight junction expression, and D-lactic acid and LPS levels were measured to evaluate gut barrier function. RESULTS ΔAmoG exhibited impaired iron-chelating ability and reduced pathogenicity compared to wild-type CCL1. Complementation with AmoG restored virulence in ΔAmoG-C. Transcriptomic and qRT-PCR analyses revealed an elevated expression of Wnt/β-catenin pathway components and antimicrobial genes in ΔAmoG-infected fish. Further investigation indicated increased goblet cells and an enhanced expression of tight junctions, as well as lower D-lactic acid and LPS levels, in ΔAmoG-infected fish. However, gut permeability, bacterial load, and lethality did not significantly differ between CCL1, ΔAmoG, and ΔAmoG-C infections when the Wnt/β-catenin pathway was activated. CONCLUSIONS AmoG plays a crucial role in A. hydrophila pathogenicity by modulating host Wnt/β-catenin signaling and gut mucosal barrier function. This study provides insights into the pathogenesis of A. hydrophila and potential therapeutic targets.
Collapse
Affiliation(s)
- Yiyang Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (Y.T.); (C.Z.); (Y.L.); (Y.Y.); (J.H.); (P.L.)
| | - Xiaofeng Liu
- Department of Nutrition, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Chuyi Zeng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (Y.T.); (C.Z.); (Y.L.); (Y.Y.); (J.H.); (P.L.)
| | - Yujun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (Y.T.); (C.Z.); (Y.L.); (Y.Y.); (J.H.); (P.L.)
| | - Ye Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (Y.T.); (C.Z.); (Y.L.); (Y.Y.); (J.H.); (P.L.)
| | - Jiayi Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (Y.T.); (C.Z.); (Y.L.); (Y.Y.); (J.H.); (P.L.)
| | - Pingyuan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (Y.T.); (C.Z.); (Y.L.); (Y.Y.); (J.H.); (P.L.)
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (Y.T.); (C.Z.); (Y.L.); (Y.Y.); (J.H.); (P.L.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
2
|
Maltz-Matyschsyk M, Melchiorre CK, Knecht DA, Lynes MA. Bacterial metallothionein, PmtA, a novel stress protein found on the bacterial surface of Pseudomonas aeruginosa and involved in management of oxidative stress and phagocytosis. mSphere 2024; 9:e0021024. [PMID: 38712943 PMCID: PMC11237414 DOI: 10.1128/msphere.00210-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in homeostasis and protection against heavy metal toxicity and oxidative stress. The opportunistic pathogen, Pseudomonas aeruginosa, expresses a bacterial MT known as PmtA. Utilizing genetically modified P. aeruginosa PAO1 strains (a human clinical wound isolate), we show that inducing pmtA increases levels of pyocyanin and biofilm compared to other PAO1 isogenic strains, supporting previous results that pmtA is important for pyocyanin and biofilm production. We also show that overexpression of pmtA in vitro provides protection for cells exposed to oxidants, which is a characteristic of inflammation, indicating a role for PmtA as an antioxidant in inflammation. We found that a pmtA clean deletion mutant is phagocytized faster than other PAO1 isogenic strains in THP-1 human macrophage cells, indicating that PmtA provides protection from the phagocytic attack. Interestingly, we observed that monoclonal anti-PmtA antibody binds to PmtA, which is accessible on the surface of PAO1 strains using both flow cytometry and enzyme-linked immunosorbent assay techniques. Finally, we investigated intracellular persistence of these PAO1 strains within THP-1 macrophages cells and found that the phagocytic endurance of PAO1 strains is affected by pmtA expression. These data show for the first time that a bacterial MT (pmtA) can play a role in the phagocytic process and can be found on the outer surface of PAO1. Our results suggest that PmtA plays a role both in protection from oxidative stress and in the resistance to the host's innate immune response, identifying PmtA as a potential therapeutic target in P. aeruginosa infection. IMPORTANCE The pathogen Pseudomonas aeruginosa is a highly problematic multidrug-resistant (MDR) pathogen with complex virulence networks. MDR P. aeruginosa infections have been associated with increased clinical visits, very poor healthcare outcomes, and these infections are ranked as critical on priority lists of both the Centers for Disease Control and Prevention and the World Health Organization. Known P. aeruginosa virulence factors have been extensively studied and are implicated in counteracting host defenses, causing direct damage to the host tissues, and increased microbial competitiveness. Targeting virulence factors has emerged as a new line of defense in the battle against MDR P. aeruginosa strains. Bacterial metallothionein is a newly recognized virulence factor that enables evasion of the host immune response. The studies described here identify mechanisms in which bacterial metallothionein (PmtA) plays a part in P. aeruginosa pathogenicity and identifies PmtA as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Clare K Melchiorre
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - David A Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael A Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
3
|
Dubey S, Ager-Wick E, Peng B, Evensen Ø, Sørum H, Munang’andu HM. Characterization of virulence and antimicrobial resistance genes of Aeromonas media strain SD/21-15 from marine sediments in comparison with other Aeromonas spp. Front Microbiol 2022; 13:1022639. [PMID: 36532448 PMCID: PMC9752117 DOI: 10.3389/fmicb.2022.1022639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 10/03/2023] Open
Abstract
Aeromonas media is a Gram-negative bacterium ubiquitously found in aquatic environments. It is a foodborne pathogen associated with diarrhea in humans and skin ulceration in fish. In this study, we used whole genome sequencing to profile all antimicrobial resistance (AMR) and virulence genes found in A. media strain SD/21-15 isolated from marine sediments in Denmark. To gain a better understanding of virulence and AMR genes found in several A. media strains, we included 24 whole genomes retrieved from the public databanks whose isolates originate from different host species and environmental samples from Asia, Europe, and North America. We also compared the virulence genes of strain SD/21-15 with A. hydrophila, A. veronii, and A. salmonicida reference strains. We detected Msh pili, tap IV pili, and lateral flagella genes responsible for expression of motility and adherence proteins in all isolates. We also found hylA, hylIII, and TSH hemolysin genes in all isolates responsible for virulence in all isolates while the aerA gene was not detected in all A. media isolates but was present in A. hydrophila, A. veronii, and A. salmonicida reference strains. In addition, we detected LuxS and mshA-Q responsible for quorum sensing and biofilm formation as well as the ferric uptake regulator (Fur), heme and siderophore genes responsible for iron acquisition in all A. media isolates. As for the secretory systems, we found all genes that form the T2SS in all isolates while only the vgrG1, vrgG3, hcp, and ats genes that form parts of the T6SS were detected in some isolates. Presence of bla MOX-9 and bla OXA-427 β-lactamases as well as crp and mcr genes in all isolates is suggestive that these genes were intrinsically encoded in the genomes of all A. media isolates. Finally, the presence of various transposases, integrases, recombinases, virulence, and AMR genes in the plasmids examined in this study is suggestive that A. media has the potential to transfer virulence and AMR genes to other bacteria. Overall, we anticipate these data will pave way for further studies on virulence mechanisms and the role of A. media in the spread of AMR genes.
Collapse
Affiliation(s)
- Saurabh Dubey
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Eirill Ager-Wick
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Hetron Mweemba Munang’andu
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
4
|
Khan AZ, Badar S, O'Callaghan KM, Zlotkin S, Roth DE. Fecal Iron Measurement in Studies of the Human Intestinal Microbiome. Curr Dev Nutr 2022; 6:nzac143. [PMID: 36475017 PMCID: PMC9718653 DOI: 10.1093/cdn/nzac143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 04/22/2024] Open
Abstract
Iron is an essential micronutrient for humans and their intestinal microbiota. Host intestinal cells and iron-dependent bacteria compete for intraluminal iron, so the composition and functions of the gut microbiota may influence iron availability. Studies of the effects of the microbiota or probiotic interventions on host iron absorption may be particularly relevant to settings with high burdens of iron deficiency and gastrointestinal infections, since inflammation reduces iron bioavailability and unabsorbed intraluminal iron may modify the composition of the microbiota. The quantification of stool iron content may serve as an indicator of the amount of intraluminal iron to which the intestinal microbiota is exposed, which is particularly relevant for studies of the effect of iron on the intestinal microbiome, where fecal samples collected for purposes of microbiome characterization can be leveraged for stool iron analysis. However, few studies are available to guide researchers in the selection and implementation of stool iron assays, particularly because cross-comparison of available methods is limited in literature. This review aims to describe the available stool iron quantification methods and highlight their potential application in studies of iron-microbiome relationships, with a focus on pediatric research. MS-based methods offer high sensitivity and precision, but the need for expensive equipment and the high per-sample and maintenance costs may limit their widespread use. Conversely, colorimetric assays offer lower cost, ease of use, and rapid turnaround times but have thus far been optimized primarily for blood-derived matrices rather than stool. Further research efforts are needed to validate and standardize methods for stool iron assessment and to determine if the incorporation of such analyses in human microbiome studies 1) yields insights into the interactions between intestinal microbiota and iron and 2) contributes to the development of interventions that mitigate iron deficiency and promote a healthy microbiome.
Collapse
Affiliation(s)
- Afreen Z Khan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Sayema Badar
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Karen M O'Callaghan
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Stanley Zlotkin
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Daniel E Roth
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
- Centre for Global Child Health and SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Mangar P, Barman P, Kumar A, Saha A, Saha D. Detection of Virulence-Associated Genes and in vitro Gene Transfer From Aeromonas sp. Isolated From Aquatic Environments of Sub-himalayan West Bengal. Front Vet Sci 2022; 9:887174. [PMID: 35754535 PMCID: PMC9230572 DOI: 10.3389/fvets.2022.887174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
Aeromonas is omnipresent in aquatic environments and cause disease within a wide host range. A total of thirty-four isolates from water samples of small fish farms were identified as Aeromonas based on biochemical characteristics and 16S rRNA gene sequence. A total of six virulent factors were analyzed which indicated 100% of isolates as beta-haemolytic and proteolytic, whereas 44.1, 38.2, and 70.6% of isolates produced DNAse, siderophore, and amylase, respectively. Studies on the occurrence of four genetic determinants of virulence factors revealed that aer/haem (haemolytic toxin) and flaA (polar flagella) genes were present in 44.1% of strains whereas ascV (type 3 secretion system) and aspA (serine protease) genes were detected in 21.5 and 8.82% of strains, respectively. Fish (Anabas testudineus) challenge studies showed that the isolate GP3 (Aeromonas veronii) bearing five virulent factors with the combination of aer/haem+/ascV+/fla+ genes induced severe lesions leading to 100% of mortality. In contrast, RB7 possessing four virulence factors and three genes (aer/haem+/ascV+/aspA+) could not produce severe lesions and any mortality indicating the absence of correlation between the virulence factors, its genes, and the pathogenicity in fishes. GP3 was cytotoxic to human liver cell line (WRL-68) in trypan blue dye exclusion assay. The 431 bp aer/haem gene of GP3 was transferable to E. coli Dh5α with a conjugational efficiency of 0.394 × 10–4 transconjugants per recipient cell. The transfer was confirmed by PCR and by the presence of 23-kb plasmids in both donor and transconjugants. Therefore, the occurrence of mobile genetic elements bearing virulence-associated genes in Aeromonas indicates the need for periodic monitoring of the aquatic habitat to prevent disease outbreaks.
Collapse
Affiliation(s)
- Preeti Mangar
- Department of Botany, University of North Bengal, Siliguri, India
| | - Partha Barman
- Department of Biotechnology, University of North Bengal, Siliguri, India
| | - Anoop Kumar
- Department of Biotechnology, University of North Bengal, Siliguri, India
| | - Aniruddha Saha
- Department of Botany, University of North Bengal, Siliguri, India
| | - Dipanwita Saha
- Department of Biotechnology, University of North Bengal, Siliguri, India
| |
Collapse
|
6
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Macrobdella decora: Old World Leech Gut Microbial Community Structure Conserved in a New World Leech. Appl Environ Microbiol 2021; 87:AEM.02082-20. [PMID: 33674439 DOI: 10.1128/aem.02082-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
Leeches are found in terrestrial, aquatic, and marine habitats on all continents. Sanguivorous leeches have been used in medicine for millennia. Modern scientific uses include studies of neurons, anticoagulants, and gut microbial symbioses. Hirudo verbana, the European medicinal leech, maintains a gut community dominated by two bacterial symbionts, Aeromonas veronii and Mucinivorans hirudinis, which sometimes account for as much as 97% of the total crop microbiota. The highly simplified gut anatomy and microbiome of H. verbana make it an excellent model organism for studying gut microbial dynamics. The North American medicinal leech, Macrobdella decora, is a hirudinid leech native to Canada and the northern United States. In this study, we show that M. decora symbiont communities are very similar to those in H. verbana. We performed an extensive study using field-caught M. decora and purchased H. verbana from two suppliers. Deep sequencing of the V4 region of the 16S rRNA gene allowed us to determine that the core microbiome of M. decora consists of Bacteroides, Aeromonas, Proteocatella, and Butyricicoccus. The analysis revealed that the compositions of the gut microbiomes of the two leech species were significantly different at all taxonomic levels. The R 2 value was highest at the genus and amplicon sequence variant (ASV) levels and much lower at the phylum, class, and order levels. The gut and bladder microbial communities were distinct. We propose that M. decora is an alternative to H. verbana for studies of wild-caught animals and provide evidence for the conservation of digestive-tract and bladder symbionts in annelid models.IMPORTANCE Building evidence implicates the gut microbiome in critical animal functions such as regulating digestion, nutrition, immune regulation, and development. Simplified, phylogenetically diverse models for hypothesis testing are necessary because of the difficulty of assigning causative relationships in complex gut microbiomes. Previous research used Hirudo verbana as a tractable animal model of digestive-tract symbioses. Our data show that Macrobdella decora may work just as well without the drawback of being an endangered organism and with the added advantage of easy access to field-caught specimens. The similarity of the microbial community structures of species from two different continents reveals the highly conserved nature of the microbial symbionts in sanguivorous leeches.
Collapse
|
8
|
Lange MD, Abernathy J, Shoemaker CA, Zhang D, Kirby A, Peatman E, Beck BH. Proteome analysis of virulent Aeromonas hydrophila reveals the upregulation of iron acquisition systems in the presence of a xenosiderophore. FEMS Microbiol Lett 2020; 367:5921178. [PMID: 33045069 DOI: 10.1093/femsle/fnaa169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
The Gram-negative bacterium, Aeromonas hydrophila, has been responsible for extensive losses in the catfish industry for over a decade. Due to this impact, there are ongoing efforts to understand the basic mechanisms that contribute to virulent A. hydrophila (vAh) outbreaks. Recent challenge models demonstrated that vAh cultured in the presence of the iron chelating agent deferoxamine mesylate (DFO) were more virulent to channel catfish (Ictalurus punctatus). Interestingly, differential gene expression of select iron acquisition genes was unremarkable between DFO and non-DFO cultures, posing the question: why the increased virulence? The current work sought to evaluate growth characteristics and protein expression of vAh after the addition of DFO. A comparative proteome analysis revealed differentially expressed proteins among tryptic soy broth (TSB) and TSB + DFO treatments. Upregulated proteins identified among the TSB + DFO treatment were enriched for gene ontology groups including iron ion transport, siderophore transport and siderophore uptake transport, all iron acquisition pathways. Protein-protein interactions were also evaluated among the differentially expressed proteins and predicted that many of the upregulated iron acquisition proteins likely form functional physiological networks. The proteome analysis of the vAh reveals valuable information about the basic biological processes likely leading to increased virulence during iron restriction in this organism.
Collapse
Affiliation(s)
- Miles D Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832 USA
| | - Jason Abernathy
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, P.O. Box 1050, 2955 Hwy. 130 East, Stuttgart, AR, 72160 USA
| | - Craig A Shoemaker
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832 USA
| | - Dunhua Zhang
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832 USA
| | - Augustus Kirby
- School of Fisheries, Aquaculture, and Aquatic Sciences, Aquatic Genetics and Genomics, Auburn University, 203 Swingle Hall, Auburn, AL, 36849 USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Aquatic Genetics and Genomics, Auburn University, 203 Swingle Hall, Auburn, AL, 36849 USA
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832 USA
| |
Collapse
|
9
|
Closed Genome Sequence of Aeromonas veronii Strain Hm21, an Isolate from the Medicinal Leech Hirudo verbana. Microbiol Resour Announc 2020; 9:9/42/e00922-20. [PMID: 33060270 PMCID: PMC7561689 DOI: 10.1128/mra.00922-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Aeromonas veronii strain Hm21 was isolated from the medicinal leech and is used for genetic studies. We present here the 4.71-Mbp genome with a 56-kb plasmid and identify the mutations present in strains commonly used for genetic engineering. Aeromonas veronii strain Hm21 was isolated from the medicinal leech Hirudo verbana and is used for genetic studies. We present here the 4.71-Mbp genome with a 56-kb plasmid and identify the mutations present in strains commonly used for genetic engineering.
Collapse
|
10
|
Rolig AS, Sweeney EG, Kaye LE, DeSantis MD, Perkins A, Banse AV, Hamilton MK, Guillemin K. A bacterial immunomodulatory protein with lipocalin-like domains facilitates host-bacteria mutualism in larval zebrafish. eLife 2018; 7:e37172. [PMID: 30398151 PMCID: PMC6219842 DOI: 10.7554/elife.37172] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Stable mutualism between a host and its resident bacteria requires a moderated immune response to control bacterial population size without eliciting excessive inflammation that could harm both partners. Little is known about the specific molecular mechanisms utilized by bacterial mutualists to temper their hosts' responses and protect themselves from aggressive immune attack. Using a gnotobiotic larval zebrafish model, we identified an Aeromonas secreted immunomodulatory protein, AimA. AimA is required during colonization to prevent intestinal inflammation that simultaneously compromises both bacterial and host survival. Administration of exogenous AimA prevents excessive intestinal neutrophil accumulation and protects against septic shock in models of both bacterially and chemically induced intestinal inflammation. We determined the molecular structure of AimA, which revealed two related calycin-like domains with structural similarity to the mammalian immune modulatory protein, lipocalin-2. As a secreted bacterial protein required by both partners for optimal fitness, AimA is an exemplar bacterial mutualism factor.
Collapse
Affiliation(s)
- Annah S Rolig
- Institute of Molecular BiologyUniversity of OregonEugeneUnited States
| | | | - Lila E Kaye
- Institute of Molecular BiologyUniversity of OregonEugeneUnited States
| | | | - Arden Perkins
- Institute of Molecular BiologyUniversity of OregonEugeneUnited States
| | - Allison V Banse
- Institute of Molecular BiologyUniversity of OregonEugeneUnited States
| | | | - Karen Guillemin
- Institute of Molecular BiologyUniversity of OregonEugeneUnited States
- Humans and the Microbiome ProgramCanadian Institute for Advanced ResearchTorontoCanada
| |
Collapse
|
11
|
The Catabolite Repressor/Activator Cra Is a Bridge Connecting Carbon Metabolism and Host Colonization in the Plant Drought Resistance-Promoting Bacterium Pantoea alhagi LTYR-11Z. Appl Environ Microbiol 2018; 84:AEM.00054-18. [PMID: 29703735 DOI: 10.1128/aem.00054-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022] Open
Abstract
Efficient root colonization is a prerequisite for application of plant growth-promoting (PGP) bacteria in improving health and yield of agricultural crops. We have recently identified an endophytic bacterium, Pantoea alhagi LTYR-11Z, with multiple PGP properties that effectively colonizes the root system of wheat and improves its growth and drought tolerance. To identify novel regulatory genes required for wheat colonization, we screened an LTYR-11Z transposon (Tn) insertion library and found cra to be a colonization-related gene. By using transcriptome (RNA-seq) analysis, we found that transcriptional levels of an eps operon, the ydiV gene encoding an anti-FlhD4C2 factor, and the yedQ gene encoding an enzyme for synthesis of cyclic dimeric GMP (c-di-GMP) were significantly downregulated in the Δcra mutant. Further studies demonstrated that Cra directly binds to the promoters of the eps operon, ydiV, and yedQ and activates their expression, thus inhibiting motility and promoting exopolysaccharide (EPS) production and biofilm formation. Consistent with previous findings that Cra plays a role in transcriptional regulation in response to carbon source availability, the activating effects of Cra were much more pronounced when LTYR-11Z was grown within a gluconeogenic environment than when it was grown within a glycolytic environment. We further demonstrate that the ability of LTYR-11Z to colonize wheat roots is modulated by the availability of carbon sources. Altogether, these results uncover a novel strategy utilized by LTYR-11Z to achieve host colonization in response to carbon nutrition in the environment, in which Cra bridges a connection between carbon metabolism and colonization capacity of LTYR-11Z.IMPORTANCE Rapid and appropriate response to environmental signals is crucial for bacteria to adapt to competitive environments and to establish interactions with their hosts. Efficient colonization and persistence within the host are controlled by various regulatory factors that respond to specific environmental cues. The most common is nutrient availability. In this work, we unraveled the pivotal role of Cra in regulation of colonization ability of Pantoea alhagi LTYR-11Z in response to carbon source availability. Moreover, we identified three novel members of the Cra regulon involved in EPS synthesis, regulation of flagellar biosynthesis, and synthesis of c-di-GMP and propose a working model to explain the Cra-mediated regulatory mechanism that links carbon metabolism to host colonization. This study elucidates the regulatory role of Cra in bacterial attachment and colonization of plants, which raises the possibility of extending our studies to other bacteria associated with plant and human health.
Collapse
|
12
|
Teng T, Xi B, Chen K, Pan L, Xie J, Xu P. Comparative transcriptomic and proteomic analyses reveal upregulated expression of virulence and iron transport factors of Aeromonas hydrophila under iron limitation. BMC Microbiol 2018; 18:52. [PMID: 29866030 PMCID: PMC5987420 DOI: 10.1186/s12866-018-1178-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/05/2018] [Indexed: 12/26/2022] Open
Abstract
Background Iron plays important roles in the growth, reproduction and pathogenicity of Aeromonas hydrophila. In this study, we detected and compared the mRNA and protein expression profiles of A. hydrophila under normal and iron restricted medium with 200 μM 2,2-Dipyridyl using RNA Sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ) analyses. Results There were 1204 genes (601 up- and 603 down-regulated) and 236 proteins (90 up- and 146 down-regulated) shown to be differentially expressed, and 167 genes and proteins that showed consistent expression. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the differentially expressed genes and proteins were mainly involved in iron ion transport, protein activity, energy metabolism and virulence processes. Further validation of the RNA-seq and iTRAQ results by quantitative real-time PCR (qPCR) revealed that 18 of the 20 selected genes were consistently expressed. The iron-ion absorption and concentration of A. hydrophila under iron-limited conditions were enhanced, and most virulence factors (protease activity, hemolytic activity, lipase activity, and swimming ability) were also increased. Artificial A. hydrophila infection caused higher mortality in cyprinid Megalobrama amblycephala under iron-limited conditions. Conclusion Understanding the responses of pathogenic Aeromonas hydrophila within the hostile environment of the fish host, devoid of free iron, is important to reveal bacterial infection and pathogenesis. This study further confirmed the previous finding that iron-limitation efficiently enhanced the virulence of A. hydrophila using multi-omics analyses. We identified differentially expressed genes and proteins, related to enterobactin synthesis and virulence establishment, that play important roles in addressing iron scarcity. Electronic supplementary material The online version of this article (10.1186/s12866-018-1178-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Teng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Kai Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liangkun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
13
|
Wang Y, Chen H, Guo Z, Sun L, Fu Y, Li T, Lin W, Lin X. Quantitative proteomic analysis of iron-regulated outer membrane proteins in Aeromonas hydrophila as potential vaccine candidates. FISH & SHELLFISH IMMUNOLOGY 2017; 68:1-9. [PMID: 28676336 DOI: 10.1016/j.fsi.2017.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
The iron-regulated outer membrane protein (OMP) of Aeromonas hydrophila is an effective vaccine candidate, but its intrinsic functional components are largely unknown. In this study, we compared the differentially expressed sarcosine-insoluble fractions of A. hydrophila in iron-limited and normal medium using tandem mass tag labeling-based quantitative proteomics, and identified 91 upregulated proteins including 21 OMPs and 83 downregulated proteins including 10 OMPs. Subsequent bioinformatics analysis showed that iron chelate transport-related proteins were enriched in increasing abundance, whereas oxidoreductase activity and translation-related proteins were significantly enriched in decreasing abundance. The proteomics results were further validated in selected altered proteins by Western blotting. Finally, the vaccine efficacy of five iron-related recombinant OMPs (A0KGW8, A0KFG8, A0KQ46, A0KIU8, and A0KQZ1) that were increased abundance in iron-limited medium, were evaluated when challenged with virulent A. hydrophila against zebrafish, suggesting that these proteins had highly efficient immunoprotectivity. Our results indicate that quantitative proteomics combined with evaluation of vaccine efficacy is an effective strategy for screening novel recombinant antigens for vaccine development.
Collapse
Affiliation(s)
- Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Huarong Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Zhuang Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Lina Sun
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Tao Li
- Shanghai MHelix BioTech Co., Ltd, Shanghai 201900, PR China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China.
| |
Collapse
|
14
|
Dong Y, Liu J, Pang M, Du H, Wang N, Awan F, Lu C, Liu Y. Catecholamine-Stimulated Growth of Aeromonas hydrophila Requires the TonB2 Energy Transduction System but Is Independent of the Amonabactin Siderophore. Front Cell Infect Microbiol 2016; 6:183. [PMID: 28018865 PMCID: PMC5149522 DOI: 10.3389/fcimb.2016.00183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/28/2016] [Indexed: 01/19/2023] Open
Abstract
The growth-stimulating effects of catecholamine stress hormones have been demonstrated in many pathogens. However, catecholamine-induced growth and its underlying mechanisms remain poorly understood in Aeromonas hydrophila. The present study sought to demonstrate that norepinephrine (NE), epinephrine (Epi), dopamine (Dopa), and L-dopa stimulate the growth of A. hydrophila in iron-restricted media containing serum. NE exhibited the strongest growth stimulation, which could be blocked by adrenergic antagonists. Furthermore, it was demonstrated that NE could sequester iron from transferrin, thereby providing a more accessible iron source for utilization by A. hydrophila. The deletion of the amoA gene associated with amonabactin synthesis revealed that the amonabactin siderophore is not required for NE-stimulated growth. However, the deletion of the TonB2 energy transduction system resulted in the loss of growth promotion by NE, indicating that a specific TonB-dependent outer membrane receptor might be involved in the transport of iron from transferrin. Collectively, our data show that catecholamine sensing promotes the growth of A. hydrophila in a manner that is dependent on the TonB2 energy transduction system.
Collapse
Affiliation(s)
- Yuhao Dong
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Jin Liu
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Maoda Pang
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Hechao Du
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Nannan Wang
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Furqan Awan
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Chengping Lu
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Yongjie Liu
- Department of Preventive Veterinary, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
15
|
Marden JN, McClure EA, Beka L, Graf J. Host Matters: Medicinal Leech Digestive-Tract Symbionts and Their Pathogenic Potential. Front Microbiol 2016; 7:1569. [PMID: 27790190 PMCID: PMC5061737 DOI: 10.3389/fmicb.2016.01569] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022] Open
Abstract
Digestive-tract microbiota exert tremendous influence over host health. Host-symbiont model systems are studied to investigate how symbioses are initiated and maintained, as well as to identify host processes affected by resident microbiota. The medicinal leech, Hirudo verbana, is an excellent model to address such questions owing to a microbiome that is consistently dominated by two species, Aeromonas veronii and Mucinivorans hirudinis, both of which are cultivable and have sequenced genomes. This review outlines current knowledge about the dynamics of the H. verbana microbiome. We discuss in depth the factors required for A. veronii colonization and proliferation in the leech crop and summarize the current understanding of interactions between A. veronii and its annelid host. Lastly, we discuss leech usage in modern medicine and highlight how leech-therapy associated infections, often attributable to Aeromonas spp., are of growing clinical concern due in part to an increased prevalence of fluoroquinolone resistant strains.
Collapse
Affiliation(s)
- Jeremiah N Marden
- Department of Molecular and Cell Biology, University of Connecticut, Storrs CT, USA
| | - Emily A McClure
- Department of Molecular and Cell Biology, University of Connecticut, Storrs CT, USA
| | - Lidia Beka
- Department of Molecular and Cell Biology, University of Connecticut, Storrs CT, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, StorrsCT, USA; Institute for Systems Genomics, University of Connecticut, StorrsCT, USA
| |
Collapse
|
16
|
Abstract
In most animals, digestive tracts harbor the greatest number of bacteria in the animal that contribute to its health: by aiding in the digestion of nutrients, provisioning essential nutrients and protecting against colonization by pathogens. Invertebrates have been used to enhance our understanding of metabolic processes and microbe-host interactions owing to experimental advantages. This review describes how advances in DNA sequencing technologies have dramatically altered how researchers investigate microbe-host interactions, including 16S rRNA gene surveys, metagenome experiments, and metatranscriptome studies. Advantages and challenges of each of these approaches are described herein. Hypotheses generated through omics studies can be directly tested using site-directed mutagenesis, and findings from transposon studies and site-directed experiments are presented. Finally, unique structural aspects of invertebrate digestive tracts that contribute to symbiont specificity are presented. The combination of omics approaches with genetics and microscopy allows researchers to move beyond correlations to identify conserved mechanisms of microbe-host interactions.
Collapse
Affiliation(s)
- Joerg Graf
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269;
| |
Collapse
|