1
|
Niu C, Huang J, Wei L, Wang J, Ran S. Proinflammatory Effect of Membrane Vesicles Derived from Enterococcus faecalis at Neutral and Alkaline pH. J Endod 2024; 50:1602-1611.e10. [PMID: 39218147 DOI: 10.1016/j.joen.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION The present study explored the proinflammatory impact of Enterococcus faecalis membrane vesicles (MVs) derived from culture medium at pH levels of 7.4 and 9.0. METHODS E. faecalis MVs were obtained by centrifugation and purified by size-exclusion chromatography. Proteomic analyses were performed on E. faecalis MVs to investigate their components. THP-1 macrophages were exposed to E. faecalis MVs, and the inflammatory cytokines and proteins were evaluated using enzyme-linked immunosorbent assay and immunoblotting. The inflammatory cytokines in the serum of mice with intraperitoneal injection of E. faecalis MVs were evaluated by enzyme-linked immunosorbent assay, and immunophenotyping of spleen cells was investigated with flow cytometry. RESULTS Proteomic analysis revealed 196 proteins in E. faecalis MVs obtained under neutral and alkali conditions; 110 proteins were up-regulated, and 79 proteins were down-regulated by alkaline pH. E. faecalis MVs induced secretion of inflammatory factors interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha in a concentration-dependent manner. Immunoblotting revealed that E. faecalis MVs increased expression of pro-IL-1β, nuclear factor kappa Bp65, and Toll-like receptor 2. In vivo studies demonstrated that E. faecalis MVs significantly promoted secretion of IL-1β in mouse serum, whereas inflammatory cells were activated in the spleen. E. faecalis MVs obtained at a pH of 9.0 showed stronger proinflammatory effects than those obtained under neutral pH. CONCLUSIONS E. faecalis produces MVs that carry specific proteins associated with virulence factors, and these MVs can promote inflammation in vitro and in vivo. E. faecalis MVs obtained under alkaline conditions have a stronger proinflammatory effect.
Collapse
Affiliation(s)
- Chenguang Niu
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jing Huang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lifan Wei
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Nucleic Acid Drug Research and Development Institute, CSPC, Shanghai, China
| | - Jia Wang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
2
|
Kim J, Jo J, Cho S, Kim H. Genomic insights and functional evaluation of Lacticaseibacillus paracasei EG005: a promising probiotic with enhanced antioxidant activity. Front Microbiol 2024; 15:1477152. [PMID: 39469458 PMCID: PMC11513463 DOI: 10.3389/fmicb.2024.1477152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Probiotics, such as Lacticaseibacillus paracasei EG005, are gaining attention for their health benefits, particularly in reducing oxidative stress. The goal of this study was to reinforce the antioxidant capacity of EG005, along with comprehensive genomic analysis, with a focus on assessing superoxide dismutase (SOD) activity, acid resistance and bile tolerance, and safety. Methods EG005 was screened for SOD activity and change of SOD activity was tested under various pH conditions. Its survival rates were assessed in acidic (pH 2.5) and bile salt (0.3%) conditions and the antibiotic MIC test and hemolysis test were performed to evaluate safety. Genetic analyses including functional identification and phylogenetic tree construction were performed. The SOD overexpression system was constructed using Ptuf, Pldh1, Plhd2, and Pldh3 strong promoters. Results EG005 demonstrated higher SOD activity compared to Lacticaseibacillus rhamnosus GG, with optimal activity at pH 7.0. It showed significant acid and bile tolerance, with survival rates recovering to 100% after 3 h in acidic conditions. Phylogenetic analysis confirmed that EG005 is closely related to other L. paracasei strains with ANI values above 98%. Overexpression of SOD using the Ptuf promoter resulted in a two-fold increase in activity compared to the controls. Additionally, EG005 exhibited no hemolytic activity and showed antibiotic susceptibility within safe limits. Discussion Our findings highlight EG005's potential as a probiotic with robust antioxidant activity and high tolerance to gastrointestinal conditions. Its unique genetic profile and enhanced SOD activity through strong promoter support its application in probiotic therapies and functional foods. Further research should be investigated to find the in vivo effects of EG005 on gut health and oxidative stress reduction. In addition, attB and attP-based recombination, combined with CRISPR-Cas9 technologies, could offer a more stable alternative for long-term sodA gene expression in commercial and medical applications.
Collapse
Affiliation(s)
- Jisu Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinchul Jo
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome Inc., Seoul, Republic of Korea
| | - Seoae Cho
- eGnome Inc., Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Snell AP, Manias DA, Elbehery RR, Dunny GM, Willett JLE. Arginine impacts aggregation, biofilm formation, and antibiotic susceptibility in Enterococcus faecalis. FEMS MICROBES 2024; 5:xtae030. [PMID: 39524554 PMCID: PMC11549559 DOI: 10.1093/femsmc/xtae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Enterococcus faecalis is a commensal bacterium in the gastrointestinal (GI) tract of humans and other organisms. E. faecalis also causes infections in root canals, wounds, the urinary tract, and on heart valves. E. faecalis metabolizes arginine through the arginine deiminase pathway, which converts arginine to ornithine and releases ATP, ammonia, and CO2. E. faecalis arginine metabolism also affects virulence of other pathogens during co-culture. E. faecalis may encounter elevated levels of arginine in the GI tract or the oral cavity, where arginine is used as a dental therapeutic. Little is known about how E. faecalis responds to growth in arginine in the absence of other bacteria. To address this, we used RNAseq and additional assays to measure growth, gene expression, and biofilm formation in E. faecalis OG1RF grown in arginine. We demonstrate that arginine decreases E. faecalis biofilm production and causes widespread differential expression of genes related to metabolism, quorum sensing, and polysaccharide synthesis. Growth in arginine also increases aggregation of E. faecalis and promotes decreased susceptibility to the antibiotics ampicillin and ceftriaxone. This work provides a platform for understanding how the presence of arginine in biological niches affects E. faecalis physiology and virulence of surrounding microbes.
Collapse
Affiliation(s)
- Alex P Snell
- University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Dawn A Manias
- University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Reham R Elbehery
- University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Gary M Dunny
- University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Julia L E Willett
- University of Minnesota Medical School, Minneapolis, MN 55455, United States
| |
Collapse
|
4
|
Liu R, Liu P, Luo Y, Fan W, Fan B. Metformin reduced the alkaline resistance of Enterococcus faecalis against calcium hydroxide via Man-PTS EII: in vitro and in vivo studies. Clin Oral Investig 2024; 28:520. [PMID: 39254714 DOI: 10.1007/s00784-024-05909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES The mannose phosphotransferase system (Man-PTS) plays crucial roles in the adaptive metabolic activity of Enterococcus faecalis (E. faecalis) in adverse environments. The aim of this study was to evaluate the role of Man-PTS in the alkaline resistance of E. faecalis against calcium hydroxide (CH) and the effect of metformin (Met) on the alkaline resistance of E. faecalis to CH. MATERIALS AND METHODS The regulatory role of Man-PTS EII in the alkaline resistance of E. faecalis was firstly investigated using a wild-type highly alkaline-resistant E. faecalis XS 003, standard ATCC 29212 and Man-PTS EIID gene deficient (△mptD) and overexpressing (+mptD) strains of E. faecalis. RNA sequencing of Met-treated E. faecalis was performed to further validate the effect of Met on Man-PTS. The effect of Met on CH resistance of E. faecalis was verified by evaluating the survival, membrane potential and permeability, intracellular pH and ATP, and the expression of Man-PTS EII and membrane transporter-related genes of E. faecalis. The effect of Met on the ability of CH to remove E. faecalis biofilm on the dentin surface was also tested. The in vivo therapeutic effect of Met plus CH (CHM) was further investigated in a rat apical periodontitis model induced by E. faecalis XS 003. RESULTS Man-PTS EII significantly promoted the survival ability of E. faecalis in CH and enhanced its resistance to CH. The inhibition of Man-PTS EII by Met resulted in reduced alkaline resistance of E. faecalis in the presence of CH, while also enhancing the antimicrobial properties of CH against E. faecalis biofilm on dentin. Additionally, Met plus CH showed the synergistically promoted intra-canal E. faecalis infection control and healing of periapical lesion in rats. CONCLUSIONS Met could significantly reduce the alkaline resistance of E. faecalis against CH through the modulation of Man-PTS EII, and improved the antibacterial effect of CH against E. faecalis infection both in vitro and in vivo. CLINICAL RELEVANCE Met could significantly enhance the ability of CH to control E. faecalis infection through reducing the alkaline resistance of E. faecalis.
Collapse
Affiliation(s)
- Runze Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Pei Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Yi Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Wei Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan, 430079, People's Republic of China.
| | - Bing Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, 237# Luoyu Road, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
5
|
Li G, Wu M, Xiao Y, Tong Y, Li S, Qian H, Zhao T. Multi-omics reveals the ecological and biological functions of Enterococcus mundtii in the intestine of lepidopteran insects. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101309. [PMID: 39146704 DOI: 10.1016/j.cbd.2024.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Insect guts offer unique habitats for microbial colonization, with gut bacteria potentially offering numerous benefits to their hosts. Although Enterococcus has emerged as one of the predominant gut commensal bacteria in insects, its establishment in various niches within the gut has not been characterized well. In this study, Enterococcus mundtii was inoculated into the silkworm (Bombyx mori L.) to investigate its biological functions. Genome-based analysis revealed that its successful colonization is related to adherence genes (ebpA, ebpC, efaA, srtC, and scm). This bacterium did not alter the activities of related metabolic enzymes or the intestinal barrier function. However, significant changes in the gene expressions levels of Att2, CecA, and Lys suggest potential adaptive mechanisms of host immunity to symbiotic E. mundtii. Moreover, 16S metagenomics analysis revealed a significant increase in the relative abundance of E. mundtii in the intestines of silkworms following inoculation. The intestinal microbiome displayed marked heterogeneity, an elevated gut microbiome health index, a reduced microbial dysbiosis index, and low potential pathogenicity in the treatment group. Additionally, E. mundtii enhanced the breakdown of carbohydrates in host intestines. Overall, E. mundtii serves as a beneficial microbe for insects, promoting intestinal homeostasis by providing competitive advantage. This characteristic helps E. mundtii dominate complex microbial environments and remain prevalent across Lepidoptera, likely fostering long-term symbiosis between the both parties. The present study contributes to clarifying the niche of E. mundtii in the intestine of lepidopteran insects and further reveals its potential roles in their insect hosts.
Collapse
Affiliation(s)
- Guannan Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 402760, PR China.
| | - Meihong Wu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 402760, PR China
| | - Yi Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 402760, PR China
| | - Yujie Tong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 402760, PR China
| | - Sheng Li
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China
| | - Heying Qian
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China
| | - Tianfu Zhao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 402760, PR China.
| |
Collapse
|
6
|
Zhang G, Feng S, Qin M, Sun J, Liu Y, Luo C, Lin M, Xu S, Liao M, Fan H, Liang Z. Influence of PepF peptidase and sporulation on microcin J25 production in Bacillus subtilis. Microbiol Spectr 2024; 12:e0374823. [PMID: 38780256 PMCID: PMC11218540 DOI: 10.1128/spectrum.03748-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
The lasso peptide microcin J25 (MccJ25) possesses strong antibacterial properties and is considered a potential effective component of bacterial disease treatment drugs and safe food preservatives. Although MccJ25 can be heterologously expressed in Bacillus subtilis as we have previously reported, its regulation and accumulation are yet to be understood. Here, we investigated the expression level and stability of MccJ25 in B. subtilis strains with disruption in peptidase genes pepA, pepF, and pepT. Oligoendopeptidase F (PepF) was found to be involved in reduction of the production of MccJ25 by degradation of its precursor peptide. In the pepF mutant, the MccJ25 reached a concentration of 1.68 µM after a cultivation time exceeding 60 hours, while the wild-type strain exhibited a concentration of only 0.14 µM. Moreover, the production of MccJ25 in B. subtilis downregulated the genes associated with sporulation, and this may contribute to its accumulation. Finally, this study provides a strategy to improve the stability and production of MccJ25 in B. subtilis. IMPORTANCE MccJ25 displays significant antibacterial activity, a well-defined mode of action, exceptional safety, and remarkable stability. Hence, it presents itself as a compelling candidate for an optimal antibacterial or anti-endotoxin medication. The successful establishment of exogenous production of MccJ25 in Bacillus subtilis provides a strategy for reducing its production cost and diversifying its utilization. In this study, we have provided evidence indicating that both peptidase PepF and sporulation are significant factors that limit the expression of MccJ25 in B. subtilis. The ΔpepF and ΔsigF mutants of B. subtilis express MccJ25 with higher production yield and enhanced stability. To sum up, this study developed several better engineered strains of B. subtilis, which greatly reduced the consumption of MccJ25 during the nutrient depletion stage of the host strain, improved its production, and elucidated factors that may be involved in reducing MccJ25 accumulation in B. subtilis.
Collapse
Affiliation(s)
- Guangwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| | - Miaomiao Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Juan Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yutong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Changqi Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Min Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Siqi Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Pereira AP, Antunes P, Peixe L, Freitas AR, Novais C. Current insights into the effects of cationic biocides exposure on Enterococcus spp. Front Microbiol 2024; 15:1392018. [PMID: 39006755 PMCID: PMC11242571 DOI: 10.3389/fmicb.2024.1392018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024] Open
Abstract
Cationic biocides (CBs), such as quaternary ammonium compounds and biguanides, are critical for controlling the spread of bacterial pathogens like Enterococcus spp., a leading cause of multidrug-resistant healthcare-associated infections. The widespread use of CBs in recent decades has prompted concerns about the potential emergence of Enterococcus spp. populations exhibiting resistance to both biocides and antibiotics. Such concerns arise from their frequent exposure to subinhibitory concentrations of CBs in clinical, food chain and diverse environmental settings. This comprehensive narrative review aimed to explore the complexity of the Enterococcus' response to CBs and of their possible evolution toward resistance. To that end, CBs' activity against diverse Enterococcus spp. collections, the prevalence and roles of genes associated with decreased susceptibility to CBs, and the potential for co- and cross-resistance between CBs and antibiotics are reviewed. Significant methodological and knowledge gaps are identified, highlighting areas that future studies should address to enhance our comprehension of the impact of exposure to CBs on Enterococcus spp. populations' epidemiology. This knowledge is essential for developing effective One Health strategies that ensure the continued efficacy of these critical agents in safeguarding Public Health.
Collapse
Affiliation(s)
- Ana P Pereira
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana R Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Gandra, Portugal
| | - Carla Novais
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Kumari K, Sharma PK, Singh RP. The transcriptome response of Enterobacter sp. S-33 is modulated by low pH-stress. Genes Genomics 2024; 46:671-687. [PMID: 38687436 DOI: 10.1007/s13258-024-01513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Acidic environments naturally occur worldwide and uncontrolled use of agricultural practices may also cause acidification of soils. The development of acidic conditions disturbs the establishment of efficient microbial populations in their natural niches. The survival of Enterobacter species under acidic stress remains poorly understood. OBJECTIVE This study aimed to investigate the survival of an environmental isolate Enterobacter sp. S-33 under acidic stress and to identify the various genes involved in stress protection at the global gene transcription level. The obtained results provide new targets that will allow understanding the in-depth mechanisms involved in the adaptation of bacteria to environmental pH changes. METHODS We used the next-generation sequencing (NGS) method to analyze the expression (up-regulation & down-regulation) of genes under varying pH conditions. RESULTS A total of 4214 genes were differentially expressed under acidic conditions (pH 5.0), with 294 up-regulated and 167 down-regulated. At pH 6.0, 50 genes were significantly expressed, of which 34 and 16 were identified as up-regulated and down-regulated, respectively. Many of the up-regulated genes were involved in carbohydrate metabolism, amino acid transport & metabolism, and the most down-regulated genes were related to post-translational modification, lipid transport & metabolism, etc. The observed transcriptomic regulation of genes and pathways identified that Enterobacter reduced its post-translational modification, lipid transport & metabolism, and increased carbohydrate metabolism, amino acid metabolism & transport, energy production & conversion to adapt and grow in acidic stress. CONCLUSIONS The present work provides in-depth information on the characterization of genes associated with tolerance or adaptation to acidic stress of Enterobacter bacterium.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Rajnish Prakash Singh
- Department of Biotechnlogy, Jaypee Insttute of Information Technology, Noida, 201309, India.
| |
Collapse
|
9
|
Snell A, Manias DA, Elbehery RR, Dunny GM, Willett JLE. Arginine impacts aggregation, biofilm formation, and antibiotic susceptibility in Enterococcus faecalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596650. [PMID: 38853917 PMCID: PMC11160706 DOI: 10.1101/2024.05.30.596650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Enterococcus faecalis is a commensal bacterium in the gastrointestinal tract (GIT) of humans and other organisms. E. faecalis also causes infections in root canals, wounds, the urinary tract, and on heart valves. E. faecalis metabolizes arginine through the arginine deiminase (ADI) pathway, which converts arginine to ornithine and releases ATP, ammonia, and CO2. E. faecalis arginine metabolism also affects virulence of other pathogens during co-culture. E. faecalis may encounter elevated levels of arginine in the GIT or the oral cavity, where arginine is used as a dental therapeutic. Little is known about how E. faecalis responds to growth in arginine in the absence of other bacteria. To address this, we used RNAseq and additional assays to measure growth, gene expression, and biofilm formation in E. faecalis OG1RF grown in arginine. We demonstrate that arginine decreases E. faecalis biofilm production and causes widespread differential expression of genes related to metabolism, quorum sensing, and polysaccharide synthesis. Growth in arginine also increases aggregation of E. faecalis and promotes decreased susceptibility to the antibiotics ampicillin and ceftriaxone. This work provides a platform for understanding of how the presence of arginine in biological niches affects E. faecalis physiology and virulence of surrounding microbes.
Collapse
Affiliation(s)
- Alex Snell
- University of Minnesota Medical School, Minneapolis, MN, 55455
| | - Dawn A. Manias
- University of Minnesota Medical School, Minneapolis, MN, 55455
| | | | - Gary M. Dunny
- University of Minnesota Medical School, Minneapolis, MN, 55455
| | | |
Collapse
|
10
|
Jayakumar S, Sridhar D, John BM, Arumugam K, Ponnusamy P, Pulidindi H. Biofilm in Endodontic Infection and its Advanced Therapeutic Options - An Updated Review. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1104-S1109. [PMID: 38882733 PMCID: PMC11174291 DOI: 10.4103/jpbs.jpbs_394_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/20/2023] [Accepted: 11/12/2023] [Indexed: 06/18/2024] Open
Abstract
Pulpal and periapical pathosis are biofilm-induced infections. Understanding the complex nature of endodontic biofilm would help to create a new disinfection strategy to eliminate the microorganism from the root canal system. The intricate canal structure creates challenges for proper disinfection, necessitating the need to understand the biofilm structure, composition, and mechanism within the biofilm community. This paper describes the endodontic biofilm structure, formation of biofilm, and advanced therapeutic options for combating the biofilm community within the root canal system.
Collapse
Affiliation(s)
- Srilekha Jayakumar
- Reader, Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Kelambakkam, Chengalpettu, Tamil Nadu, India
| | - Dinesh Sridhar
- Department of Conservative Dentistry and Endodontics, Sri Venkateshwaraa Group of Institutions, Sri Venkateshwaraa Dental College and Hospital, Ariyur, Puducherry, India
| | - Bindu M John
- Department of Conservative Dentistry and Endodontics, Sri Venkateshwaraa Group of Institutions, Sri Venkateshwaraa Dental College and Hospital, Ariyur, Puducherry, India
| | - Karthikeyan Arumugam
- Department of Conservative Dentistry and Endodontics, Sri Venkateshwaraa Group of Institutions, Sri Venkateshwaraa Dental College and Hospital, Ariyur, Puducherry, India
| | - Prashanth Ponnusamy
- Department of Conservative Dentistry and Endodontics, Mahatma Gandhi Postgraduate Institute of Dental Sciences, Puducherry, India
| | - Hema Pulidindi
- Department of Conservative Dentistry and Endodontics, Sri Venkateshwaraa Group of Institutions, Sri Venkateshwaraa Dental College and Hospital, Ariyur, Puducherry, India
| |
Collapse
|
11
|
Chen Z, Niu C, Wei L, Huang Z, Ran S. Genome-wide analysis of acid tolerance genes of Enterococcus faecalis with RNA-seq and Tn-seq. BMC Genomics 2024; 25:261. [PMID: 38454321 PMCID: PMC10921730 DOI: 10.1186/s12864-024-10162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Enterococcus faecalis, a formidable nosocomial and community-acquired opportunistic pathogen, can persist a wide range of extreme environments, including low pH and nutrient deficiency. Clarifying the survival mechanism of E. faecalis in low-pH conditions is the key to combating the infectious diseases caused by E. faecalis. In this study, we combined transcriptome profiling (RNA-seq) and transposon insertion sequencing (TIS) to comprehensively understand the genes that confer these features on E. faecalis. The metadata showed that genes whose products are involved in cation transportation and amino acid biosynthesis were predominantly differentially expressed under acid conditions. The products of genes such as opp1C and copY reduced the hydrion concentration in the cell, whereas those of gldA2, gnd2, ubiD, and ubiD2 mainly participated in amino metabolism, increasing matters to neutralize excess acid. These, together with the folE and hexB genes, which are involved in mismatch repair, form a network of E. faecalis genes necessary for its survival under acid conditions.
Collapse
Affiliation(s)
- Zhanyi Chen
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lifan Wei
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Nucleic acid drug Research and Development Institute, CSPC, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
12
|
Jiang W, Zhang Y, Yan J, He Z, Chen W. Differences of protein expression in enterococcus faecalis biofilm during resistance to environmental pressures. Technol Health Care 2024; 32:371-383. [PMID: 38759062 PMCID: PMC11307051 DOI: 10.3233/thc-248033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
BACKGROUND Enterococcus faecalis biofilm was frequently found on the failed treated root canal wall, which survived by resisting disinfectant during endodontic treatment.Many researches have been conducted to explore the mechanisms of persistence of this pathogen in unfavorable conditions. However, no comprehensive proteomics studies have been conducted to investigate stress response in Enterococcus faecalis caused by alkali and NaOCl. OBJECTIVE Enterococcus faecalis (E.f) has been recognized as a main pathogen of refractory apical periodontitis, its ability to withstand environmental pressure is the key to grow in the environment of high alkaline and anti-bacterial drug that causes chronic infection in the root canal. This study aims to focus on the protein expression patterns of E.f biofilm under extreme pressure environment". METHODS Enterococcus faecalis biofilm model was established in vitro. Liquid Chromatograph-Mass Spectrometer (LC-MS/MS)-based label free quantitative proteomics approach was applied to compare differential protein expression under different environmental pressures (pH 10 and 5% sodium hypochlorite (NaOCl)). And then qPCR and Parallel Reaction Monitoring Verification (PRM) were utilized to verify the consequence of proteomics. RESULTS The number of taxa in this study was higher than those in previous studies, demonstrating the presence of a remarkable number of proteins in the groups of high alkaline and NaOCl. Proteins involved in ATP-binding cassette (ABC) transporter were significantly enriched in experimental samples. We identified a total of 15 highly expressed ABC transporters in the high alkaline environment pressure group, with 7 proteins greater than 1.5 times. CONCLUSIONS This study revealed considerable changes in expression of proteins in E.f biofilm during resistance to environmental pressures. The findings enriched our understanding of association between the differential expression proteins and environmental pressures.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Stomatology, Shanghai Hudong Hospital, Shanghai, China
| | - Youmeng Zhang
- Department of Stomatology, Shanghai Hudong Hospital, Shanghai, China
- Department of Stomatology, Eye and Ent Hospital of Fudan University, Shanghai, China
| | - Jie Yan
- Department of Stomatology, Shanghai Hudong Hospital, Shanghai, China
| | - Zhiyan He
- Shanghai Research Institute of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weixu Chen
- Department of Stomatology, Eye and Ent Hospital of Fudan University, Shanghai, China
| |
Collapse
|
13
|
Manoil D, Cerit EE, Fang H, Durual S, Brundin M, Belibasakis GN. Profiling Antibiotic Susceptibility among Distinct Enterococcus faecalis Isolates from Dental Root Canals. Antibiotics (Basel) 2023; 13:18. [PMID: 38247577 PMCID: PMC10812444 DOI: 10.3390/antibiotics13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Enterococcus faecalis, a leading multi-resistant nosocomial pathogen, is also the most frequently retrieved species from persistently infected dental root canals, suggesting that the oral cavity is a possible reservoir for resistant strains. However, antimicrobial susceptibility testing (AST) for oral enterococci remains scarce. Here, we examined the AST profiles of 37 E. faecalis strains, including thirty-four endodontic isolates, two vanA-type vancomycin-resistant isolates, and the reference strain ATCC-29212. Using Etest gradient strips and established EUCAST standards, we determined minimum inhibitory concentrations (MICs) for amoxicillin, vancomycin, clindamycin, tigecycline, linezolid, and daptomycin. Results revealed that most endodontic isolates were susceptible to amoxicillin and vancomycin, with varying levels of intrinsic resistance to clindamycin. Isolates exceeding the clindamycin MIC of the ATCC-29212 strain were further tested against last-resort antibiotics, with 7/27 exhibiting MICs matching the susceptibility breakpoint for tigecycline, and 1/27 reaching that of linezolid. Both vanA isolates confirmed vancomycin resistance and demonstrated resistance to tigecycline. In conclusion, while most endodontic isolates remained susceptible to first-line antibiotics, several displayed marked intrinsic clindamycin resistance, and MICs matched tigecycline's breakpoint. The discovery of tigecycline resistance in vanA isolates highlights the propensity of clinical clone clusters to acquire multidrug resistance. Our results emphasize the importance of implementing AST strategies in dental practices for continued resistance surveillance.
Collapse
Affiliation(s)
- Daniel Manoil
- Division of Cariology and Endodontics, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institute, Campus Huddinge, 141 52 Stockholm, Sweden;
| | - Ender Efe Cerit
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institute, Campus Huddinge, 141 52 Stockholm, Sweden;
| | - Hong Fang
- Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institute, Campus Huddinge, 141 52 Stockholm, Sweden;
| | - Stéphane Durual
- Biomaterials Laboratory, Division of Fixed Prosthodontics and Biomaterials, University Clinics of Dental Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Malin Brundin
- Division of Endodontics, Department of Odontology, Umeå University, 901 87 Umeå, Sweden;
| | - Georgios N. Belibasakis
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institute, Campus Huddinge, 141 52 Stockholm, Sweden;
| |
Collapse
|
14
|
Zhang J, Li H, Gu W, Zhang K, Liu X, Liu M, Yang L, Li G, Zhang Z, Zhang H. Peroxisome dynamics determines host-derived ROS accumulation and infectious growth of the rice blast fungus. mBio 2023; 14:e0238123. [PMID: 37966176 PMCID: PMC10746245 DOI: 10.1128/mbio.02381-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE The interplay between plant and pathogen is a dynamic process, with the host's innate defense mechanisms serving a crucial role in preventing infection. In response to many plant pathogen infections, host cells generate the key regulatory molecule, reactive oxygen species (ROS), to limit the spread of the invading organism. In this study, we reveal the effects of fungal peroxisome dynamics on host ROS homeostasis, during the rice blast fungus Magnaporthe oryzae infection. The elongation of the peroxisome appears contingent upon ROS and links to the accumulation of ROS within the host and the infectious growth of the pathogen. Importantly, we identify a peroxisomal 3-ketoacyl-CoA thiolase, MoKat2, responsible for the elongation of the peroxisome during the infection. In response to host-derived ROS, the homodimer of MoKat2 undergoes dissociation to bind peroxisome membranes for peroxisome elongation. This process, in turn, inhibits the accumulation of host ROS, which is necessary for successful infection. Overall, our study is the first to highlight the intricate relationship between fungal organelle dynamics and ROS-mediated host immunity, extending the fundamental knowledge of pathogen-host interaction.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Huimin Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Wangliu Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Kexin Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Teoh YY, Liew KY, Siao J, Wong S, Chandler N, Bogen G. The effects of chelation on the intratubular penetration depth of mineral trioxide aggregate. AUST ENDOD J 2023; 49:483-491. [PMID: 37200356 DOI: 10.1111/aej.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/29/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
The penetration depth and extent of mineral trioxide aggregate (MTA) crystallisation into dentinal tubules at 2, 4 and 6 weeks after chelation and MTA obturation were investigated. Standardised 12 mm human root specimens (45) were prepared with NiTi rotary files using 4% NaOCl irrigation. They were randomly allocated to three irrigants (n = 15: 4% NaOCl, 15% ethylenediaminetetraacetic acid or Edgemix) and obturated with sodium fluorescein tagged ProRoot MTA. One millimetre thick apical, middle and coronal sections were examined using confocal laser scanning microscopy to determine MTA penetration depth and area. Depths varied from 352 to 1821 μm at 6 weeks depending on section level and were unaffected by chelation. No differences (p > 0.05) were found in mean maximum penetration depth or dentine area (%) between the 3 irrigants at all time intervals. MTA mineralisation penetrated up to 90% of dentinal tubules and can extend to the cementum in roots with patent, non-infected tubules.
Collapse
Affiliation(s)
- Yu-Yao Teoh
- School of Dentistry, University of Queensland, Brisbane, Queensland, Australia
| | - Khai Yi Liew
- School of Dentistry, University of Queensland, Brisbane, Queensland, Australia
| | - Jethro Siao
- School of Dentistry, University of Queensland, Brisbane, Queensland, Australia
| | - Shaun Wong
- School of Dentistry, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas Chandler
- Department of Oral Rehabilitation, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - George Bogen
- School of Dentistry, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Fitzgerald BA, Wadud A, Slimak Z, Slonczewski JL. Enterococcus faecalis OG1RF Evolution at Low pH Selects Fusidate-Sensitive Mutants in Elongation Factor G and at High pH Selects Defects in Phosphate Transport. Appl Environ Microbiol 2023; 89:e0046623. [PMID: 37272807 PMCID: PMC10304957 DOI: 10.1128/aem.00466-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
Enterococcus bacteria inhabit human and soil environments that show a wide range of pH values. Strains include commensals as well as antibiotic-resistant pathogens. We investigated the adaptation to pH stress in E. faecalis OG1RF by conducting experimental evolution under acidic (pH 4.8), neutral pH (pH 7.0), and basic (pH 9.0) conditions. A serial planktonic culture was performed for 500 generations and in a high-pH biofilm culture for 4 serial bead transfers. Nearly all of the mutations led to nonsynonomous codons, indicating adaptive selection. All of the acid-adapted clones from the planktonic culture showed a mutation in fusA (encoding elongation factor G). The acid-adapted fusA mutants had a trade-off of decreased resistance to fusidic acid (fusidate). All of the base-adapted clones from the planktonic cultures as well as some from the biofilm-adapted cultures showed mutations that affected the Pst phosphate ABC transporter (pstA, pstB, pstB2, pstC) and pyrR (pyrimidine biosynthesis regulator/uracil phosphoribosyltransferase). The biofilm cultures produced small-size colonies on brain heart infusion agar. These variants each contained a single mutation in pstB2, pstC, or pyrR. The pst and pyrR mutants outgrew the ancestral strain at pH 9.2, with a trade-off of lower growth at pH 4.8. Additional genes that had a mutation in multiple clones that evolved at high pH (but not at low pH) include opp1BCDF (oligopeptide ABC transporter), ccpA (catabolite control protein A), and ftsZ (septation protein). Overall, the experimental evolution of E. faecalis showed a strong pH dependence, favoring the fusidate-sensitive elongation factor G modification at low pH and the loss of phosphate transport genes at high pH. IMPORTANCE E. faecalis bacteria are found in dental biofilms, where they experience low pH as a result of fermentative metabolism. Thus, the effect of pH on antibiotic resistance has clinical importance. The loss of fusidate resistance is notable for OG1RF strains in which fusidate resistance is assumed to be a stable genetic marker. In endodontal infections, enterococci can resist calcium hydroxide therapy that generates extremely high pH values. In other environments, such as the soil and plant rhizosphere, enterococci experience acidification that is associated with climate change. Thus, the pH modulation of natural selection in enterococci is important for human health as well as for understanding soil environments.
Collapse
Affiliation(s)
| | - Ayman Wadud
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Zachary Slimak
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | |
Collapse
|
17
|
Rao Tatta E, Paul S, Kumavath R. Transcriptome Analysis revealed the Synergism of Novel Rhodethrin inhibition on Biofilm architecture, Antibiotic Resistance and Quorum sensing inEnterococcus faecalis. Gene 2023; 871:147436. [PMID: 37075926 DOI: 10.1016/j.gene.2023.147436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Enterococcus sp. emerged as an opportunistic nosocomial pathogen with the highest antibiotic resistance and mortality rate. Biofilm is problematic primarily since it is regulated by the global bacterial cell to cell communication mediated by the quorum sensing system. sing system. Thus, potential natural antagonists in a novel drug formulation against biofilm-forming Enterococcus faecalis is critical. We used RNA-Seq to evaluate the effects of the novel molecule rhodethrin with chloramphenicol induced on Enterococcus faecalis and DEGs were identified. In transcriptome sequence analysis, a total of 448 with control Vs rhodethrin, 1591 were in control Vs chloramphenicol, 379 genes were DEGs from control Vs synergies, in rhodethrin with chloramphenicol, 379 genes were differentially expressed, whereas 264 genes were significantly downregulated, indicating that 69.69% ofE. faecaliswas altered. The transcriptional sequence data further expression analysis qRT-PCR, and the results shed that the expression profiles of five significant biofilm formation responsible genes such as, Ace, AtpB, lepA, bopD, and typA, 3 genes involved in quorum sensing are sylA, fsrC and camE, and 4 genes involved in resistance were among including liaX, typA, EfrA, and lepA, were significantly suppressed expressions of the biofilm, quorum sensing, and resistance that are supported by transcriptome analysis.
Collapse
Affiliation(s)
- Eswar Rao Tatta
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO), Kasaragod, Kerala 671320, India
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, the University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO), Kasaragod, Kerala 671320, India; Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
18
|
Zhang G, Lin M, Qin M, Xie Q, Liang M, Jiang J, Dai H, Xu S, Feng S, Liao M. Establishing Heterologous Production of Microcins J25 and Y in Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5600-5613. [PMID: 36995900 DOI: 10.1021/acs.jafc.3c00675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Microcin J25 (MccJ25) and microcin Y (MccY) are lasso peptides and considered potential alternatives to antibiotics and harmful preservatives. The combination of these two microcins can provide a wide antimicrobial spectrum against food-borne Salmonella. Currently, MccJ25 and MccY are produced using Escherichia coli expression systems; however, the entire production process is accompanied by negative effects from endotoxins. In this study, we identified Bacillus subtilis as a suitable host for MccJ25 and MccY production. High-level production of microcins was achieved by promoter optimization, host strain selection, and recombinant expression. The engineered strains produced maximum yields of 2.827 μM MccJ25 and 1.481 μM MccY. This is the first study to demonstrate the expression of MccJ25 and MccY in B. subtilis, and it offers a few engineered strains that are without antibiotic resistance markers, inducer-free, sporulation-deficient, and free of the negative effects of endotoxins for antibacterial therapy and food preservation.
Collapse
Affiliation(s)
- Guangwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Min Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Miaomiao Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qianmei Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Mingzhi Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jinfei Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Huilin Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Siqi Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou 510642, P. R. China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, P. R. China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou 510642, P. R. China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, P. R. China
| |
Collapse
|
19
|
An X, Cheng Y, Zang H, Li C. Biodegradation characteristics of lignin in pulping wastewater by the thermophilic Serratia sp. AXJ-M: Performance, genetic background, metabolic pathway and toxicity assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121230. [PMID: 36754200 DOI: 10.1016/j.envpol.2023.121230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The key to the efficient removal of pulping wastewater lies in the effective degradation of lignin at high temperature. There is thus an urgent need to seek effective eco-environmental techniques to overcome this environmental limit for lignin degradation. The soil isolate thermophilic Serratia sp. AXJ-M efficiently metabolizes lignin. Nevertheless, the underlying comprehensive molecular mechanism of lignin degradation by thermophilic AXJ-M is poorly understood. Here, strain AXJ-M showed excellent degradation ability toward diverse lignin-related aromatic compounds. Functional genome analysis and RNA-Seq disclosed several traits which in joint consideration suggest a high efficiency of AXJ-M representative to the lignin degradation and environmental adaptation. Multiomics analyses combined with GC-MS revealed seven potential lignin biodegradation pathways. DyP was predicted to be involved in the breakdown of the β-O-4 ether bond, Cα-Cβ bond and Cα oxidation of lignin by prokaryotic expression and gene knockout and complementation. Molecular docking deepens the understanding of the interaction between DyP and lignin. Toxicity assessment experiments clearly indicated that AXJ-M significantly reduced the toxicity of the metabolites. This work expands the knowledge about the degradation mechanism of thermophilic lignin-degrading bacteria, most importantly, offers a new perspective on potential applications in utilizing this strain in pulping wastewater bioremediation.
Collapse
Affiliation(s)
- Xuejiao An
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Yi Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| |
Collapse
|
20
|
Deng Z, Lin B, Liu F, Zhao W. Role of Enterococcus faecalis in refractory apical periodontitis: from pathogenicity to host cell response. J Oral Microbiol 2023; 15:2184924. [PMID: 36891193 PMCID: PMC9987735 DOI: 10.1080/20002297.2023.2184924] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Refractory apical periodontitis (RAP) is an oral infectious disease characterised by persistent inflammation, progressive alveolar bone destruction, and delayed bone healing. RAP has received increasing attention, because it cannot be cured after repeated root canal therapies. The aetiology of RAP is related to the complex interplay between the pathogen and its host. However, the exact pathogenesis of RAP remains unclarified and includes several factors, such as microorganism immunogenicity, host immunity and inflammation, and tissue destruction and repair. Enterococcus faecalis is the dominant pathogen involved in RAP, and has evolved multiple strategies to ensure survival, which cause persistent intraradicular and extraradicular infections. OBJECTIVE To review the crucial role of E. faecalis in the pathogenesis of RAP, and open new avenues for prevention and treatment of RAP. METHODS The PubMed and Web of Science databases were searched for pertinent publications, employing the search terms "Enterococcus faecalis", "refractory apical periodontitis", "persistent periapical periodontitis", "pathogenicity", "virulence", "biofilm formation", "dentine tubule", "immune cell", "macrophage", and "osteoblast". RESULTS AND CONCLUSION Besides its high pathogenicity due to various virulence mechanisms, E. faecalis modulates the macrophage and osteoblast responses, including regulated cell death, cell polarisation, cell differentiation, and inflammatory response. An in-depth understanding of the multifaceted host cell responses modulated by E. faecalis will help to design potential future therapeutic strategies and overcome the challenges of sustained infection and delayed tissue healing in RAP.
Collapse
Affiliation(s)
- Zilong Deng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| | - Binbin Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| | - Fan Liu
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Cathro P, McCarthy P, Hoffmann P, Kidd S, Zilm P. Enterococcus faecalis V583 cell membrane protein expression to alkaline stress. FEMS Microbiol Lett 2022; 369:6679558. [PMID: 36044998 PMCID: PMC9491840 DOI: 10.1093/femsle/fnac082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
Enterococcus faecalis is able to adapt to alkaline conditions and is commonly recovered from teeth in which endodontic treatment has failed. The role that E. faecalis membrane proteins play in survival strategies to extreme alkaline conditions is unclear. We grew E. faecalis V583 in a chemostat at pH 8 and 11 at one-tenth the organism’s relative maximum growth rate. Following membrane shaving, isotope-coding protein labels were added at the peptide level to samples and then combined. The relative proportion of membrane proteins were identified using LC-ESI mass spectrometry and MaxQuant analysis. Ratios of membrane proteins were log2 transformed, with proteins deviating by more than 1 SD of the mean considered to be up- or down-regulated. A total of six proteins were up-regulated in pH 11 including: EF0669 (polysaccharide biosynthesis family); EF1927 (glycerol uptake facilitator), and EF0114 (glycosyl hydrolase). A total of five proteins were down-regulated including: EF0108 (C4-dicarboxylate transporter); EF1838 (PTS system IIC component); EF0456 (PTS system IID component); and EF0022 (PTS mannose-specific IID component). In extreme alkaline conditions, the membrane proteins of E. faecalis seem to be involved in a shift of carbohydrate metabolism from the PTS system to glycerol, which supports the formation of a protective capsule protecting the cell.
Collapse
Affiliation(s)
- Peter Cathro
- Oral Microbiology Laboratory, School of Dentistry, The University of Adelaide, Adelaide, South Australia
| | - Peter McCarthy
- School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Peter Hoffmann
- Adelaide Proteomics Centre, The University of Adelaide, Adelaide, South Australia, Australia5005
| | - Stephen Kidd
- School of Biological Sciences, The University of Adelaide, South Australia, Australia
| | - Peter Zilm
- Oral Microbiology Laboratory, School of Dentistry, The University of Adelaide, Adelaide, South Australia
| |
Collapse
|
22
|
Yu Z, Dai Y, Li T, Gu W, Yang Y, Li X, Peng P, Yang L, Li X, Wang J, Su Z, Li X, Xu M, Zhang H. A Novel Pathway of Chlorimuron-Ethyl Biodegradation by Chenggangzhangella methanolivorans Strain CHL1 and Its Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms23179890. [PMID: 36077288 PMCID: PMC9456165 DOI: 10.3390/ijms23179890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Chlorimuron-ethyl is a widely used herbicide in agriculture. However, uncontrolled chlorimuron-ethyl application causes serious environmental problems. Chlorimuron-ethyl can be effectively degraded by microbes, but the underlying molecular mechanisms are not fully understood. In this study, we identified the possible pathways and key genes involved in chlorimuron-ethyl degradation by the Chenggangzhangella methanolivorans strain CHL1, a Methylocystaceae strain with the ability to degrade sulfonylurea herbicides. Using a metabolomics method, eight intermediate degradation products were identified, and three pathways, including a novel pyrimidine-ring-opening pathway, were found to be involved in chlorimuron-ethyl degradation by strain CHL1. Transcriptome sequencing indicated that three genes (atzF, atzD, and cysJ) are involved in chlorimuron-ethyl degradation by strain CHL1. The gene knock-out and complementation techniques allowed for the functions of the three genes to be identified, and the enzymes involved in the different steps of chlorimuron-ethyl degradation pathways were preliminary predicted. The results reveal a previously unreported pathway and the key genes of chlorimuron-ethyl degradation by strain CHL1, which have implications for attempts to enrich the biodegradation mechanism of sulfonylurea herbicides and to construct engineered bacteria in order to remove sulfonylurea herbicide residues from environmental media.
Collapse
Affiliation(s)
- Zhixiong Yu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Basic Medical College, Shenyang Medical College, Shenyang 100034, China
| | - Yumeng Dai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Li
- Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Wu Gu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiang Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Pai Peng
- Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Lijie Yang
- Shenyang Research Institute of Chemical Industry, Shenyang 110021, China
| | - Xinyu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jian Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhencheng Su
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Mingkai Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Correspondence: (M.X.); (H.Z.)
| | - Huiwen Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Correspondence: (M.X.); (H.Z.)
| |
Collapse
|
23
|
In Vitro Evaluation of Five Newly Isolated Bacteriophages against E. faecalis Biofilm for Their Potential Use against Post-Treatment Apical Periodontitis. Pharmaceutics 2022; 14:pharmaceutics14091779. [PMID: 36145527 PMCID: PMC9503355 DOI: 10.3390/pharmaceutics14091779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
State-of-the-art treatment of root canal infection includes the use of mechanical debridement and chemical agents. This disinfection method is limited, and microorganisms can remain in the canal system. Enterococcus faecalis appears with a high prevalence in secondary and persistent root canal infections and can be linked to endodontic treatment failure due to its various resistance mechanisms. Here, we evaluated the activity of newly isolated bacteriophages against clinical isolates of E. faecalis (including one vancomycin- and gentamicin-resistant strain) as a single treatment or in combination with gentamicin and vancomycin. For the resistant strain, daptomycin and fosfomycin were tested. Sixteen E. faecalis strains were used to screen for the presence of bacteriophages in sewage. Five different bacteriophages were characterized in terms of virion morphology, host range and killing-kinetics against each E. faecalis host strain. To investigate the antibiofilm effect of antibiotic and phages, E. faecalis biofilm was grown on porous glass beads and treated with different antibiotic concentrations and with isolated bacteriophages alone or in staggered combinations. A strong biofilm reduction was observed when phages were combined with antibiotic, where combinations with gentamicin showed a better outcome compared to vancomycin. Regarding the resistant strain, daptomycin had a superior antibiofilm effect than fosfomycin.
Collapse
|
24
|
Transcriptomic response of Pseudomonas nicosulfuronedens LAM1902 to the sulfonylurea herbicide nicosulfuron. Sci Rep 2022; 12:13656. [PMID: 35953636 PMCID: PMC9372043 DOI: 10.1038/s41598-022-17982-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022] Open
Abstract
The overuse of the herbicide nicosulfuron has become a global environmental concern. As a potential bioremediation technology, the microbial degradation of nicosulfuron shows much promise; however, the mechanism by which microorganisms respond to nicosulfuron exposure requires further study. An isolated soil-borne bacteria Pseudomonas nicosulfuronedens LAM1902 displaying nicosulfuron, chlorimuron-ethyl, and cinosulfuron degradabilities in the presence of glucose, was used to determine the transcriptional responses to nicosulfuron exposure. RNA-Seq results indicated that 1102 differentially expressed genes (DEGs) were up-regulated and 702 down-regulated under nicosulfuron stress. DEGs were significantly enriched in “ABC transporters”, “sulfur metabolism”, and “ribosome” pathways (p ≤ 0.05). Several pathways (glycolysis and pentose phosphate pathways, a two-component regulation system, as well as in bacterial chemotaxis metabolisms) were affected by nicosulfuron exposure. Surprisingly, nicosulfuron exposure showed positive effects on the production of oxalic acid that is synthesized by genes encoding glycolate oxidase through the glyoxylate cycle pathway. The results suggest that P. nicosulfuronedens LAM1902 adopt acid metabolites production strategies in response to nicosulfuron, with concomitant nicosulfuron degradation. Data indicates that glucose metabolism is required during the degradation and adaptation of strain LAM1902 to nicosulfuron stress. The present studies provide a glimpse at the molecular response of microorganisms to sulfonylurea pesticide toxicity and a potential framework for future mechanistic studies.
Collapse
|
25
|
Li C, Sun Y, Sun G, Zang H, Sun S, Zhao X, Hou N, Li D. An amidase and a novel phenol hydroxylase catalyze the degradation of the antibacterial agent triclocarban by Rhodococcus rhodochrous. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128444. [PMID: 35183828 DOI: 10.1016/j.jhazmat.2022.128444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Triclocarban (TCC) is an emerging and intractable environmental contaminant due to its hydrophobicity and chemical stability. However, the antibacterial property of TCC limits its biodegradation, and only the functional enzyme TccA involved in TCC degradation has been characterized to date. In this study, we report a highly efficient TCC-degrading bacterium, Rhodococcus rhodochrous BX2, that could degrade and mineralize TCC (10 mg/L) by 76.8% and 56.5%, respectively, within 5 days. Subsequently, the TCC biodegradation pathway was predicted based on the detection of metabolites using modern mass spectrometry techniques. Furthermore, an amidase (TccS) and a novel phenol hydroxylase (PHIND) encoded by the tccS and PHIND genes, respectively, were identified by genomic and transcriptomic analyses of strain BX2, and these enzymes were further unequivocally proven to be the key enzymes responsible for the metabolism of TCC and its intermediate 4-chloroaniline (4-CA) by using a combination of heterologous expression and gene knockout. Our results shed new light on the mechanism of TCC biodegradation and better utilization of microbes to remediate TCC contamination.
Collapse
Affiliation(s)
- Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| | - Yueling Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| | - Guanjun Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| | - Shanshan Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| | - Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
26
|
Feng Y, Gu D, Wang Z, Lu C, Fan J, Zhou J, Wang R, Su X. Comprehensive evaluation and analysis of the salinity stress response mechanisms based on transcriptome and metabolome of Staphylococcus aureus. Arch Microbiol 2021; 204:28. [PMID: 34921629 DOI: 10.1007/s00203-021-02624-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
Abstract
Staphylococcus aureus possesses an extraordinary ability to deal with a wide range of osmotic pressure. This study performed transcriptomic and metabolomic analyses on the potential mechanism of gradient salinity stress adaptation in S. aureus ZS01. The results revealed that CPS biosynthetic protein genes were candidate target genes for directly regulating the phenotypic changes of biofilm. Inositol phosphate metabolism was downregulated to reduce the conversion of functional molecules. The gluconeogenesis pathway and histidine synthesis were downregulated to reduce the production of endogenous glucose. The pyruvate metabolism pathway was upregulated to promote the accumulation of succinate. TCA cycle metabolism pathway was downregulated to reduce unnecessary energy loss. L-Proline was accumulated to regulate osmotic pressure. Therefore, these self-protection mechanisms can protect cells from hypertonic environments and help them focus on survival. In addition, we identified ten hub genes. The findings will aid in the prevention and treatment strategies of S. aureus infections.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,College of Life Sciences, Tonghua Normal University, Tonghua, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Dizhou Gu
- College of Life Sciences, Tonghua Normal University, Tonghua, China
| | - Ziyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Jingfeng Fan
- National Marine Environmental Monitoring Center, Dalian, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China.
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China. .,School of Marine Sciences, Ningbo University, 169 Qixing South Road, Ningbo City, 315211, Zhejiang Province, China.
| |
Collapse
|
27
|
Abstract
Enterococcus faecalis, an opportunistic pathogen that causes severe community-acquired and nosocomial infections, has been reported to resist phagocyte-mediated killing, which enables its long-term survival in the host. Metabolism, especially carbohydrate metabolism, plays a key role in the battle between pathogens and hosts. However, the function of carbohydrate metabolism in the long-term survival of E. faecalis in phagocytes has rarely been reported. In this study, we utilized transposon insertion sequencing (TIS) to investigate the function of carbohydrate metabolism during the survival of E. faecalis in RAW264.7 cells. The TIS results showed that the fitness of carbohydrate metabolism-related mutants, especially those associated with fructose and mannose metabolism, were significantly enhanced, suggesting that the attenuation of carbohydrate metabolism promotes the survival of E. faecalis in macrophages. The results of our investigation indicated that macrophages responded to carbohydrate metabolism of E. faecalis and polarized to M1 macrophages to increase nitric oxide (NO) production, leading to the enhancement of macrophage-mediated killing to E. faecalis. Meanwhile, E. faecalis automatically decreased carbohydrate metabolism to escape from the immune clearance of macrophages during intracellular survival. The shift of primary carbon resources for macrophages affected the ability to clear intracellular E. faecalis. In summary, the results of the present study demonstrated that carbohydrate metabolism affects the macrophage-mediated killing of E. faecalis. IMPORTANCEE. faecalis has become a major pathogen leading to a variety of infections around the world. The metabolic interaction between E. faecalis and its host is important during infection but is rarely investigated. We used transposon insertion sequencing coupled with transcriptome sequencing to explore the metabolic interaction between E. faecalis and macrophages and uncovered that the shift of carbohydrate metabolism dramatically affected the inflammatory response of macrophages. In addition, E. faecalis attenuated carbohydrate metabolism to avoid the activation of the immune response of macrophages. This study provides new insights for the reason why E. faecalis is capable of long-term survival in macrophages and may facilitate the development of novel strategies to treat infectious diseases.
Collapse
|
28
|
Zhang L, Song D, Wu Z. Transcriptome analysis of Cyclocarya paliurus flavonoids regulation of differently expressed genes in Enterococcus faecalis under low pH stress. Arch Microbiol 2021; 203:2147-2155. [PMID: 33611635 DOI: 10.1007/s00203-021-02215-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 01/23/2023]
Abstract
Enterococcus faecalis (E. faecalis) is an indigenous intestinal bacterium and has potential to be applied as probiotic supplement. Low pH is one of the main stresses that E. faecalis has to deal with to colonize in the gastrointestinal tract. Previous study indicated low concentration of flavonoids may enhance the tolerance of probiotic to environmental stress. In the present research, transcriptome analysis was employed to investigate the influence of Cyclocarya paliurus flavonoids (CPF) on E. faecalis exposed to low pH environment. The results revealed that under the stress of low pH, genes related to cell wall and membrane, transmembrane transport, metabolism process, energy production, and conversion stress proteins were significantly differentially expressed. And certain undesired changes of which (such as genes for MFS transporter were downregulated) could be partially mitigated by CPF intervention, indicating their capacity to improve the low pH tolerance of E. faecalis. Results from this study deepened our understanding of the beneficial role of CPF on the probiotic in the gastrointestinal environment.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing, 100083, People's Republic of China
| | - Dan Song
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
29
|
Essential Oils as Alternatives for Root-Canal Treatment and Infection Control against Enterococcus faecalis—A Preliminary Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Since natural alternatives are needed in dentistry for the treatment of root canal, where the standard irrigant is NaOCl with significant toxicity, the aim of the study was to assess the antibacterial properties of non-chemical root-canal irrigants (aqueous extracts of oregano, thyme, lemongrass, melaleuca and clove essential oils) against Enterococcus faecalis. For this, aqueous extracts of each essential oil (AqEO) were prepared. A solution of sodium hypochlorite (NaOCl) was used as a positive standard against which the antimicrobial effects of AqEO could be reported. The root canals of seven teeth were inoculated with 20 µL of Enterococcus faecalis ATCC29212 inoculum and incubated overnight at 37 °C. All the teeth canals were instrumented and were irrigated with the corresponding AqEO, NaOCl and saline solution, then rinsed with saline. Bacteriological samples for each canal post-instrumentation were collected with sterile paper points which were inoculated on culture media. A second processing followed the same methodology but involved only irrigation and no instrumentation. Using instrumentation, thyme and clove completely inhibited Enterococcus faecalis growth. Without instrumentation, clove and oregano AqEOs completely reduced the bacterial load as seen in direct inoculation, but bacterial growth was observed in all the samples after enrichment, except for NaOCl. Nevertheless, the turbidity of the enrichment media was lower for the samples irrigated with AqEOs than for control. In conclusion, AqEOs of thyme, oregano and clove showed a promising antibacterial effect, especially when teeth instrumentation was performed.
Collapse
|
30
|
Transcriptomics Reveal the Survival Strategies of Enterococcus mundtii in the Gut of Spodoptera littoralis. J Chem Ecol 2021; 47:227-241. [PMID: 33459999 DOI: 10.1007/s10886-021-01246-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022]
Abstract
The complex interaction between a higher organism and its resident gut flora is a subject of immense interest in the field of symbiosis. Many insects harbor a complex community of microorganisms in their gut. Larvae of Spodoptera littoralis, a lepidopteran pest, house a bacterial community that varies both spatially (along the length of the gut) and temporally (during the insect's life cycle). To monitor the rapid adaptation of microbes to conditions in the gut, a GFP-tagged reporter strain of E. mundtii, a major player in the gut community, was constructed. After early-instar S. littoralis larvae were fed with the tagged microbes, these were recovered from the larval fore- and hindgut by flow cytometry. The fluorescent reporter confirmed the persistence of E. mundtii in the gut. RNA-sequencing of the sorted bacteria highlighted various strategies of the symbiont's survival, including upregulated pathways for tolerating alkaline stress, forming biofilms and two-component signaling systems for quorum sensing, and resisting oxidative stress. Although these symbionts depend on the host for amino acid and fatty acids, differential regulation among various metabolic pathways points to an enriched lysine synthesis pathway of E. mundtii in the hindgut of the larvae.
Collapse
|
31
|
Li X, Cen N, Liu L, Chen Y, Yang X, Yu K, Guo J, Liao X, Shi B. Collagen Peptide Provides Saccharomyces cerevisiae with Robust Stress Tolerance for Enhanced Bioethanol Production. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53879-53890. [PMID: 33211491 DOI: 10.1021/acsami.0c18919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Efficient production of bioethanol is desirable for bioenergy large-scale applications, but it is severely challenged by ethanol and sugar stresses. Here, collagen peptide (CP), as a renewable nitrogen-containing biomass, remarkably enhanced the stress resistance of Saccharomyces cerevisiae SLL-510 against ethanol challenge, based on its unique amino acid composition. Transcriptome analysis showed that the energy, lipid, cofactor, and vitamin metabolism may involve in stress tolerance provided by CP. When CP was added into the media containing 249.99 mg/mL glucose, the bioethanol yield increased from 8.03 to 12.25% (v/v) and 11.35 to 12.29% (v/v) at 43 and 120 h, respectively. Moreover, at 286.79 mg/mL glucose, the highest yield reached 14.48% (v/v), with 99.58% glucose utilization rate. The protection and promotion effects of CP were also shown by four other industrial S. cerevisiae strains. These results coupled with the advantages of abundant reserves, cleanliness, and renewability revealed that CP is a promising economically viable and industrially scalable enhancer for bioethanol fermentation.
Collapse
Affiliation(s)
- Xia Li
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
| | - Nengkai Cen
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
| | - Lu Liu
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yongle Chen
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xi Yang
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
| | - Kang Yu
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
| | - Junling Guo
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xuepin Liao
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| | - Bi Shi
- Department of Biomass and Leather Engineering, Sichuan University, Chengdu 610065, PR China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
32
|
Processing Wastewaters from Spanish-Style cv. Chalkidiki Green Olives: A Potential Source of Enterococcus Casseliflavus and Hydroxytyrosol. Microorganisms 2020; 8:microorganisms8091274. [PMID: 32825632 PMCID: PMC7564576 DOI: 10.3390/microorganisms8091274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to examine the isolation of indigenous lactic acid bacteria (LAB) with functional properties from Spanish-style cv. Chalkidiki green olive processing wastewaters (GOW). Predominant indigenous LAB could serve as bioaugmentation agents/starter culture for table olives production and protected designation of origin specification. Spontaneous fermentation of fresh GOW over different temperatures (15 °C to 50 °C) and pH values (3.5 to 11.5) for 30 d enabled the isolation/molecular identification of the lactic acid bacterium Enterococcus casseliflavus and the plant-associated bacterium Bacillus amyloliquefaciens subsp. plantarum. E. casseliflavus was found to reduce chemical oxygen demand by 72%. Its resistance to extreme pH values, salinity, and temperature was successfully modeled and the minimum inhibitory concentration of oleuropein against the bacterial growth was determined (0.9 g/L). Furthermore, hydroxytyrosol content was doubled (up to 553 mg/L) after GOW spontaneous fermentation under acidic conditions at 15 °C to 30 °C for 120 d, creating an additional source of input. These results highlight the significance and potential of E. casseliflavus in Spanish-style cv. Chalkidiki green olive processing.
Collapse
|
33
|
Metabolic Shift of an Isogenic Strain of Enterococcus faecalis 14, Deficient in Its Own Bacteriocin Synthesis, as Revealed by a Transcriptomic Analysis. Int J Mol Sci 2020; 21:ijms21134653. [PMID: 32629918 PMCID: PMC7369866 DOI: 10.3390/ijms21134653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/07/2023] Open
Abstract
The production of antimicrobial molecules often involves complex biological pathways. This study aimed at understanding the metabolic and physiological networks of enterocin EntDD14-associated function, in the bacteriocinogenic strain, Enterococcus faecalis 14. A global and comparative transcriptomic study was carried out on E. faecalis 14 and its isogenic mutant Δbac, inactivated in genes coding for EntDD14. The in vitro ability to form biofilm on polystyrene plates was assessed by the crystal violet method, while the cytotoxicity on human colorectal adenocarcinoma Caco-2 cells was determined by the Cell Counting Kit-8. Transcriptomic data revealed that 71 genes were differentially expressed in both strains. As expected, genes coding for EntDD14 were downregulated in the Δbac mutant, whereas the other 69 genes were upregulated. Upregulated genes were associated with phage-related chromosomal islands, biofilm formation capability, resistance to environmental stresses, and metabolic reprogramming. Interestingly, the Δbac mutant showed an improved bacterial growth, a high capacity to form biofilm on inanimate surfaces and a very weak cytotoxicity level. These multiple metabolic rearrangements delineate a new line of defense to counterbalance the loss of EntDD14.
Collapse
|
34
|
An X, Chen Y, Chen G, Feng L, Zhang Q. Integrated metagenomic and metaproteomic analyses reveal potential degradation mechanism of azo dye-Direct Black G by thermophilic microflora. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110557. [PMID: 32259760 DOI: 10.1016/j.ecoenv.2020.110557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Direct Black G (DBG) is a typical toxic azo dye with extensive applications but it poses a serious threat to the aquatic ecosystem and humans. It is necessary to efficiently and safely remove DBG from environments by the application of various treatment technologies. A thermophilic microflora previously isolated from the soil can effectively metabolize DBG. However, the molecular basis of DBG degradation by this thermophilic microflora remains unknown. In this study, metagenomic sequencing technology and qRT-PCR have been used to elucidate the functional potential of genes and their modes of action on DBG. A quantitative metaproteomic method was further utilized to identify the relative functional proteins involved. Subsequently, the possible co-metabolic molecular mechanisms of DBG degradation by candidate genes and functional proteins of the thermophilic microflora were illustrated. The combination of metagenomics and metaproteomics to investigate the degradation of DBG by a microflora was reported for the first time in recent literature; this can further provide a deep insight into the molecular degradation mechanism of dye pollutants by natural microflora.
Collapse
Affiliation(s)
- Xuejiao An
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Yan Chen
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Guotao Chen
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Linlin Feng
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
35
|
Alghamdi F, Shakir M. The Influence of Enterococcus faecalis as a Dental Root Canal Pathogen on Endodontic Treatment: A Systematic Review. Cureus 2020; 12:e7257. [PMID: 32292671 PMCID: PMC7152576 DOI: 10.7759/cureus.7257] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Endodontic treatment failure may occur due to different causes such as persistence of bacteria, root canals that are poorly cleaned and obturated, improper coronal seal (leakage), and untreated canals (missed canals). The main reason for endodontic failure is the presence of some species of bacteria inside the root canal system such as Enterococcus (E.) faecalis. Those bacteria are more resistant to disinfection agents, causing a persistent intra-radicular or extra-radicular infection. The current review aims to compile all the current studies concerning Enterococcus faecalis as a dental root canal pathogen that causes endodontic failure. In this systemic review, two databases, PubMed and Google Scholar, were searched using specific inclusion and exclusion criteria. Among 2943 studies, only 11 met the inclusion criteria and were included in the review for further analysis. The 11 studies give prominence to the high distribution of Enterococcus faecalis within the root canal system. These studies investigated different aspects of Enterococcus faecalis, including its prevalence, resistance mechanisms, characteristics, express survival genes, and treatment. The compiled data observed that most of the studies highlight Enterococcus faecalis as the primary pathogen associated with endodontic treatment. It has characteristic proprieties that make it capable of escaping disinfection means. Furthermore, clinical trials are required to examine E. faecalis and may provide valuable information about novel microbial detection methods to decrease the number of E. faecalis within the root canal system.
Collapse
Affiliation(s)
| | - Marwa Shakir
- Endodontics, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
36
|
RNA-Seq comparative analysis reveals the response of Enterococcus faecalis TV4 under fluoride exposure. Gene 2020; 726:144197. [DOI: 10.1016/j.gene.2019.144197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/08/2019] [Accepted: 10/20/2019] [Indexed: 12/14/2022]
|
37
|
Lengfelder I, Sava IG, Hansen JJ, Kleigrewe K, Herzog J, Neuhaus K, Hofmann T, Sartor RB, Haller D. Complex Bacterial Consortia Reprogram the Colitogenic Activity of Enterococcus faecalis in a Gnotobiotic Mouse Model of Chronic, Immune-Mediated Colitis. Front Immunol 2019; 10:1420. [PMID: 31281321 PMCID: PMC6596359 DOI: 10.3389/fimmu.2019.01420] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are associated with compositional and functional changes of the intestinal microbiota, but specific contributions of individual bacteria to chronic intestinal inflammation remain unclear. Enterococcus faecalis is a resident member of the human intestinal core microbiota that has been linked to the pathogenesis of IBD and induces chronic colitis in susceptible monoassociated IL-10-deficient (IL-10−/−) mice. In this study, we characterized the colitogenic activity of E. faecalis as part of a simplified human microbial consortium based on seven enteric bacterial strains (SIHUMI). RNA sequencing analysis of E. faecalis isolated from monoassociated wild type and IL-10−/− mice identified 408 genes including 14 genes of the ethanolamine utilization (eut) locus that were significantly up-regulated in response to inflammation. Despite considerable up-regulation of eut genes, deletion of ethanolamine utilization (ΔeutVW) had no impact on E. faecalis colitogenic activity in monoassociated IL-10−/− mice. However, replacement of the E. faecalis wild type bacteria by a ΔeutVW mutant in SIHUMI-colonized IL-10−/− mice resulted in exacerbated colitis, suggesting protective functions of E. faecalis ethanolamine utilization in complex bacterial communities. To better understand E. faecalis gene response in the presence of other microbes, we purified wild type E. faecalis cells from the colon content of SIHUMI-colonized wild type and IL-10−/− mice using immuno-magnetic separation and performed RNA sequencing. Transcriptional profiling revealed that the bacterial environment reprograms E. faecalis gene expression in response to inflammation, with the majority of differentially expressed genes not being shared between monocolonized and SIHUMI conditions. While in E. faecalis monoassociation a general bacterial stress response could be observed, expression of E. faecalis genes in SIHUMI-colonized mice was characterized by up-regulation of genes involved in growth and replication. Interestingly, in mice colonized with SIHUMI lacking E. faecalis enhanced inflammation was observed in comparison to SIHUMI-colonized mice, supporting the hypothesis that E. faecalis ethanolamine metabolism protects against colitis in complex consortia. In conclusion, this study demonstrates that complex bacterial consortia interactions reprogram the gene expression profile and colitogenic activity of the opportunistic pathogen E. faecalis toward a protective function.
Collapse
Affiliation(s)
- Isabella Lengfelder
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Irina G Sava
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Jonathan J Hansen
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, United States
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, Germany
| | - Jeremy Herzog
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, United States
| | - Klaus Neuhaus
- ZIEL - Institute for Food & Health, Technische Universität München, Freising, Germany.,ZIEL Core Facility Microbiome, Technische Universität München, Freising, Germany
| | - Thomas Hofmann
- Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, Freising, Germany
| | - R Balfour Sartor
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, United States
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, Freising, Germany
| |
Collapse
|
38
|
Wu S, Liu Y, Zhang H, Lei L. The Susceptibility to Calcium Hydroxide Modulated by the Essential walR Gene Reveals the Role for Enterococcus faecalis Biofilm Aggregation. J Endod 2019; 45:295-301.e2. [PMID: 30803536 DOI: 10.1016/j.joen.2018.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Enterococcus faecalis is considered a predominant pathogen for persistent periapical infections and in addition is reportedly resistant to calcium hydroxide medication. The WalRK 2-component system of E. faecalis is essential for environmental adaptation, survival, and virulence. The goal of this study was to investigate the potential roles of walR in the regulation of biofilm aggregation, alkaline stress, and susceptibility to calcium hydroxide (CH) medication. METHODS Antisense walR RNA (aswalR) overexpression strains were constructed. Exopolysaccharide (EPS) production and bacterial viability of E. faecalis biofilms were evaluated by confocal laser scanning microscopy. Quantitative real-time polymerase chain reaction was used to investigate the expressions of virulent factor genes. The proportion of viable bacteria and EPS production in dentin were assessed after CH medication. RESULTS We showed that walR interference by aswalR RNA leads to a reduction in the dextran-dependent aggregation in E. faecalis biofilm. The overexpression of aswalR reduced the transcripts of the virulence genes and alkaline stress tolerance ability. Furthermore, the down-regulation of walR sensitized E. faecalis in infected canals to CH medication associated with inhibiting EPS synthesis. CONCLUSIONS The data suggest a role for the walR regulator in the susceptibility to CH associated with dispelling the EPS matrix, which could be explored as a potential supplementary therapy for the management of root canal infection.
Collapse
Affiliation(s)
- Shizhou Wu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China; West China Hospital, Sichuan University, Chengdu, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland
| | - Yunjie Liu
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Hui Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
39
|
Ponce JB, Midena RZ, Pinke KH, Weckwerth PH, Andrade FBD, Lara VS. In vitro treatment of Enterococcus faecalis with calcium hydroxide impairs phagocytosis by human macrophages. Acta Odontol Scand 2019; 77:158-163. [PMID: 30618320 DOI: 10.1080/00016357.2018.1533142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Monocyte-derived macrophages (MDMs) ability to phagocytize and produce nitric oxide (NO) was tested against root-canal strains of Enterococcus faecalis submitted to alkaline stress. Root-canal strains were also compared with urine Enterococci. MATERIALS AND METHODS Enterococcus faecalis were stressed with alkaline-BHI broth and incubated in vitro at a cell/bacteria ratio of 1:5. Phagocytosis was analyzed by fluorescence microscopy using acridine orange stain, and NO concentration was measured in supernatants. RESULTS AND CONCLUSIONS Alkaline-stress significantly impaired MDMs phagocytosis of E. faecalis strains analyzed, except in ATCC4083 isolated from a pulpless tooth, but NO production was unchanged. Comparison of different strains showed the urine isolate had higher NO levels than root canal strains. Alterations in the bacterial cell wall structures after alkaline-stress possibly made bacteria less recognizable and phagocytized by MDMs but did not affect their ability to activate NO production. Furthermore, root canal strains elicited different responses by immune cells compared with strains from urine. Clinically, impaired phagocytosis of E. faecalis could contribute to their persistence in root canal systems previously treated with calcium hydroxide.
Collapse
Affiliation(s)
- José Burgos Ponce
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Raquel Zanin Midena
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Karen Henriette Pinke
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Flaviana Bombarda de Andrade
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Vanessa Soares Lara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
40
|
Challenges and Adaptations of Life in Alkaline Habitats. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:85-133. [DOI: 10.1007/10_2019_97] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Cheng Y, Zang H, Wang H, Li D, Li C. Global transcriptomic analysis of Rhodococcus erythropolis D310-1 in responding to chlorimuron-ethyl. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:111-120. [PMID: 29614448 DOI: 10.1016/j.ecoenv.2018.03.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Chlorimuron-ethyl is a typical long-term residual sulfonylurea herbicide whose long period of residence poses a serious hazard to rotational crops. Microbial degradation is considered to be the most acceptable method for its removal, but the degradation mechanism is not clear. In this work, we investigated gene expression changes during the degradation of chlorimuron-ethyl by an effective chlorimuron-ethyl-degrading bacterium, Rhodococcus erythropolis D310-1. The genes that correspond to this degradation and their mode of action were identified using RNA-Seq and qRT-PCR. The RNA-Seq results revealed that 500 genes were up-regulated during chlorimuron-ethyl degradation by strain D310-1. KEGG annotation showed that the dominant metabolic pathways were "Toluene degradation" and "Aminobenzoate degradation". Combining GO and KEGG classification with the relevant literature, we predicted that cytochrome P-450, carboxylesterase, and monooxygenase were involved in metabolic chlorimuron-ethyl biodegradation and that the enzyme active site and mode of action coincided with the degradation pathway proposed in our previous study. qRT-PCR experiments suggested that the R. erythropolis D310-1 carboxylesterase, cytochrome P-450 and glycosyltransferase genes were the key genes expressed during chlorimuron-ethyl biodegradation. To the best of our knowledge, this report is the first to describe the transcriptome analysis of a Rhodococcus species during the degradation of chlorimuron-ethyl.
Collapse
Affiliation(s)
- Yi Cheng
- College of Science, China Agricultural University, Beijing 100083, PR China
| | - Hailian Zang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Hailan Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Chunyan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
42
|
Ling HL, Rahmat Z, Bakar FDA, Murad AMA, Illias RM. Secretome analysis of alkaliphilic bacterium Bacillus lehensis G1 in response to pH changes. Microbiol Res 2018; 215:46-54. [PMID: 30172308 DOI: 10.1016/j.micres.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/18/2018] [Accepted: 06/16/2018] [Indexed: 12/27/2022]
Abstract
Bacillus lehensis G1 is an alkaliphilic bacterium that is capable of surviving in environments up to pH 11. Secretome related to bacterial acclimation in alkaline environment has been less studied compared to cytoplasmic and membrane proteome. The aim of this study was to gain better understanding of bacterial acclimation to alkaline media through analyzing extracellular proteins of B. lehensis. The pH range for B. lehensis growth was conducted, and two-dimensional electrophoresis and MALDI-TOF/TOF MS analysis were conducted to characterize changes in protein profiling in B. lehensis cultured at pH 8 and pH 11 when compared with those cultured at pH 10 (optimal growth pH). B. lehensis could grow well at pH ranging from 8 to 11 in which the bacteria showed to posses thinner flagella at pH 11. Proteomic analyses demonstrated that five proteins were up-regulated and 13 proteins were down-regulated at pH 8, whereas at pH 11, 14 proteins were up-regulated and 8 were down-regulated. Majority of the differentially expressed proteins were involved in the cell wall, main glycolytic pathways, the metabolism of amino acids and related molecules and some proteins of unknown function. A total of 40 differentially expressed protein spots corresponding to 33 proteins were identified; including GlcNAc-binding protein A, chitinase, endopeptidase lytE, flagellar hook-associated proteins and enolase. These proteins may play important roles in acclimation to alkaline media via reallocation of cell wall structure and changes to cell surface glycolytic enzymes, amino acid metabolism, flagellar hook-associated proteins and chaperones to sustain life under pH-stressed conditions.
Collapse
Affiliation(s)
- How Lie Ling
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Zaidah Rahmat
- Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
43
|
Comparison of Commercial Calcium Hydroxide Pastes for Prolonged Antibacterial Effect using a Colourimetric Assessment. MATERIALS 2018; 11:ma11030348. [PMID: 29495493 PMCID: PMC5872927 DOI: 10.3390/ma11030348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
Abstract
The anti-microbial activity of calcium hydroxide pastes used in endodontics is dependent on establishing high levels of hydroxyl ions in dentine. This study investigated hydroxyl ion diffusion from different commercial calcium hydroxide pastes using a novel colourimetric method. In this method, human tooth roots were stained with anthocyanin dye, which changed their colour according to the local pH conditions. Prepared root canals were filled with pastes formulated with the vehicle of water (Pulpdent™, Calasept Plus™), polyethylene glycol (PEG) (Calmix™) or a mixture of water, PEG and ibuprofen (Odontocide™). The changes in dye colour at fixed distances from the canal wall were monitored using standardised digital photography over a period of 3 weeks. A repeated measures analysis tracked changes in each root from baseline. Release of hydroxyl ions varied between the different commercial compositions containing water or PEG as solvents. The colour changes in the dentine, due to released hydroxyl ions, were greatest and more prolonged for completely non-aqueous compositions, when using PEG 400 as the vehicle. When water was present in the product, the duration of the pH changes was shorter. This was attributed to the presence of hydroxyl ions in the water (the common-ion effect) and a more vigorous buffering of hydroxyl ions by dentine proteins.
Collapse
|
44
|
Huang XQ, Camba J, Gu LS, Bergeron BE, Ricucci D, Pashley DH, Tay FR, Niu LN. Mechanism of bioactive molecular extraction from mineralized dentin by calcium hydroxide and tricalcium silicate cement. Dent Mater 2017; 34:317-330. [PMID: 29179973 DOI: 10.1016/j.dental.2017.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/10/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The objective of the present study was to elucidate the mechanism of bioactive molecule extraction from mineralized dentin by calcium hydroxide (Ca(OH)2) and tricalcium silicate cements (TSC). METHODS AND RESULTS Transmission electron microscopy was used to provide evidence for collagen degradation in dentin surfaces covered with Ca(OH)2 or a set, hydrated TSC for 1-3 months. A one micron thick collagen degradation zone was observed on the dentin surface. Fourier transform-infrared spectroscopy was used to identify increases in apatite/collagen ratio in dentin exposed to Ca(OH)2. Using three-point bending, dentin exposed to Ca(OH)2 exhibited significant reduction in flexural strength. Using size exclusion chromatography, it was found that the small size of the hydroxyl ions derived from Ca(OH)2 enabled those ions to infiltrate the intrafibrillar compartment of mineralized collagen and degrade the collagen fibrils without affecting the apatite minerals. Using ELISA, TGF-β1 was found to be extracted from dentin covered with Ca(OH)2 for 3 months. Unlike acids that dissolve the mineral component of dentin to release bioactive molecules, alkaline materials such as Ca(OH)2 or TSC released growth factors such as TGF-β1 via collagen degradation. SIGNIFICANCE The bioactive molecule extraction capacities of Ca(OH)2 and TSC render these dental materials excellent for pulp capping and endodontic regeneration. These highly desirable properties, however, appear to be intertwined with the untoward effect of degradation of the collagen matrix within mineralized dentin, resulting in reduced flexural strength.
Collapse
Affiliation(s)
- Xue-Qing Huang
- Department of Prosthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - John Camba
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Li-Sha Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Brian E Bergeron
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | | | - David H Pashley
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
45
|
Vasconcelos LRSMD, Midena RZ, Minotti PG, Pereira TC, Duarte MAH, Andrade FBD. Effect of ultrasound streaming on the disinfection of flattened root canals prepared by rotary and reciprocating systems. J Appl Oral Sci 2017; 25:477-482. [PMID: 29069144 PMCID: PMC5804383 DOI: 10.1590/1678-7757-2016-0358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/13/2016] [Indexed: 11/22/2022] Open
Abstract
New technical and scientific developments have been advocated to promote the success of the endodontic treatment. In addition to rotary and reciprocating systems, irrigating solution agitation has been suggested and passive ultrasonic irrigation (PUI) is the most used. Objective: To evaluate, in vitro, the effect of ultrasound streaming (US) in the disinfection of flattened root canal systems prepared by the ProTaper, BioRaCe and Reciproc systems, utilizing the microbiological culture. Methodology: Extracted human mandibular incisors (n=84) were used. Suspensions of Enterococcus faecalis (ATCC 29212) were standardized and inserted along with the teeth immersed in brain-heart infusion (BHI) broth. The contamination was made following a protocol during 5 days. The teeth were randomly divided into six groups: G1, ProTaper Universal; G2, ProTaper Universal with US; G3, BioRaCe; G4, BioRaCe with US; G5, Reciproc; and G6, Reciproc with US. Irrigation was performed with saline solution. After biomechanical preparation, microbiological samples were performed with sterilized paper points, which were diluted and spread on BHI agar; after 48 h, the colony forming units (CFU/mL) were counted for each sample. Results: Groups using ultrasonic agitation presented a greater antibacterial effect than the other ones, even using saline solution as irrigant. The ProTaper Universal system showed the best antibacterial activity of the tested systems (median of 0 CFU/mL with and without surfactant or ultrasonic activation [PUI]). Even with PUI, Reciproc (median of 2.5 CFU/mL with PUI and 5 without it) could not reduce as many colonies as ProTaper Universal without US. The BioRaCe system had greater bacterial reduction when using US (median of 0 CFU/mL with PUI and 30 without it). Conclusions: US promoted greater reduction in the number of bacteria in the flattened root canals prepared with nickel-titanium mechanized systems. Regarding the instruments used, the ProTaper Universal system was the most effective in reducing the bacterial number.
Collapse
Affiliation(s)
| | - Raquel Zanin Midena
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos, Bauru, SP, Brasil
| | - Paloma Gagliardi Minotti
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos, Bauru, SP, Brasil
| | - Thais Cristina Pereira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos, Bauru, SP, Brasil
| | - Marco Antonio Hungaro Duarte
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos, Bauru, SP, Brasil
| | - Flaviana Bombarda de Andrade
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos, Bauru, SP, Brasil
| |
Collapse
|
46
|
Bourgeois D, David A, Inquimbert C, Tramini P, Molinari N, Carrouel F. Quantification of carious pathogens in the interdental microbiota of young caries-free adults. PLoS One 2017; 12:e0185804. [PMID: 29016613 PMCID: PMC5634565 DOI: 10.1371/journal.pone.0185804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
Background The majority of caries lesions in adults occur on the proximal tooth surfaces of the posterior teeth. A comprehensive study of the composition of the oral microbiota is fundamental for a better understanding of the etiology of interdental caries. Methods Twenty-five caries-free subjects (20–35 years old) were enrolled in the study. The interdental biofilm of four interdental sites were collected. The real-time polymerase chain reaction (PCR) methodology were used to quantify (i) the following bacteria: Streptococcus spp., Streptococcus mutans, Lactobacillus spp., Enterococcus spp., and Enterococcus faecalis; (ii) the fungus Candida albicans; and (iii) total bacteria. Results Streptococcus spp. was the most abundant species, followed by Lactobacillus spp. and Enterococcus spp. Streptococcus spp. and Lactobacillus spp. were detected at all tested sites and Enterococcus spp. at 99% of sites. S. mutans was detected at only 28% of the tested sites and C. albicans was detected at 11% of sites. E. faecalis was never detected. In 54.5% of the biofilm inhabited by C. albicans, S. mutans was present. Moreover, 28% of the ID sites co-expressed S. mutans and Lactobacillus spp. The studied pathogens were organized into two correlated groups of species. Strikingly, the fungus C. albicans and the bacteria Enterococcus spp. cluster together, whereas Streptococcus spp., S. mutans and Lactobacillus spp. form one distinct cluster. Conclusion The interdental biofilm of young caries-free adults is comprised of pathogens that are able to induce interproximal caries. That several of these pathogens are implicated in heart disease or other systemic diseases is an argument for the disruption of interdental biofilms using daily oral hygiene.
Collapse
Affiliation(s)
- Denis Bourgeois
- Laboratory "Systemic Health Care" EA4129, University Lyon 1, Lyon, France
- Department of Prevention and Public Health, Faculty of Dentistry, University Lyon 1, Lyon, France
- * E-mail:
| | - Alexandra David
- Laboratory "Systemic Health Care" EA4129, University Lyon 1, Lyon, France
| | - Camille Inquimbert
- Laboratory "Systemic Health Care" EA4129, University Lyon 1, Lyon, France
| | - Paul Tramini
- Department of Dental Public Health, University of Montpellier, Montpellier, France
| | - Nicolas Molinari
- Service DIM, CHU de Montpellier, UMR 5149 IMAG, University of Montpellier, Montpellier, France
| | - Florence Carrouel
- Laboratory "Systemic Health Care" EA4129, University Lyon 1, Lyon, France
- Department Basic and Clinical Biological Sciences, Faculty of Dentistry, University Lyon 1, Lyon, France
| |
Collapse
|
47
|
Anderson AC, Jonas D, Huber I, Karygianni L, Wölber J, Hellwig E, Arweiler N, Vach K, Wittmer A, Al-Ahmad A. Enterococcus faecalis from Food, Clinical Specimens, and Oral Sites: Prevalence of Virulence Factors in Association with Biofilm Formation. Front Microbiol 2016; 6:1534. [PMID: 26793174 PMCID: PMC4707231 DOI: 10.3389/fmicb.2015.01534] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
Abstract
Enterococci have gained significance as the cause of nosocomial infections; they occur as food contaminants and have also been linked to dental diseases. E. faecalis has a great potential to spread virulence as well as antibiotic resistance genes via horizontal gene transfer. The integration of food-borne enterococci into the oral biofilm in-vivo has been observed. Therefore, we investigated the virulence determinants and antibiotic resistance of 97 E. faecalis isolates from the oral cavity, food, and clinical specimens. In addition, phenotypic expression of gelatinase and cytolysin were tested, in-vitro biofilm formation was quantified and isolates were compared for strain relatedness via pulsed field gel electrophoresis (PFGE). Each isolate was found to possess two or more virulence genes, most frequently gelE, efaA, and asa1. Notably, plaque/saliva isolates possessed the highest abundance of virulence genes, the highest levels of phenotypic gelatinase and hemolysin activity and concurrently a high ability to form biofilm. The presence of asa1 was associated with biofilm formation. The biofilm formation capacity of clinical and plaque/saliva isolates was considerably higher than that of food isolates and they also showed similar antibiotic resistance patterns. These results indicate that the oral cavity can constitute a reservoir for virulent E. faecalis strains possessing antibiotic resistance traits and at the same time distinct biofilm formation capabilities facilitating exchange of genetic material.
Collapse
Affiliation(s)
- Annette C Anderson
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, University of Freiburg Freiburg, Germany
| | - Daniel Jonas
- Department of Infection Control and Hospital Epidemiology, Institute for Environmental Health Sciences and Hospital Infection Control, Medical Center, University of Freiburg Freiburg, Germany
| | - Ingrid Huber
- Bavarian Health and Food Safety Authority Oberschleissheim, Germany
| | - Lamprini Karygianni
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, University of Freiburg Freiburg, Germany
| | - Johan Wölber
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, University of Freiburg Freiburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, University of Freiburg Freiburg, Germany
| | - Nicole Arweiler
- Department of Periodontology, Philipps-University of Marburg Marburg, Germany
| | - Kirstin Vach
- Department of Medical Biometry and Statistics, Center for Medical Biometry and Medical Informatics, Medical Center, University of Freiburg Freiburg, Germany
| | - Annette Wittmer
- Department of Medical Microbiology and Hygiene, Center for Microbiology and Hygiene, Medical Center, University of Freiburg Freiburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, University of Freiburg Freiburg, Germany
| |
Collapse
|