1
|
Chen S, Rao M, Jin W, Hu M, Chen D, Ge M, Mao W, Qian X. Metabolomic analysis in Amycolatopsis keratiniphila disrupted the competing ECO0501 pathway for enhancing the accumulation of vancomycin. World J Microbiol Biotechnol 2024; 40:297. [PMID: 39126539 DOI: 10.1007/s11274-024-04105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Vancomycin is a clinically important glycopeptide antibiotic against Gram-positive pathogenic bacteria, especially methicillin-resistant Staphylococcus aureus. In the mutant strain of Amycolatopsis keratiniphila HCCB10007 Δeco-cds4-27, the production of ECO-0501 was disrupted, but enhanced vancomycin yield by 55% was observed compared with the original strain of A. keratiniphila HCCB10007. To gain insights into the mechanism of the enhanced production of vancomycin in the mutant strain, comparative metabolomics analyses were performed between the mutant strain and the original strain, A. keratiniphila HCCB10007 via GC-TOF-MS and UPLC-HRMS. The results of PCA and OPLS-DA revealed a significant distinction of the intracellular metabolites between the two strains during the fermentation process. 64 intracellular metabolites, which involved in amino acids, fatty acids and central carbon metabolism, were identified as differential metabolites. The high-yield mutant strain maintained high levels of glucose-1-phosphate and glucose-6-phosphate and they declined with the increases of vancomycin production. Particularly, a strong association of fatty acids accumulation as well as 3,5-dihydroxyphenylacetic acid and non-proteinogenic amino acid 3,5-dihydroxyphenylglycine (Dpg) with enhancement of vancomycin production was observed in the high-yield mutant strain, indicating that the consumption of fatty acid pools might be beneficial for giving rise to 3,5-dihydroxyphenylacetic acid and Dpg which further lead to improve vancomycin production. In addition, the lower levels of glyoxylic acid and lactic acid and the higher levels of sulfur amino acids might be beneficial for improving vancomycin production. These findings proposed more advanced elucidation of metabolomic characteristics in the high-yield strain for vancomycin production and could provide potential strategies to enhance the vancomycin production.
Collapse
Affiliation(s)
- Shuo Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Min Rao
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
- Zhejiang Pharmaceutical Co., Ltd, Shaoxing, China
| | - Wenxiang Jin
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Mengyi Hu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Ge
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
- Zhejiang Pharmaceutical Co., Ltd, Shaoxing, China
| | - Wenwei Mao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiuping Qian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Lara AC, Kotrbová L, Keller M, Nouioui I, Neumann-Schaal M, Mast Y, Chroňáková A. Lentzea sokolovensis sp. nov., Lentzea kristufekii sp. nov. and Lentzea miocenica sp. nov., rare actinobacteria from Miocene lacustrine sediment of the Sokolov Coal Basin, Czech Republic. Int J Syst Evol Microbiol 2024; 74. [PMID: 38630118 DOI: 10.1099/ijsem.0.006335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The taxonomic position of three actinobacterial strains, BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T, recovered from bare soil in the Sokolov Coal Basin, Czech Republic, was established using a polyphasic approach. The multilocus sequence analysis based on 100 single-copy genes positioned BCCO 10_0061T in the same cluster as Lentzea waywayandensis, strain BCCO 10_0798T in the same cluster as Lentzea flaviverrucosa, Lentzea californiensis, Lentzea violacea, and Lentzea albidocapillata, and strain BCCO 10_0856T clustered together with Lentzea kentuckyensis and Lentzea alba. Morphological and chemotaxonomic characteristics of these strains support their assignment to the genus Lentzea. In all three strains, MK-9(H4) accounted for more than 80 % of the isoprenoid quinone. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The whole-cell sugars were rhamnose, ribose, mannose, glucose, and galactose. The major fatty acids (>10 %) were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, and C16 : 0. The polar lipids were diphosphatidylglycerol, methyl-phosphatidylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol. The genomic DNA G+C content of strains (mol%) was 68.8 for BCCO 10_0061T, 69.2 for BCCO 10_0798T, and 68.5 for BCCO 10_0856T. The combination of digital DNA-DNA hybridization results, average nucleotide identity values and phenotypic characteristics of BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T distinguishes them from their closely related strains. Bioinformatic analysis of the genome sequences of the strains revealed several biosynthetic gene clusters (BGCs) with identities >50 % to already known clusters, including BGCs for geosmin, coelichelin, ε-poly-l-lysine, and erythromycin-like BGCs. Most of the identified BGCs showed low similarity to known BGCs (<50 %) suggesting their genetic potential for the biosynthesis of novel secondary metabolites. Based on the above results, each strain represents a novel species of the genus Lentzea, for which we propose the name Lentzea sokolovensis sp. nov. for BCCO 10_0061T (=DSM 116175T), Lentzea kristufekii sp. nov. for BCCO 10_0798T (=DSM 116176T), and Lentzea miocenica sp. nov. for BCCO 10_0856T (=DSM 116177T).
Collapse
Affiliation(s)
- Ana Catalina Lara
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
- University of Chemistry, and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technická 5, 16628 Prague, Czech Republic
| | - Lucie Kotrbová
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Moritz Keller
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Imen Nouioui
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Yvonne Mast
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Alica Chroňáková
- Biology Centre Czech Academy of Sciences, Institute of Soil Biology and BiogeochemistryNaSádkách 7, 37005 České Budějovice, Czech Republic
| |
Collapse
|
3
|
Kawaguchi J, Mori H, Iwai N, Wachi M. A secondary metabolic enzyme functioned as an evolutionary seed of a primary metabolic enzyme. Mol Biol Evol 2022; 39:6651898. [PMID: 35904937 PMCID: PMC9356726 DOI: 10.1093/molbev/msac164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The antibiotic alaremycin has a structure that resembles that of 5-aminolevulinic acid (ALA), a universal precursor of porphyrins, and inhibits porphyrin biosynthesis. Genome sequencing of the alaremycin-producing bacterial strain and enzymatic analysis revealed that the first step of alaremcyin biosynthesis is catalysed by the enzyme, AlmA, which exhibits a high degree of similarity to 5-aminolevulinate synthase (ALAS) expressed by animals, protozoa, fungi and α-proteobacteria. Site-directed mutagenesis of AlmA revealed that the substitution of two amino acids residues around the substrate binding pocket transformed its substrate specificity from that of alaremycin precursor synthesis to ALA synthesis. To estimate the evolutionary trajectory of AlmA and ALAS, we performed an ancestral sequence reconstitution analysis based on a phylogenetic tree of AlmA and ALAS. The reconstructed common ancestral enzyme of AlmA and ALAS exhibited alaremycin precursor synthetic activity, rather than ALA synthetic activity. These results suggest that ALAS evolved from an AlmA-like enzyme. We propose a new evolutionary hypothesis in which a non-essential secondary metabolic enzyme acts as an 'evolutionary seed' to generate an essential primary metabolic enzyme.
Collapse
Affiliation(s)
- Jun Kawaguchi
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hikaru Mori
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Noritaka Iwai
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masaaki Wachi
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
4
|
Borba MP, Ferrero APDS, de Souza Lameira R, Van Der Sand ST. The intricate molecular identification of Streptomyces: a case study on Antarctic soil isolates. Arch Microbiol 2022; 204:476. [PMID: 35829937 DOI: 10.1007/s00203-022-03093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
Despite the worldwide use of 16S rRNA to identify bacterial species, the use of this gene does not discriminate the 750 species in the genus Streptomyces. A MLST scheme was constructed with rpoB, gyrB, recA, trpB and atpD genes to access the genomic variances in Streptomyces species evolution. We analyze the housekeeping genes in 49 Streptomyces isolates from Antarctic soil. It was used two different databases, GenBank and EzBioCloud to compare the 16S sequences. The species founded in both databases are not the same, but in both cases, a few isolates achieve the necessary high percentage to consider the identification. There is a lack of deposited sequences in the other genes, as the data in GenBank proved to be insufficient. Isolate LMA323St_9 has the potential to be studied as a novel species. Besides that, the use of housekeeping genes gives robust phylogenetic information to understand in group relationships.
Collapse
Affiliation(s)
- Marcela Proença Borba
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Ana Paula da Silva Ferrero
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Renata de Souza Lameira
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sueli Teresinha Van Der Sand
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
Kotrbová L, Lara AC, Corretto E, Scharfen J, Ulmann V, Petříčková K, Chroňáková A. Evaluation and comparison of antibiotic susceptibility profiles of Streptomyces spp. from clinical specimens revealed common and region-dependent resistance patterns. Sci Rep 2022; 12:9353. [PMID: 35672429 PMCID: PMC9174267 DOI: 10.1038/s41598-022-13094-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Notwithstanding the fact that streptomycetes are overlooked in clinical laboratories, studies describing their occurrence in disease and potential pathogenicity are emerging. Information on their species diversity in clinical specimens, aetiology and appropriate therapeutic treatment is scarce. We identified and evaluated the antibiotic susceptibility profile of 84 Streptomyces clinical isolates from the Czech Republic. In the absence of appropriate disk diffusion (DD) breakpoints for antibiotic susceptibility testing (AST) of Streptomyces spp., we determined DD breakpoints by correlation with the broth microdilution method and by the distribution of zone diameters among isolates. Correlation accuracy was high for 9 antibiotics, leading to the establishment of the most valid DD breakpoints for Streptomyces antibiotic susceptibility evaluation so far. Clinical strains belonged to 17 different phylotypes dominated by a cluster of strains sharing the same percentage of 16S rRNA gene sequence identity with more than one species (S. albidoflavus group, S. hydrogenans, S. resistomycificus, S. griseochromogenes; 70% of isolates). AST results showed that Streptomyces exhibited intrinsic resistance to penicillin, general susceptibility to amikacin, gentamycin, vancomycin and linezolid, and high percentage of susceptibility to tetracyclines and clarithromycin. For the remaining antibiotics, AST showed inter- and intra-species variations when compared to available literature (erythromycin, trimethoprim-sulfamethoxazole), indicating a region-dependent rather than species-specific patterns.
Collapse
|
6
|
Yan X, Zhang J, Tan H, Liu Z, Jiang K, Tian W, Zheng M, Lin Z, Deng Z, Qu X. A Pair of Atypical KAS III Homologues with Initiation and Elongation Functions Program the Polyketide Biosynthesis in Asukamycin. Angew Chem Int Ed Engl 2022; 61:e202200879. [DOI: 10.1002/anie.202200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoli Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Jun Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Hongqun Tan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zhihao Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Kai Jiang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| |
Collapse
|
7
|
Yan X, Zhang J, Tan H, Liu Z, Jiang K, Tian W, Zheng M, Lin Z, Deng Z, Qu X. A Pair of Atypical KAS III Homologues with Initiation and Elongation Functions Program the Polyketide Biosynthesis in Asukamycin. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoli Yan
- Wuhan University School of pharmaceutical Sciences CHINA
| | - Jun Zhang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Hongqun Tan
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Zhihao Liu
- Wuhan University School of pharmaceutical Sciences CHINA
| | - Kai Jiang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Wenya Tian
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Mengmeng Zheng
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Zhi Lin
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Zixin Deng
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Xudong Qu
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology 800 Dongchuan Rd. 200240 Shanghai CHINA
| |
Collapse
|
8
|
Gamma irradiation effectuality on the antibacterial and bioactivity behavior of multicomponent borate glasses against methicillin-resistant Staphylococcus aureus (MRSA). J Biol Inorg Chem 2022; 27:155-173. [DOI: 10.1007/s00775-021-01918-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
|
9
|
Activation of a Cryptic Manumycin-Type Biosynthetic Gene Cluster of Saccharothrix espanaensis DSM44229 by Series of Genetic Manipulations. Microorganisms 2021; 9:microorganisms9030559. [PMID: 33800500 PMCID: PMC8000086 DOI: 10.3390/microorganisms9030559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/20/2022] Open
Abstract
(1) Background: Manumycins are small actinomycete polyketides with prominent cancerostatic and immunosuppressive activities via inhibition of various eukaryotic enzymes. Their overall activity towards human cells depends on the structural variability of both their polyketide chains, mainly the upper one. In our genetic screening project to find novel producers of anti-inflammatory manumycins, the strain Saccharothrix espanaensis DSM44229 was identified as containing a novel manumycin-type biosynthetic gene cluster (BGC). (2) Methods: The biosynthetic genes appeared to be silent under all assayed laboratory conditions. Several techniques were used to activate the BGC, including: (i) heterologous expression in various hosts, (ii) overexpression of putative pathway-specific regulatory genes, and (iii) overexpression of a bottleneck cyclizing aminolevulinate synthase gene in both natural and heterologous producers. (3) Results: Multiple novel manumycin-type compounds were produced at various levels by genetically-modified strains, sharing a tetraene lower chain structure with a colabomycin subgroup of manumycins, but possessing much shorter and saturated upper chains. (4) Conclusions: A cryptic manumycin-type BGC was successfully activated by genetic means to gain production of novel manumycin-type compounds for future comparative activity assays. Heterologously produced compounds were identical to those found after final activation of the BGC in the original strain, proving the intactness of the cloned BGC.
Collapse
|
10
|
Miscevic D, Mao JY, Kefale T, Abedi D, Moo-Young M, Perry Chou C. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli. Biotechnol Bioeng 2020; 118:30-42. [PMID: 32860420 DOI: 10.1002/bit.27547] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022]
Abstract
Herein, we report the development of a microbial bioprocess for high-level production of 5-aminolevulinic acid (5-ALA), a valuable non-proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e., C4) pathway for heterologous 5-ALA biosynthesis in E. coli. To reduce, but not to abolish, the carbon flux toward essential tetrapyrrole/porphyrin biosynthesis, we applied clustered regularly interspersed short palindromic repeats interference (CRISPRi) to repress hemB expression, leading to extracellular 5-ALA accumulation. We then applied metabolic engineering strategies to direct more dissimilated carbon flux toward the key precursor of succinyl-CoA for enhanced 5-ALA biosynthesis. Using these engineered E. coli strains for bioreactor cultivation, we successfully demonstrated high-level 5-ALA biosynthesis from glycerol (~30 g L-1 ) under both microaerobic and aerobic conditions, achieving up to 5.95 g L-1 (36.9% of the theoretical maximum yield) and 6.93 g L-1 (50.9% of the theoretical maximum yield) 5-ALA, respectively. This study represents one of the most effective bio-based production of 5-ALA from a structurally unrelated carbon to date, highlighting the importance of integrated strain engineering and bioprocessing strategies to enhance bio-based production.
Collapse
Affiliation(s)
- Dragan Miscevic
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Canada
| | - Teshager Kefale
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Daryoush Abedi
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.,Department of Drug & Food Control, Tehran University of Medical Sciences, Tehran, Iran
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
11
|
Castañeda-Cisneros YE, Mercado-Flores Y, Anducho-Reyes MA, Álvarez-Cervantes J, Ponce-Lira B, Evangelista-Martínez Z, Téllez-Jurado A. Isolation and Selection of Streptomyces Species from Semi-arid Agricultural Soils and Their Potential as Producers of Xylanases and Cellulases. Curr Microbiol 2020; 77:3460-3472. [PMID: 32797266 DOI: 10.1007/s00284-020-02160-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022]
Abstract
The Mezquital Valley (MV), Mexico, is a semi-arid region whose main economic activity is agriculture, this zone is characterized by the use of wastewater for crop irrigation. This condition has increased the amount nutrients in soils, organic carbon content and native microorganisms. The Streptomyces species are a group of saprophytic bacteria that represent between 20 and 60% of the total microbial population in soils, capable of producing metabolites of commercial importance. In this work, Streptomyces species were isolated from agricultural soils of the MV and was evaluated the production of endoglucanases (CMCase) and xylanases (Xyl) in Solid-State Cultivation (SSC). From soil samples, 73 possible strains of Streptomyces species were isolated for their ability to produce CMCase and Xyl in SSC. The study also included its characterization by morphological characteristics. Of the isolated microorganisms, 38 strains were selected as strong enzyme producers according to the measurement of the halo generated in plate and by growth on barley straw as only carbon source. Two different sizes of barley straw particle were tested, finding that the greatest enzymatic activity was observed in particle size 12. Three strains of Streptomyces species were chosen which presented the best catalytic capacities, a maximum of 100.69 AU Xyl/gram dry matter (gdm), 82 AU Xyl/gdm and 26.02 AU CMCase/gdm for strains 30, 28 and 12, respectively. The strains were identified by ribosomal gen16s sequence and identified as S. flavogriseus, S. virginiae and S. griseoaurantiacus. It is the first report of endogluconase and xylanolytic activity by S. virginiae isolated from a semi-arid soil.
Collapse
Affiliation(s)
- Y E Castañeda-Cisneros
- AgroBiotechnology Laboratory, Polytechnic University of Pachuca, Carr. Pachuca-Cd. Sahagún, km 20, Ex-Hacienda de Santa Bárbara, C.P. 43830, Zempoala, Hidalgo, Mexico
| | - Y Mercado-Flores
- AgroBiotechnology Laboratory, Polytechnic University of Pachuca, Carr. Pachuca-Cd. Sahagún, km 20, Ex-Hacienda de Santa Bárbara, C.P. 43830, Zempoala, Hidalgo, Mexico
| | - M A Anducho-Reyes
- AgroBiotechnology Laboratory, Polytechnic University of Pachuca, Carr. Pachuca-Cd. Sahagún, km 20, Ex-Hacienda de Santa Bárbara, C.P. 43830, Zempoala, Hidalgo, Mexico
| | - J Álvarez-Cervantes
- AgroBiotechnology Laboratory, Polytechnic University of Pachuca, Carr. Pachuca-Cd. Sahagún, km 20, Ex-Hacienda de Santa Bárbara, C.P. 43830, Zempoala, Hidalgo, Mexico
| | - B Ponce-Lira
- Department of Agrobiotechnology Engineering, Polytechnic University of Francisco I. Madero, Carretera Tepatepec-San Juan Tepa, C.P.42660, Francisco I. Madero, Hidalgo, Mexico
| | - Z Evangelista-Martínez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. AC, Parque Científico Tecnológico de Yucatán, Sierra Papacal-Chuburná Puerto, C.P.97302, Mérida, Yucatán, Mexico
| | - A Téllez-Jurado
- AgroBiotechnology Laboratory, Polytechnic University of Pachuca, Carr. Pachuca-Cd. Sahagún, km 20, Ex-Hacienda de Santa Bárbara, C.P. 43830, Zempoala, Hidalgo, Mexico.
| |
Collapse
|
12
|
Rebets Y, Nadmid S, Paulus C, Dahlem C, Herrmann J, Hübner H, Rückert C, Kiemer AK, Gmeiner P, Kalinowski J, Müller R, Luzhetskyy A. Perquinoline A–C: neuartige bakterielle Tetrahydroisochinoline mit einer bemerkenswerten Biosynthese. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuriy Rebets
- Department of Pharmacy Pharmaceutical Biotechnology University of Saarland Campus, Bld. C2 3 Saarbrucken 66123 Deutschland
| | - Suvd Nadmid
- Department of Pharmacy Pharmaceutical Biotechnology University of Saarland Campus, Bld. C2 3 Saarbrucken 66123 Deutschland
| | - Constanze Paulus
- Department of Pharmacy Pharmaceutical Biotechnology University of Saarland Campus, Bld. C2 3 Saarbrucken 66123 Deutschland
| | - Charlotte Dahlem
- Department of Pharmacy Pharmaceutical Biology University of Saarland Campus, Bld. C2 3 Saarbrucken 66123 Deutschland
| | - Jennifer Herrmann
- Department Microbial Natural Products Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus, Bld. 8 1 Saarbrucken 66123 Deutschland
| | - Harald Hübner
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91058 Erlangen Deutschland
| | - Christian Rückert
- Center for Biotechnology – CeBiTec University of Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Alexandra K. Kiemer
- Department of Pharmacy Pharmaceutical Biology University of Saarland Campus, Bld. C2 3 Saarbrucken 66123 Deutschland
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Straße 10 91058 Erlangen Deutschland
| | - Jörn Kalinowski
- Center for Biotechnology – CeBiTec University of Bielefeld Universitätsstraße 25 33615 Bielefeld Deutschland
| | - Rolf Müller
- Department Microbial Natural Products Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus, Bld. 8 1 Saarbrucken 66123 Deutschland
| | - Andriy Luzhetskyy
- Department of Pharmacy Pharmaceutical Biotechnology University of Saarland Campus, Bld. C2 3 Saarbrucken 66123 Deutschland
- Department Microbial Natural Products Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus, Bld. 8 1 Saarbrucken 66123 Deutschland
| |
Collapse
|
13
|
Rebets Y, Nadmid S, Paulus C, Dahlem C, Herrmann J, Hübner H, Rückert C, Kiemer AK, Gmeiner P, Kalinowski J, Müller R, Luzhetskyy A. Perquinolines A-C: Unprecedented Bacterial Tetrahydroisoquinolines Involving an Intriguing Biosynthesis. Angew Chem Int Ed Engl 2019; 58:12930-12934. [PMID: 31310031 DOI: 10.1002/anie.201905538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Indexed: 01/15/2023]
Abstract
Metabolic profiling of Streptomyces sp. IB2014/016-6 led to the identification of three new tetrahydroisoquinoline natural products, perquinolines A-C (1-3). Labelled precursor feeding studies and the cloning of the pqr biosynthetic gene cluster revealed that 1-3 are assembled by the action of several unusual enzymes. The biosynthesis starts with the condensation of succinyl-CoA and l-phenylalanine catalyzed by the amino-7-oxononanoate synthase-like enzyme PqrA, representing rare chemistry in natural product assembly. The second condensation and cyclization events are conducted by PqrG, an enzyme resembling an acyl-CoA ligase. Last, ATP-grasp RimK-type ligase PqrI completes the biosynthesis by transferring a γ-aminobutyric acid or β-alanine moiety. The discovered pathway represents a new route for assembling the tetrahydroisoquinoline cores of natural products.
Collapse
Affiliation(s)
- Yuriy Rebets
- Department of Pharmacy, Pharmaceutical Biotechnology, University of Saarland, Campus, Bld. C2 3, Saarbrucken, 66123, Germany
| | - Suvd Nadmid
- Department of Pharmacy, Pharmaceutical Biotechnology, University of Saarland, Campus, Bld. C2 3, Saarbrucken, 66123, Germany
| | - Constanze Paulus
- Department of Pharmacy, Pharmaceutical Biotechnology, University of Saarland, Campus, Bld. C2 3, Saarbrucken, 66123, Germany
| | - Charlotte Dahlem
- Department of Pharmacy, Pharmaceutical Biology, University of Saarland, Campus, Bld. C2 3, Saarbrucken, 66123, Germany
| | - Jennifer Herrmann
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus, Bld. 8 1, Saarbrucken, 66123, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Christian Rückert
- Center for Biotechnology-CeBiTec, University of Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, University of Saarland, Campus, Bld. C2 3, Saarbrucken, 66123, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology-CeBiTec, University of Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus, Bld. 8 1, Saarbrucken, 66123, Germany
| | - Andriy Luzhetskyy
- Department of Pharmacy, Pharmaceutical Biotechnology, University of Saarland, Campus, Bld. C2 3, Saarbrucken, 66123, Germany.,Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus, Bld. 8 1, Saarbrucken, 66123, Germany
| |
Collapse
|
14
|
Zhu J, Zhang S, Zechel DL, Paululat T, Bechthold A. Rational Design of Hybrid Natural Products by Utilizing the Promiscuity of an Amide Synthetase. ACS Chem Biol 2019; 14:1793-1801. [PMID: 31310500 DOI: 10.1021/acschembio.9b00351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
WS9326A and annimycin are produced by Streptomyces asterosporus DSM 41452. WS9326A is a nonribosomal peptide synthetase-(NRPS-) derived depsipeptide containing a cinnamoyl moiety, while annimycin is a linear polyketide bearing a 2-amino-3-hydroxycyclopent-2-enone (C5N) group. Both gene clusters have been sequenced and annotated. In this study, we show that the amide synthetase Ann1, responsible for attaching the C5N unit during annimycin biosynthesis, has the ability to catalyze fortuitous side reactions to polyenoic acids in addition to its main reaction. Novel compounds were generated by feeding experiments and in vitro studies. We also rationally designed a hybrid natural product consisting of the cinnamoyl moiety of WS9326A and the C5N moiety of annimycin by creating a mutant of S. asterosporus that retains genes encoding biosynthesis of the C5N unit of annimycin and the cinnamoyl group of WS9326A. The promiscuity of Ann1 also proved useful for trapping compounds that arise from acyl-ACP intermediates, which occur in the biosynthesis of the cinnamoyl moiety of WS9326A, by hydrolysis. In this pathway, we postulate that sas27 and sas28 genes are involved in the biosynthesis of the cinnamoyl moiety in WS9326A.
Collapse
Affiliation(s)
- Jing Zhu
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Stefan-Meier-Str. 19, Freiburg, Germany
| | - Songya Zhang
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, People’s Republic China
| | - David L. Zechel
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Thomas Paululat
- Department of Organic Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, Siegen, Germany
| | - Andreas Bechthold
- Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs University, Stefan-Meier-Str. 19, Freiburg, Germany
| |
Collapse
|
15
|
Hanh NPK, Hwang JY, Oh HR, Kim GJ, Choi H, Nam DH. Biosynthesis of 2-amino-3-hydroxycyclopent-2-enone moiety of bafilomycin in Kitasatospora cheerisanensis KCTC2395. J Microbiol 2018; 56:571-578. [DOI: 10.1007/s12275-018-8267-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022]
|
16
|
Xu XN, Chen LY, Chen C, Tang YJ, Bai FW, Su C, Zhao XQ. Genome Mining of the Marine Actinomycete Streptomyces sp. DUT11 and Discovery of Tunicamycins as Anti-complement Agents. Front Microbiol 2018; 9:1318. [PMID: 29973921 PMCID: PMC6019454 DOI: 10.3389/fmicb.2018.01318] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
Marine actinobacteria are potential producers of various secondary metabolites with diverse bioactivities. Among various bioactive compounds, anti-complement agents have received great interest for drug discovery to treat numerous diseases caused by inappropriate activation of the human complement system. However, marine streptomycetes producing anti-complement agents are still poorly explored. In this study, a marine-derived strain Streptomyces sp. DUT11 showing superior anti-complement activity was focused, and its genome sequence was analyzed. Gene clusters showing high similarities to that of tunicamycin and nonactin were identified, and their corresponding metabolites were also detected. Subsequently, tunicamycin I, V, and VII were isolated from Streptomyces sp. DUT11. Anti-complement assay showed that tunicamycin I, V, VII inhibited complement activation through the classic pathway, whereas no anti-complement activity of nonactin was detected. This is the first time that tunicamycins are reported to have such activity. In addition, genome analysis indicates that Streptomyces sp. DUT11 has the potential to produce novel lassopeptides and lantibiotics. These results suggest that marine Streptomyces are rich sources of anti-complement agents for drug discovery.
Collapse
Affiliation(s)
- Xiao-Na Xu
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China
| | - Liang-Yu Chen
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China
| | - Chao Chen
- College of Life Science, Dalian Minzu University, Dalian, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering, Ministry of Education – Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chun Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Harunari E, Komaki H, Ichikawa N, Hosoyama A, Kimura A, Hamada M, Igarashi Y. Draft genome sequence of Streptomyces hyaluromycini MB-PO13 T, a hyaluromycin producer. Stand Genomic Sci 2018; 13:2. [PMID: 29371910 PMCID: PMC5765640 DOI: 10.1186/s40793-017-0286-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/23/2017] [Indexed: 11/10/2022] Open
Abstract
Streptomyces hyaluromycini MB-PO13T (=NBRC 110483T = DSM 100105T) is type strain of the species, which produces a hyaluronidase inhibitor, hyaluromycin. Here, we report the draft genome sequence of this strain together with features of the organism and generation, annotation and analysis of the genome sequence. The 11.5 Mb genome of Streptomyces hyaluromycini MB-PO13T encoded 10,098 putative ORFs, of which 5317 were assigned with COG categories. The genome harbored at least six type I PKS clusters, three type II PKS gene clusters, two type III PKS gene clusters, six NRPS gene clusters, and one hybrid PKS/NRPS gene cluster. The type II PKS gene cluster including 2-amino-3-hydroxycyclopent-2-enone synthetic genes was identified to be responsible for hyaluromycin synthesis. We propose the biosynthetic pathway based on bioinformatic analysis.
Collapse
Affiliation(s)
- Enjuro Harunari
- 1Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| | - Hisayuki Komaki
- 2Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| | | | | | | | - Moriyuki Hamada
- 2Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Chiba, Japan
| | - Yasuhiro Igarashi
- 1Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan
| |
Collapse
|
18
|
Liu J, Kaganjo J, Zhang W, Zeilstra-Ryalls J. Investigating the bifunctionality of cyclizing and "classical" 5-aminolevulinate synthases. Protein Sci 2017; 27:402-410. [PMID: 29027286 DOI: 10.1002/pro.3324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 11/07/2022]
Abstract
The precursor to all tetrapyrroles is 5-aminolevulinic acid, which is made either via the condensation of glycine and succinyl-CoA catalyzed by an ALA synthase (the C4 or Shemin pathway) or by a pathway that uses glutamyl-tRNA as a precursor and involves other enzymes (the C5 pathway). Certain ALA synthases also catalyze the cyclization of ALA-CoA to form 2-amino-3-hydroxycyclopent-2-en-1-one. Organisms with synthases that possess this second activity nevertheless rely upon the C5 pathway to supply ALA for tetrapyrrole biosynthesis. The C5 N units are components of a variety of secondary metabolites. Here, we show that an ALA synthase used exclusively for tetrapyrrole biosynthesis is also capable of catalyzing the cyclization reaction, albeit at much lower efficiency than the dedicated cyclases. Two absolutely conserved serines present in all known ALA-CoA cyclases are threonines in all known ALA synthases, suggesting they could be important in distinguishing the functions of these enzymes. We found that purified mutant proteins having single and double substitutions of the conserved residues are not improved in their respective alternate activities; rather, they are worse. Protein structural modeling and amino acid sequence alignments were explored within the context of what is known about the reaction mechanisms of these two different types of enzymes to consider what other features are important for the two activities.
Collapse
Affiliation(s)
- Joyce Liu
- Department of Bioengineering, University of California, Berkeley, California
| | - James Kaganjo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California
| | - Jill Zeilstra-Ryalls
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio
| |
Collapse
|
19
|
Zhu L, Qian X, Chen D, Ge M. Role of two 5-aminolevulinic acid biosynthetic pathways in heme and secondary metabolite biosynthesis in Amycolatopsis orientalis. J Basic Microbiol 2017; 58:198-205. [PMID: 29164655 DOI: 10.1002/jobm.201600758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/25/2017] [Accepted: 09/23/2017] [Indexed: 11/09/2022]
Abstract
Analysis of the Amycolatopsis orientalis genome revealed that two genes, hemA1 and hemA2, belonging to divergent pathways, were involved in the biosynthesis of 5-aminolevulinic acid. The roles of hemA1 and hemA2 were elucidated via genetic manipulation and metabolite analysis. The disruption of hemA1, encoding the glutamyl-tRNAGlu reductase of the C5 pathway, was essential for cell growth and is used for heme synthesis. Overexpression of hemA1 resulted in elevated vancomycin and ECO-0501 production in Amycolatopsis orientalis, and it was also effective in increasing the production of daptomycin and natamycin in other Streptomycetes. The disruption of hemA2 indicated that it encodes the 5-aminolevulinic acid synthase of the Shemin pathway, serving as a key enzyme for the synthesis of the precursor aminohydroxycyclopentenone unit of ECO-0501. However, hemA2 disruption could not be complemented by the addition of 5-aminolevulinic acid or by the expression of hemA2 outside of the ECO-0501 gene cluster. The synthesis of ECO-0501 was only restored by the insertion of hemA2 at its original locus. The hemA2 gene could partly complement the hemA1 deficiency. Overexpression of hemA1, a key gene from the heme biosynthetic pathway, is proposed here as a new approach to improve the production of secondary metabolites in bacteria, whereas hemA2 plays different roles depending on its pattern of expression.
Collapse
Affiliation(s)
- Li Zhu
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China.,Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Xiuping Qian
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| | - Mei Ge
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| |
Collapse
|