1
|
Schneider RF, Dubin A, Marten S, Roth O. Parent-Specific Transgenerational Immune Priming Enhances Offspring Defense-Unless Heat Stress Negates It All. Ecol Evol 2024; 14:e70552. [PMID: 39588349 PMCID: PMC11586686 DOI: 10.1002/ece3.70552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/27/2024] Open
Abstract
Transgenerational immune priming (TGIP) adjusts offspring's immune responses based on parental immunological experiences. It is predicted to be adaptive when parent-offspring environmental conditions match, while mismatches negate those advantages, rendering TGIP potentially costly. We tested these cost-benefit dynamics in the pipefish Syngnathus typhle (Syngnathidae). Because of their unique male pregnancy, egg production and rearing occur in different sexes, providing both parents multiple avenues for TGIP. Parental bacteria exposure in our pipefish was simulated through vaccinations with heat-killed Vibrio aestuarianus before mating the fish to each other or to controls. The resulting offspring were exposed to V. aestuarianus in control or heat stress environments, after which transcriptome and microbiome compositions were investigated. Transcriptomic TGIP effects were only observed in Vibrio-exposed offspring at control temperatures, arguing for low costs of TGIP in non-matching microbiota environments. Transcriptomic phenotypes elicited by maternal and paternal TGIP had limited overlap and were not additive. Parentally induced transcriptomic responses were associated with immune functions, and specifically, the paternal response to the innate immune branch, possibly hinting at trained immunity. TGIP of both parents reduced the relative abundance of the experimental Vibrio in exposed offspring, showcasing its ecological benefits. Despite TGIP's significance in matching biotic environments, no TGIP-associated phenotypes were observed for heat-treated offspring, illustrating its limitations. Heat spikes caused by climate change thus threaten TGIP benefits, potentially increasing susceptibility to emerging marine diseases. We demonstrate the urgent need to understand how animals cope with climate-induced changes in microbial assemblages to assess their vulnerability in light of climate change.
Collapse
Affiliation(s)
- Ralf F. Schneider
- Department of Zoology, Marine Evolutionary BiologyUniversity of KielKielGermany
- Department of Marine Evolutionary EcologyHelmholtz Centre for Ocean ResearchKielGermany
| | - Arseny Dubin
- Department of Zoology, Marine Evolutionary BiologyUniversity of KielKielGermany
- Department of Marine Evolutionary EcologyHelmholtz Centre for Ocean ResearchKielGermany
| | - Silke‐Mareike Marten
- Department of Zoology, Marine Evolutionary BiologyUniversity of KielKielGermany
- Department of Marine Evolutionary EcologyHelmholtz Centre for Ocean ResearchKielGermany
| | - Olivia Roth
- Department of Zoology, Marine Evolutionary BiologyUniversity of KielKielGermany
- Department of Marine Evolutionary EcologyHelmholtz Centre for Ocean ResearchKielGermany
| |
Collapse
|
2
|
Vu Q, Pham L, Truong O, Tran S, Bui C, Le M, Dang B, Dinh K. Extreme Temperatures Reduce Copepod Performance and Change the Relative Abundance of Internal Microbiota. Ecol Evol 2024; 14:e70408. [PMID: 39398636 PMCID: PMC11470155 DOI: 10.1002/ece3.70408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Copepods are one of the most abundant invertebrate groups in the seas and oceans and are a significant food source for marine animals. Copepods are also particularly sensitive to elevated temperatures. However, it is relatively unknown how the internal microbiome influences copepod susceptibility to warming. We addressed this fundamental knowledge gap by assessing key life history traits (survival, development, and reproduction) and changes in the internal microbiome in the tropical calanoid copepod Acartia sp. in response to warming (26°C, 30°C, and 34°C). Copepod microbiomes were analyzed using high throughput DNA sequencing of V1-V9 of 16S rRNA hypervariable regions. Copepod performance was better at 30°C than at 26°C, as indicated by faster development, a higher growth rate, and fecundity. However, these parameters strongly decreased at 34°C. We recorded 1,262,987 amplicon sequence reads, corresponding to 392 total operational taxonomic units (OTUs) at 97% similarity. Warming did not affect OTU numbers and the biodiversity indices, but it substantially changed the relative abundance of three major phyla: Proteobacteria, Actinobacteria, and Bacteroidota. The thermophilic and opportunistic Proteobacteria and Bacteroidota increased under extreme temperatures (34°C) while Actinobacteria abundance was strongly reduced. Changes in the relative abundance of these bacteria might be related to reduced copepod growth, survival, and reproduction under extreme temperatures. Profiling the functional role of all internal bacterial groups in response to the temperature change will fundamentally advance our mechanistic understanding of the performance of tropical copepods and, more generally, marine invertebrates to a warming climate.
Collapse
Affiliation(s)
- Quyen D. H. Vu
- Institute for Biotechnology and Environment, Nha Trang UniversityNha Trang CityVietnam
| | - Linh P. Pham
- Cam Ranh Centre for Tropical Marine Research and AquacultureInstitute of Aquaculture, Nha Trang UniversityNha Trang CityVietnam
| | - Oanh T. Truong
- Institute for Biotechnology and Environment, Nha Trang UniversityNha Trang CityVietnam
| | - Sang Q. Tran
- Institute for Biotechnology and Environment, Nha Trang UniversityNha Trang CityVietnam
| | - Canh V. Bui
- Cam Ranh Centre for Tropical Marine Research and AquacultureInstitute of Aquaculture, Nha Trang UniversityNha Trang CityVietnam
| | - Minh‐Hoang Le
- Cam Ranh Centre for Tropical Marine Research and AquacultureInstitute of Aquaculture, Nha Trang UniversityNha Trang CityVietnam
| | - Binh T. Dang
- Institute for Biotechnology and Environment, Nha Trang UniversityNha Trang CityVietnam
| | - Khuong V. Dinh
- Cam Ranh Centre for Tropical Marine Research and AquacultureInstitute of Aquaculture, Nha Trang UniversityNha Trang CityVietnam
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
3
|
Issac Abraham SVP, Arumugam VR, Mary NI, Dharmadhas JS, Sundararaj R, Devanesan AA, Rajamanickam R, Veerapandian R, John Bosco JP, Danaraj J. Ocimum sanctum as a Source of Quorum Sensing Inhibitors to Combat Antibiotic Resistance of Human and Aquaculture Pathogens. Life (Basel) 2024; 14:785. [PMID: 39063540 PMCID: PMC11278316 DOI: 10.3390/life14070785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 07/28/2024] Open
Abstract
Biofilms play a decisive role in the infectious process and the development of antibiotic resistance. The establishment of bacterial biofilms is regulated by a signal-mediated cell-cell communication process called "quorum sensing" (QS). The identification of quorum sensing inhibitors (QSI) to mitigate the QS process may facilitate the development of novel treatment strategies for biofilm-based infections. In this study, the traditional medicinal plant Ocimum sanctum was screened for QS inhibitory potential. Sub-MICs of the extract significantly affected the secretion of EPS in Gram-negative human pathogens such as Escherichia coli, Pseudomonas aeruginosa PAO1, Proteus mirabilis, and Serratia marcescens, as well as aquaculture pathogens Vibrio harveyi, V. parahaemolyticus, and V. vulnificus, which render the bacteria more sensitive, leading to a loss of bacterial biomass from the substratum. The observed inhibitory activity of the O. sanctum extract might be attributed to the presence of eugenol, as evidenced through ultraviolet (UV)-visible, gas chromatography-mass spectroscopy (GC-MS), Fourier transformer infrared (FTIR) spectroscopy analyses, and computational studies. Additionally, the QSI potential of eugenol was corroborated through in vitro studies using the marker strain Chromobacterium violaceum.
Collapse
Affiliation(s)
| | - Veera Ravi Arumugam
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India; (V.R.A.); (N.I.M.)
| | - Nancy Immaculate Mary
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India; (V.R.A.); (N.I.M.)
| | - Jeba Sweetly Dharmadhas
- Department of Biochemistry and Biotechnology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India;
| | - Rajamanikandan Sundararaj
- Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India;
| | - Arul Ananth Devanesan
- Department of Biotechnology, The American College, Satellite Campus, Madurai 625 503, Tamil Nadu, India;
| | - Ramachandran Rajamanickam
- Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli 620 005, Tamil Nadu, India;
| | - Raja Veerapandian
- Department of Molecular and Translational Medicine, Center of Emphasis in Infectious Diseases, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA;
| | - John Paul John Bosco
- Division of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India;
| | - Jeyapragash Danaraj
- Centre for Ocean Research, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India;
| |
Collapse
|
4
|
Chen Y, Jia B, Li JY, Li D, He W. Characteristics and driving factors of antibiotic resistance genes in aquaculture products from freshwater ponds in China Yangtze River Delta. ENVIRONMENTAL TECHNOLOGY 2024; 45:2459-2470. [PMID: 36756971 DOI: 10.1080/09593330.2023.2176261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance genes (ARGs) are widespread in aquaculture and pose a huge threat to aquaculture organisms and human health. In this study, occurrences and relative abundances of ARGs were analysed in the guts of products cultured in freshwater ponds in the Yangtze River Delta region in China. A total of 29 ARGs were found in the gut samples, with detection frequencies ranging from 4.8% to 81%, and the relative abundances (ARGs/16S rRNA) ranging from 10-7 to 1. In addition, the human dietary intake of ARGs via aquaculture products was assessed, where the daily intake of most ARGs via aquaculture products was higher than those via PM2.5 and drinking water, but lower than that via vegetables. The relative abundances of MGE (IS613, Tp614, tnpA and int1) were significantly correlated with those of multiple ARGs, indicating the horizontal gene transfer (HGT) of ARGs among gut microorganisms. Proteobacteria, Firmicutes and Actinobacteria were the dominated microbial communities found in the guts of aquaculture products. In addition, significant correlations were found between Cyanobacteria and int1, between Nitrospira and tetE, and between sul2 and aadA2, indicating potential same hosts of these genes. In addition, results from co-correlation indicated both HGT (dominated by MGEs) of ARGs and the enrichment of ARGs in bacteria. MGEs, mostly int1, were more effective than bacteria in increasing the ARG abundance. This study could provide a better understanding of the transmission of ARGs in the aquaculture environment and improve the quality of aquaculture products and the ecology.
Collapse
Affiliation(s)
- Yiqin Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Bin Jia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai, People's Republic of China
| | - Dan Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, People's Republic of China
| | - Wenhui He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Zhang Q, Alter T, Fleischmann S. Non-O1/Non-O139 Vibrio cholerae-An Underestimated Foodborne Pathogen? An Overview of Its Virulence Genes and Regulatory Systems Involved in Pathogenesis. Microorganisms 2024; 12:818. [PMID: 38674762 PMCID: PMC11052320 DOI: 10.3390/microorganisms12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the number of foodborne infections with non-O1 and non-O139 Vibrio cholerae (NOVC) has increased worldwide. These have ranged from sporadic infection cases to localized outbreaks. The majority of case reports describe self-limiting gastroenteritis. However, severe gastroenteritis and even cholera-like symptoms have also been described. All reported diarrheal cases can be traced back to the consumption of contaminated seafood. As climate change alters the habitats and distribution patterns of aquatic bacteria, there is a possibility that the number of infections and outbreaks caused by Vibrio spp. will further increase, especially in countries where raw or undercooked seafood is consumed or clean drinking water is lacking. Against this background, this review article focuses on a possible infection pathway and how NOVC can survive in the human host after oral ingestion, colonize intestinal epithelial cells, express virulence factors causing diarrhea, and is excreted by the human host to return to the environment.
Collapse
Affiliation(s)
| | | | - Susanne Fleischmann
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany; (Q.Z.); (T.A.)
| |
Collapse
|
6
|
Rasal TA, Mallery CP, Brockley MW, Brown LC, Paczkowski JE, van Kessel JC. Ligand binding determines proteolytic stability of Vibrio LuxR/HapR quorum sensing transcription factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580527. [PMID: 38405947 PMCID: PMC10888775 DOI: 10.1101/2024.02.15.580527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In Vibrio species, quorum sensing signaling culminates in the production of a TetR-type master transcription factor collectively called the LuxR/HapR family, which regulates genes required for colonization and infection of host organisms. These proteins possess a solvent accessible putative ligand binding pocket. However, a native ligand has not been identified, and the role of ligand binding in LuxR/HapR function in Vibrionaceae is unknown. To probe the role of the ligand binding pocket, we utilize the small molecule thiophenesulfonamide inhibitor PTSP (3- p henyl-1-( t hiophen-2-yl s ulfonyl)-1 H - p yrazole) that we previously showed targets LuxR/HapR proteins. Amino acid conservation in the ligand binding pocket determines the specificity and efficacy of PTSP inhibition across Vibrio species. Here, we used structure-function analyses to identify PTSP-interacting residues in the ligand binding pocket of SmcR - the Vibrio vulnificus LuxR/HapR homolog - that are required for PTSP inhibition of SmcR activity in vivo . Forward genetic screening combined with X-ray crystallography structural determination of SmcR bound to PTSP identified substitutions at eight residues that were sufficient to reduce or eliminate PTSP-mediated SmcR inhibition. Small-angle X-ray scattering and computational modeling determined that PTSP drives allosteric unfolding at the N-terminal DNA binding domain. We discovered that SmcR is degraded by the ClpAP protease in the presence of PTSP in vivo ; substitution of key PTSP-interacting residues stabilized or increased SmcR levels in the cell. This mechanism of inhibition is observed for all thiophenesulfonamide compounds tested and against other Vibrio species. We conclude that thiophenesulfonamides specifically bind in the ligand binding pocket of LuxR/HapR proteins, promoting protein degradation and thereby suppressing downstream gene expression, implicating ligand binding as a mediator of LuxR/HapR protein stability and function to govern virulence gene expression in Vibrio pathogens. SIGNIFICANCE LuxR/HapR proteins were discovered in the 1990s as central regulators of quorum sensing gene expression and later discovered to be conserved in all studied Vibrio species. LuxR/HapR homologs regulate a wide range of genes involved in pathogenesis, including but not limited to genes involved in biofilm production and toxin secretion. As archetypal members of the broad class of TetR-type transcription factors, each LuxR/HapR protein has a predicted ligand binding pocket. However, no ligand has been identified for LuxR/HapR proteins that control their function as regulators. Here, we used LuxR/HapR-specific chemical inhibitors to determine that ligand binding drives proteolytic degradation in vivo , the first demonstration of LuxR/HapR function connected to ligand binding for this historical protein family.
Collapse
|
7
|
Castello A, Alio V, Cammilleri G, Sciortino S, Macaluso A, Ferrantelli V, Dall’Ara S, Pino F, Servadei I, Oliveri G, Costa A. Microbiological and Toxicological Investigations on Bivalve Molluscs Farmed in Sicily. Foods 2024; 13:552. [PMID: 38397529 PMCID: PMC10887788 DOI: 10.3390/foods13040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Bivalves can concentrate biological and chemical pollutants, causing foodborne outbreaks whose occurrence is increasing, due to climatic and anthropic factors that are difficult to reverse, hence the need for improved surveillance. This study aimed to evaluate the hygienic qualities of bivalves sampled along the production and distribution chain in Sicily and collect useful data for consumer safety. Bacteriological and molecular analyses were performed on 254 samples of bivalves for the detection of enteropathogenic Vibrio, Arcobacter spp., Aeromonas spp., Salmonella spp., and beta-glucuronidase-positive Escherichia coli. A total of 96 out of 254 samples, collected in the production areas, were processed for algal biotoxins and heavy metals detection. Bacterial and algal contaminations were also assessed for 21 samples of water from aquaculture implants. Vibrio spp., Arcobacter spp., Aeromonas hydrophila, Salmonella spp., and Escherichia coli were detected in 106/254, 79/254, 12/254, 16/254, and 95/254 molluscs, respectively. A total of 10/96 bivalves tested positive for algal biotoxins, and metals were under the legal limit. V. alginolyticus, A. butzleri, and E. coli were detected in 5, 3, and 3 water samples, respectively. Alexandrium minutum, Dinophysis acuminata, Lingulodinium polyedra, and Pseudonitzschia spp. were detected in water samples collected with the biotoxin-containing molluscs. Traces of yessotoxins were detected in molluscs from water samples containing the corresponding producing algae. Despite the strict regulation by the European Commission over shellfish supply chain monitoring, our analyses highlighted the need for efficiency improvement.
Collapse
Affiliation(s)
- Annamaria Castello
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy (A.C.)
| | - Vincenzina Alio
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy (A.C.)
| | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy (A.C.)
| | - Sonia Sciortino
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy (A.C.)
| | - Andrea Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy (A.C.)
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy (A.C.)
| | - Sonia Dall’Ara
- Fondazione Centro Ricerche Marine, National Reference Laboratory on Marine Biotoxins, V.le A. Vespucci 2, 47042 Cesenatico, Italy (F.P.); (I.S.)
| | - Fiorella Pino
- Fondazione Centro Ricerche Marine, National Reference Laboratory on Marine Biotoxins, V.le A. Vespucci 2, 47042 Cesenatico, Italy (F.P.); (I.S.)
| | - Irene Servadei
- Fondazione Centro Ricerche Marine, National Reference Laboratory on Marine Biotoxins, V.le A. Vespucci 2, 47042 Cesenatico, Italy (F.P.); (I.S.)
| | - Giuseppa Oliveri
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy (A.C.)
| | - Antonella Costa
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via G. Marinuzzi 3, 90129 Palermo, Italy (A.C.)
| |
Collapse
|
8
|
Orel N, Fadeev E, Herndl GJ, Turk V, Tinta T. Recovering high-quality bacterial genomes from cross-contaminated cultures: a case study of marine Vibrio campbellii. BMC Genomics 2024; 25:146. [PMID: 38321410 PMCID: PMC10845552 DOI: 10.1186/s12864-024-10062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Environmental monitoring of bacterial pathogens is critical for disease control in coastal marine ecosystems to maintain animal welfare and ecosystem function and to prevent significant economic losses. This requires accurate taxonomic identification of environmental bacterial pathogens, which often cannot be achieved by commonly used genetic markers (e.g., 16S rRNA gene), and an understanding of their pathogenic potential based on the information encoded in their genomes. The decreasing costs of whole genome sequencing (WGS), combined with newly developed bioinformatics tools, now make it possible to unravel the full potential of environmental pathogens, beyond traditional microbiological approaches. However, obtaining a high-quality bacterial genome, requires initial cultivation in an axenic culture, which is a bottleneck in environmental microbiology due to cross-contamination in the laboratory or isolation of non-axenic strains. RESULTS We applied WGS to determine the pathogenic potential of two Vibrio isolates from coastal seawater. During the analysis, we identified cross-contamination of one of the isolates and decided to use this dataset to evaluate the possibility of bioinformatic contaminant removal and recovery of bacterial genomes from a contaminated culture. Despite the contamination, using an appropriate bioinformatics workflow, we were able to obtain high quality and highly identical genomes (Average Nucleotide Identity value 99.98%) of one of the Vibrio isolates from both the axenic and the contaminated culture. Using the assembled genome, we were able to determine that this isolate belongs to a sub-lineage of Vibrio campbellii associated with several diseases in marine organisms. We also found that the genome of the isolate contains a novel Vibrio plasmid associated with bacterial defense mechanisms and horizontal gene transfer, which may offer a competitive advantage to this putative pathogen. CONCLUSIONS Our study shows that, using state-of-the-art bioinformatics tools and a sufficient sequencing effort, it is possible to obtain high quality genomes of the bacteria of interest and perform in-depth genomic analyses even in the case of a contaminated culture. With the new isolate and its complete genome, we are providing new insights into the genomic characteristics and functional potential of this sub-lineage of V. campbellii. The approach described here also highlights the possibility of recovering complete bacterial genomes in the case of non-axenic cultures or obligatory co-cultures.
Collapse
Affiliation(s)
- Neža Orel
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia.
| | - Eduard Fadeev
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Valentina Turk
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia.
| |
Collapse
|
9
|
Franke A, Beemelmanns A, Miest JJ. Are fish immunocompetent enough to face climate change? Biol Lett 2024; 20:20230346. [PMID: 38378140 PMCID: PMC10878809 DOI: 10.1098/rsbl.2023.0346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Ongoing climate change has already been associated with increased disease outbreaks in wild and farmed fish. Here, we evaluate the current knowledge of climate change-related ecoimmunology in teleosts with a focus on temperature, hypoxia, salinity and acidification before exploring interactive effects of multiple stressors. Our literature review reveals that acute and chronic changes in temperature and dissolved oxygen can compromise fish immunity which can lead to increased disease susceptibility. Moreover, temperature and hypoxia have already been shown to enhance the infectivity of certain pathogens/parasites and to accelerate disease progression. Too few studies exist that have focussed on acidification, but direct immune effects seem to be limited while salinity studies have led to contrasting results. Likewise, multi-stressor experiments essential for unravelling the interactions of simultaneously changing environmental factors are still scarce. This ultimately impedes our ability to estimate to what extent climate change will hamper fish immunity. Our review about epigenetic regulation mechanisms highlights the acclimation potential of the fish immune response to changing environments. However, due to the limited number of epigenetic studies, overarching conclusions cannot be drawn. Finally, we provide an outlook on how to better estimate the effects of realistic climate change scenarios in future immune studies in fish.
Collapse
Affiliation(s)
- Andrea Franke
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 26129 Oldenburg, Germany
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research (AWI), 27570 Bremerhaven, Germany
| | - Anne Beemelmanns
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V0A6 Québec, Canada
| | - Joanna J. Miest
- School of Psychology and Life Sciences, Canterbury, Kent CT1 1QU, UK
- School of Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| |
Collapse
|
10
|
Lages MA, do Vale A, Lemos ML, Balado M. Remodulation of bacterial transcriptome after acquisition of foreign DNA: the case of irp-HPI high-pathogenicity island in Vibrio anguillarum. mSphere 2024; 9:e0059623. [PMID: 38078732 PMCID: PMC10826351 DOI: 10.1128/msphere.00596-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024] Open
Abstract
The high-pathogenicity island irp-HPI is widespread in Vibrionaceae and encodes the siderophore piscibactin, as well as the regulator PbtA that is essential for its expression. In this work, we aim to study whether PbtA directly interacts with irp-HPI promoters. Furthermore, we hypothesize that PbtA, and thereby the acquisition of irp-HPI island, may also influence the expression of other genes elsewhere in the bacterial genome. To address this question, an RNAseq analysis was conducted to identify differentially expressed genes after pbtA deletion in Vibrio anguillarum RV22 genetic background. The results showed that PbtA not only modulates the irp-HPI genes but also modulates the expression of a plethora of V. anguillarum core genome genes, inducing nitrate, arginine, and sulfate metabolism, T6SS1, and quorum sensing, while repressing lipopolysaccharide (LPS) production, MARTX toxin, and major porins such as OmpV and ChiP. The direct binding of the C-terminal domain of PbtA to piscibactin promoters (PfrpA and PfrpC), quorum sensing (vanT), LPS transporter wza, and T6SS structure- and effector-encoding genes was demonstrated by electrophoretic mobility shift assay (EMSA). The results provide valuable insights into the regulatory mechanisms underlying the expression of irp-HPI island and its impact on Vibrios transcriptome, with implications in pathogenesis.IMPORTANCEHorizontal gene transfer enables bacteria to acquire traits, such as virulence factors, thereby increasing the risk of the emergence of new pathogens. irp-HPI genomic island has a broad dissemination in Vibrionaceae and is present in numerous potentially pathogenic marine bacteria, some of which can infect humans. Previous works showed that certain V. anguillarum strains exhibit an expanded host range plasticity and heightened virulence, a phenomenon linked to the acquisition of the irp-HPI genomic island. The present work shows that this adaptive capability is likely achieved through comprehensive changes in the transcriptome of the bacteria and that these changes are mediated by the master regulator PbtA encoded within the irp-HPI element. Our results shed light on the broad implications of horizontal gene transfer in bacterial evolution, showing that the acquired DNA can directly mediate changes in the expression of the core genome, with profounds implications in pathogenesis.
Collapse
Affiliation(s)
- Marta A Lages
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
11
|
Brauge T, Mougin J, Ells T, Midelet G. Sources and contamination routes of seafood with human pathogenic Vibrio spp.: A Farm-to-Fork approach. Compr Rev Food Sci Food Saf 2024; 23:e13283. [PMID: 38284576 DOI: 10.1111/1541-4337.13283] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024]
Abstract
Vibrio spp., known human foodborne pathogens, thrive in freshwater, estuaries, and marine settings, causing vibriosis upon ingestion. The rising global vibriosis cases due to climate change necessitate a deeper understanding of Vibrio epidemiology and human transmission. This review delves into Vibrio contamination in seafood, scrutinizing its sources and pathways. We comprehensively assess the contamination of human-pathogenic Vibrio in the seafood chain, covering raw materials to processed products. A "Farm-to-Fork" approach, aligned with the One Health concept, is essential for grasping the complex nature of Vibrio contamination. Vibrio's widespread presence in natural and farmed aquatic environments establishes them as potential entry points into the seafood chain. Environmental factors, including climate, human activities, and wildlife, influence contamination sources and routes, underscoring the need to understand the origin and transmission of pathogens in raw seafood. Once within the seafood chain, the formation of protective biofilms on various surfaces in production and processing poses significant food safety risks, necessitating proper cleaning and disinfection to prevent microbial residue. In addition, inadequate seafood handling, from inappropriate processing procedures to cross-contamination via pests or seafood handlers, significantly contributes to Vibrio food contamination, thus warranting attention to reduce risks. Information presented here support the imperative for proactive measures, robust research, and interdisciplinary collaboration in order to effectively mitigate the risks posed by human pathogenic Vibrio contamination, safeguarding public health and global food security. This review serves as a crucial resource for researchers, industrials, and policymakers, equipping them with the knowledge to develop biosecurity measures associated with Vibrio-contaminated seafood.
Collapse
Affiliation(s)
- Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| | - Julia Mougin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Timothy Ells
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, Nova Scotia, Canada
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| |
Collapse
|
12
|
Zhang Q, Alter T, Strauch E, Hammerl JA, Schwartz K, Borowiak M, Deneke C, Fleischmann S. Genetic and Phenotypic Virulence Potential of Non-O1/Non-O139 Vibrio cholerae Isolated from German Retail Seafood. Microorganisms 2023; 11:2751. [PMID: 38004762 PMCID: PMC10672755 DOI: 10.3390/microorganisms11112751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Non-O1 and non-O139 Vibrio cholerae (NOVC) can cause gastrointestinal infections in humans. Contaminated food, especially seafood, is an important source of human infections. In this study, the virulence potential of 63 NOVC strains isolated from retail seafood were characterized at the genotypic and phenotypic levels. Although no strain encoded the cholera toxin (CTX) and the toxin-coregulated pilus (TCP), several virulence factors, including the HlyA hemolysin, the cholix toxin ChxA, the heat-stable enterotoxin Stn, and genes coding for the type 3 and type 6 secretion systems, were detected. All strains showed hemolytic activity against human and sheep erythrocytes: 90% (n = 57) formed a strong biofilm, 52% (n = 33) were highly motile at 37 °C, and only 8% (n = 5) and 14% (n = 9) could resist ≥60% and ≥40% human serum, respectively. Biofilm formation and toxin regulation genes were also detected. cgMLST analysis demonstrated that NOVC strains from seafood cluster with clinical NOVC strains. Antimicrobial susceptibility testing (AST) results in the identification of five strains that developed non-wildtype phenotypes (medium and resistant) against the substances of the classes of beta-lactams (including penicillin, carbapenem, and cephalosporin), polymyxins, and sulphonamides. The phenotypic resistance pattern could be partially attributed to the acquired resistance determinants identified via in silico analysis. Our results showed differences in the virulence potential of the analyzed NOVC isolated from retail seafood products, which may be considered for further pathogenicity evaluation and the risk assessment of NOVC isolates in future seafood monitoring.
Collapse
Affiliation(s)
- Quantao Zhang
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| | - Eckhard Strauch
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany; (E.S.); (J.A.H.)
| | - Jens Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany; (E.S.); (J.A.H.)
| | - Keike Schwartz
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany; (E.S.); (J.A.H.)
| | - Maria Borowiak
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany; (E.S.); (J.A.H.)
| | - Carlus Deneke
- Department Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany; (E.S.); (J.A.H.)
| | - Susanne Fleischmann
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany
| |
Collapse
|
13
|
Falco A, Villaquirán-Muriel MÁ, Gallo Pérez JD, Mondragón-Quiguanas A, Aranaga C, Correa A. Identification of Vibrio metschnikovii and Vibrio injensis Isolated from Leachate Ponds: Characterization of Their Antibiotic Resistance and Virulence-Associated Genes. Antibiotics (Basel) 2023; 12:1571. [PMID: 37998773 PMCID: PMC10668802 DOI: 10.3390/antibiotics12111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
This study aimed to evaluate the antibiotic resistance of 22 environmental Vibrio metschnikovii isolates and 1 Vibrio injensis isolate from landfill leachates in southwestern Colombia. Isolates were identified by Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF), and 16S ribosomal RNA gene sequencing. Analysis of the susceptibility to six antibacterial agents by the Kirby-Bauer method showed susceptibility of all the isolates to ciprofloxacin and imipenem. We recorded resistance to beta-lactams and aminoglycosides, but no multidrug resistance was observed. The genome of one of the isolates was sequenced to determine the pathogenic potential of V. injensis. Genes associated with virulence were identified, including for flagellar synthesis, biofilm formation, and hemolysins, among others. These results demonstrate that landfill leachates are potential reservoirs of antibiotic-resistant and pathogenic bacteria and highlight the importance of monitoring Vibrio species in different aquatic environments.
Collapse
Affiliation(s)
- Aura Falco
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - Miguel Ángel Villaquirán-Muriel
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - José David Gallo Pérez
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - Alejandra Mondragón-Quiguanas
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - Carlos Aranaga
- Chemistry and Biotechnology Research Group (QUIBIO), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia;
| | - Adriana Correa
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| |
Collapse
|
14
|
Rodríguez JY, Duarte C, Rodríguez GJ, Montaño LA, Benítez-Peñuela MA, Díaz P, López O, Álvarez-Moreno CA. Bacteremia by non-O1/non-O139 Vibrio cholerae: Case description and literature review. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:323-329. [PMID: 37871571 PMCID: PMC10615443 DOI: 10.7705/biomedica.6716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 08/29/2023] [Indexed: 10/25/2023]
Abstract
Bacteremia by non-O1/non-O139 Vibrio cholerae is a rare entity associated with high mortality rates. We report a case of non-O1/non-O139 V. cholerae bacteremia confirmed by polymerase chain reaction and agglutination tests. The clinicoepidemiological characteristics and therapeutic options for this infection are also described.
Collapse
Affiliation(s)
- José Y Rodríguez
- Grupo de Infectología, Centro de Investigaciones Microbiológicas del Cesar, Valledupar, Colombia; Departamento de Medicina Interna, Facultad de Medicina, Universidad Cooperativa de Colombia, Santa Marta, Colombia; Grupo de Microbiología, Clínica Alta Complejidad del Caribe, Valledupar, Colombia.
| | - Carolina Duarte
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, D.C., Colombia.
| | - Gerson J Rodríguez
- Grupo de Infectología, Centro de Investigaciones Microbiológicas del Cesar, Valledupar, Colombia.
| | | | - Miguel A Benítez-Peñuela
- Grupo de Infectología, Centro de Investigaciones Microbiológicas del Cesar, Valledupar, Colombia.
| | - Paula Díaz
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, D.C., Colombia.
| | - Olga López
- Grupo de Microbiología, Clínica Alta Complejidad del Caribe, Valledupar, Colombia.
| | - Carlos A Álvarez-Moreno
- Programa de Infectología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá,D.C., Colombia; Grupo de Infectología, Clínica Universitaria Colombia, Clínica Colsanitas, Bogotá, D.C., Colombia.
| |
Collapse
|
15
|
Coyle NM, O'Toole C, Thomas JCL, Ryder D, Feil EJ, Geary M, Bean TP, Joseph AW, Waine A, Cheslett D, Verner-Jeffreys DW. Vibrio aestuarianus clade A and clade B isolates are associated with Pacific oyster ( Magallana gigas) disease outbreaks across Ireland. Microb Genom 2023; 9:mgen001078. [PMID: 37540224 PMCID: PMC10483421 DOI: 10.1099/mgen.0.001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Bacteria from the family Vibrionaceae have been implicated in mass mortalities of farmed Pacific oysters (Magallana gigas) in multiple countries, leading to substantial impairment of growth in the sector. In Ireland there has been concern that Vibrio have been involved in serious summer outbreaks. There is evidence that Vibrio aestuarianus is increasingly becoming the main pathogen of concern for the Pacific oyster industry in Ireland. While bacteria belonging to the Vibrio splendidus clade are also detected frequently in mortality episodes, their role in the outbreaks of summer mortality is not well understood. To identify and characterize strains involved in these outbreaks, 43 Vibrio isolates were recovered from Pacific oyster summer mass mortality episodes in Ireland from 2008 to 2015 and these were whole-genome sequenced. Among these, 25 were found to be V. aestuarianus (implicated in disease) and 18 were members of the V. splendidus species complex (role in disease undetermined). Two distinct clades of V. aestuarianus - clade A and clade B - were found that had previously been described as circulating within French oyster culture. The high degree of similarity between the Irish and French V. aestuarianus isolates points to translocation of the pathogen between Europe's two major oyster-producing countries, probably via trade in spat and other age classes. V. splendidus isolates were more diverse, but the data reveal a single clone of this species that has spread across oyster farms in Ireland. This underscores that Vibrio could be transmitted readily across oyster farms. The presence of V. aestuarianus clades A and B in not only France but also Ireland adds weight to growing concern that this pathogen is spreading and impacting Pacific oyster production within Europe.
Collapse
Affiliation(s)
- Nicola M. Coyle
- Centre for Environment Fisheries and Aquaculture, Weymouth DT4 8UB, UK
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Ciar O'Toole
- Marine Institute, Oranmore, Co. Galway H91 R673, Ireland
| | - Jennifer C. L. Thomas
- Centre for Environment Fisheries and Aquaculture, Weymouth DT4 8UB, UK
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - David Ryder
- Centre for Environment Fisheries and Aquaculture, Weymouth DT4 8UB, UK
| | - Edward J. Feil
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Michelle Geary
- Marine Institute, Oranmore, Co. Galway H91 R673, Ireland
| | - Timothy P. Bean
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | | | - Ava Waine
- Centre for Environment Fisheries and Aquaculture, Weymouth DT4 8UB, UK
- Newcastle University, School of Natural and Environmental Sciences, Newcastle Upon Tyne, NE1 7RU, UK
| | | | | |
Collapse
|
16
|
Padovan AC, Turnbull AR, Nowland SJ, Osborne MWJ, Kaestli M, Seymour JR, Gibb KS. Growth of V. parahaemolyticus in Tropical Blacklip Rock Oysters. Pathogens 2023; 12:834. [PMID: 37375524 DOI: 10.3390/pathogens12060834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The opportunistic pathogen Vibrio parahaemolyticus poses a significant food safety risk worldwide, and understanding its growth in commercially cultivated oysters, especially at temperatures likely to be encountered post-harvest, provides essential information to provide the safe supply of oysters. The Blacklip Rock Oyster (BRO) is an emerging commercial species in tropical northern Australia and as a warm water species, it is potentially exposed to Vibrio spp. In order to determine the growth characteristics of Vibrio parahaemolyticus in BRO post-harvest, four V. parahaemolyticus strains isolated from oysters were injected into BROs and the level of V. parahaemolyticus was measured at different time points in oysters stored at four temperatures. Estimated growth rates were -0.001, 0.003, 0.032, and 0.047 log10 CFU/h at 4 °C, 13 °C, 18 °C, and 25 °C, respectively. The highest maximum population density of 5.31 log10 CFU/g was achieved at 18 °C after 116 h. There was no growth of V. parahaemolyticus at 4 °C, slow growth at 13 °C, but notably, growth occurred at 18 °C and 25 °C. Vibrio parahaemolyticus growth at 18 °C and 25 °C was not significantly different from each other but were significantly higher than at 13 °C (polynomial GLM model, interaction terms between time and temperature groups p < 0.05). Results support the safe storage of BROs at both 4 °C and 13 °C. This V. parahaemolyticus growth data will inform regulators and assist the Australian oyster industry to develop guidelines for BRO storage and transport to maximise product quality and safety.
Collapse
Affiliation(s)
- Anna C Padovan
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0810, Australia
| | - Alison R Turnbull
- Institute of Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia
| | - Samantha J Nowland
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0810, Australia
- Aquaculture Unit, Department of Industry, Tourism and Trade, Northern Territory Government, Darwin, NT 0801, Australia
| | - Matthew W J Osborne
- Aquaculture Unit, Department of Industry, Tourism and Trade, Northern Territory Government, Darwin, NT 0801, Australia
| | - Mirjam Kaestli
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0810, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Karen S Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0810, Australia
| |
Collapse
|
17
|
Boumerdassi H, Djouadi LN, Hambli A, Fardeau ML, Ouzari HI, Nateche F. Physicochemical and Microbiological Water Quality Assessment of a Northwestern Algerian Dam: Detection of Ichtyopathogenic Bacteria. Pol J Microbiol 2023; 72:187-198. [PMID: 37314358 DOI: 10.33073/pjm-2023-020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 06/15/2023] Open
Abstract
Freshwater fish are often exposed to threats from anthropogenic or natural origins, such as pathogenic or opportunistic microorganisms responsible for a broad range of severe infections. In this study, we aimed to assess this microbiological threat to fish in an Algerian northwestern dam Sekkak (Tlemcen) by evaluating the diversity of ichtyopathogenic bacteria. In order to determine the water quality, physicochemical analyses of the dam water were carried out in situ. Ichtyopathogenic bacteria were isolated on selective media and identified by API galleries and molecular techniques (PCR and sequencing of the 16S rRNA gene). Besides, the antibiograms were constructed for all the isolates. The physicochemical and bacteriological analyses allowed us to classify the dam water as moderately polluted to polluted. Furthermore, an important diversity of ichtyopathogenic bacterial species was observed as Aeromonas hydrophila, Providencia rettgeri, and Pseudomonas aeruginosa were retrieved. The antibiogram test revealed notable resistance. The antibiotic family for which most resistances were found was the β-lactam family, followed by aminoglycosides and macrolides. These results indicate that aquatic environments can shelter multidrug-resistant pathogenic bacteria representing a threat to the endemic fauna. Therefore, it is important to closely monitor these waters in order to improve the fish's living environment and ensure healthier production.
Collapse
Affiliation(s)
- Hanane Boumerdassi
- 1Laboratory of Dynamic and Biodiversity, Faculty of Biological Sciences, University of Science and Technology - Houari Boumediene, Algiers, Algeria
- 2Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology - Houari Boumediene, Algiers, Algeria
| | - Lydia Neïla Djouadi
- 2Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology - Houari Boumediene, Algiers, Algeria
| | - Abderrahmane Hambli
- 3Central laboratory of Water Quality Control, Boumerdes Unit, Algerian Waters, Algeria
| | - Marie-Laure Fardeau
- 4Aix-Marseille University, University of South Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Marseille, France
| | - Hadda-Imen Ouzari
- 5Laboratory of Microorganisms and Active Biomolecules (LR03ES03), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Farida Nateche
- 2Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Science and Technology - Houari Boumediene, Algiers, Algeria
| |
Collapse
|
18
|
Schütt EM, Hundsdörfer MAJ, von Hoyningen-Huene AJE, Lange X, Koschmider A, Oppelt N. First Steps towards a near Real-Time Modelling System of Vibrio vulnificus in the Baltic Sea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085543. [PMID: 37107825 PMCID: PMC10138452 DOI: 10.3390/ijerph20085543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023]
Abstract
Over the last two decades, Vibrio vulnificus infections have emerged as an increasingly serious public health threat along the German Baltic coast. To manage related risks, near real-time (NRT) modelling of V. vulnificus quantities has often been proposed. Such models require spatially explicit input data, for example, from remote sensing or numerical model products. We tested if data from a hydrodynamic, a meteorological, and a biogeochemical model are suitable as input for an NRT model system by coupling it with field samples and assessing the models' ability to capture known ecological parameters of V. vulnificus. We also identify the most important predictors for V. vulnificus in the Baltic Sea by leveraging the St. Nicolas House Analysis. Using a 27-year time series of sea surface temperature, we have investigated trends of V. vulnificus season length, which pinpoint hotspots mainly in the east of our study region. Our results underline the importance of water temperature and salinity on V. vulnificus abundance but also highlight the potential of air temperature, oxygen, and precipitation to serve as predictors in a statistical model, albeit their relationship with V. vulnificus may not be causal. The evaluated models cannot be used in an NRT model system due to data availability constraints, but promising alternatives are presented. The results provide a valuable basis for a future NRT model for V. vulnificus in the Baltic Sea.
Collapse
Affiliation(s)
- Eike M. Schütt
- Earth Observation and Modelling, Department of Geography, Kiel University, 24118 Kiel, Germany
- Correspondence:
| | - Marie A. J. Hundsdörfer
- Earth Observation and Modelling, Department of Geography, Kiel University, 24118 Kiel, Germany
| | | | - Xaver Lange
- Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany
| | - Agnes Koschmider
- Business Informatics and Process Analytics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Natascha Oppelt
- Earth Observation and Modelling, Department of Geography, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
19
|
Castello A, Alio V, Sciortino S, Oliveri G, Cardamone C, Butera G, Costa A. Occurrence and Molecular Characterization of Potentially Pathogenic Vibrio spp. in Seafood Collected in Sicily. Microorganisms 2022; 11:microorganisms11010053. [PMID: 36677345 PMCID: PMC9866474 DOI: 10.3390/microorganisms11010053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Seafood can vehiculate foodborne illnesses from water to humans. Climate changes, increasing water contamination and coastlines anthropization, favor the global spread of Vibrio spp. and the occurrence of antibiotic-resistant isolates. The aim of this study was to evaluate the spread of potentially pathogenic Vibrio spp. in fishery products collected in Sicily and to assess their antibiotic resistance. Bacteriological and molecular methods were applied to 603 seafood samples to detect V. parahaemolyticus, V. cholerae, V. vulnificus, and Vibrio alginolyticus in order to assess their pathogenicity and antimicrobial resistance. About 30% of bivalves and 20% of other fishery products were contaminated by Vibrio spp.; V. parahaemolyticus accounted for 43/165 isolates, 3 of which were carrying either tdh or trh; V. cholerae accounted for 12/165 isolates, all of them non-O1 non-O139 and none carrying virulence genes; and V. vulnificus accounted for 5/165 isolates. The highest rates of resistance were observed for ampicillin, but we also detected strains resistant to antibiotics currently included among the most efficient against Vibrio spp. In spite of their current low incidence, their rise might pose further issues in treating infections; hence, these results stress the need for a continuous monitoring of antimicrobial resistance among fishery products and an effective risk assessment.
Collapse
|
20
|
Amato E, Riess M, Thomas-Lopez D, Linkevicius M, Pitkänen T, Wołkowicz T, Rjabinina J, Jernberg C, Hjertqvist M, MacDonald E, Antony-Samy JK, Dalsgaard Bjerre K, Salmenlinna S, Fuursted K, Hansen A, Naseer U. Epidemiological and microbiological investigation of a large increase in vibriosis, northern Europe, 2018. Euro Surveill 2022; 27:2101088. [PMID: 35837965 PMCID: PMC9284918 DOI: 10.2807/1560-7917.es.2022.27.28.2101088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BackgroundVibriosis cases in Northern European countries and countries bordering the Baltic Sea increased during heatwaves in 2014 and 2018.AimWe describe the epidemiology of vibriosis and the genetic diversity of Vibrio spp. isolates from Norway, Sweden, Denmark, Finland, Poland and Estonia in 2018, a year with an exceptionally warm summer.MethodsIn a retrospective study, we analysed demographics, geographical distribution, seasonality, causative species and severity of non-travel-related vibriosis cases in 2018. Data sources included surveillance systems, national laboratory notification databases and/or nationwide surveys to public health microbiology laboratories. Moreover, we performed whole genome sequencing and multilocus sequence typing of available isolates from 2014 to 2018 to map their genetic diversity.ResultsIn 2018, we identified 445 non-travel-related vibriosis cases in the study countries, considerably more than the median of 126 cases between 2014 and 2017 (range: 87-272). The main reported mode of transmission was exposure to seawater. We observed a species-specific geographical disparity of vibriosis cases across the Nordic-Baltic region. Severe vibriosis was associated with infections caused by Vibrio vulnificus (adjOR: 17.2; 95% CI: 3.3-90.5) or Vibrio parahaemolyticus (adjOR: 2.1; 95% CI: 1.0-4.5), age ≥ 65 years (65-79 years: adjOR: 3.9; 95% CI: 1.7-8.7; ≥ 80 years: adjOR: 15.5; 95% CI: 4.4-54.3) or acquiring infections during summer (adjOR: 5.1; 95% CI: 2.4-10.9). Although phylogenetic analysis revealed diversity between Vibrio spp. isolates, two V. vulnificus clusters were identified.ConclusionShared sentinel surveillance for vibriosis during summer may be valuable to monitor this emerging public health issue.
Collapse
Affiliation(s)
- Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Maximilian Riess
- Department of Microbiology, Public Health Agency of Sweden, Department of Microbiology, Stockholm, Sweden,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Daniel Thomas-Lopez
- Department of Bacteria, Parasites and Fungi, Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Marius Linkevicius
- Finnish Institute for Health and Welfare, Department of Health Security, Helsinki, Finland,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio, Finland,University of Helsinki, Helsinki, Finland
| | | | - Jelena Rjabinina
- Health Board, Department of CD Surveillance and Control, Tallinn, Estonia
| | - Cecilia Jernberg
- Department of Microbiology, Public Health Agency of Sweden, Department of Microbiology, Stockholm, Sweden
| | - Marika Hjertqvist
- Public Health Agency of Sweden, Department of Communicable Disease Control and Health Protection, Stockholm, Sweden
| | - Emily MacDonald
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Karsten Dalsgaard Bjerre
- Data Integration and Analysis, Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Saara Salmenlinna
- Finnish Institute for Health and Welfare, Department of Health Security, Helsinki, Finland
| | - Kurt Fuursted
- Department of Bacteria, Parasites and Fungi, Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Anette Hansen
- Public Health Agency of Sweden, Department of Communicable Disease Control and Health Protection, Stockholm, Sweden
| | - Umaer Naseer
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
21
|
Hira J, Stensvåg K. Evidence for association of Vibrio echinoideorum with tissue necrosis on test of the green sea urchin Strongylocentrotus droebachiensis. Sci Rep 2022; 12:4859. [PMID: 35318339 PMCID: PMC8940906 DOI: 10.1038/s41598-022-08772-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
"Sea urchin lesion syndrome" is known as sea urchin disease with the progressive development of necrotic epidermal tissue and loss of external organs, including appendages on the outer body surface. Recently, a novel strain, Vibrio echinoideorum has been isolated from the lesion of green sea urchin (Strongylocentrotus droebachiensis), an economically important mariculture species in Norway. V. echinoideorum has not been reported elsewhere in association with green sea urchin lesion syndrome. Therefore, in this study, an immersion based bacterial challenge experiment was performed to expose sea urchins (wounded and non-wounded) to V. echinoideorum, thereby mimicking a nearly natural host-pathogen interaction under controlled conditions. This infection experiment demonstrated that only the injured sea urchins developed the lesion to a significant degree when exposed to V. echinoideorum. Pure cultures of the employed bacterial strain were recovered from the infected animals and its identity was confirmed by the MALDI-TOF MS spectra profiling. Additionally, the hemolytic phenotype of V. echinoideorum substantiated its virulence potential towards the host, and this was also supported by the cytolytic effect on red spherule cells of sea urchin. Furthermore, the genome sequence of V. echinoideorum was assumed to encode potential virulence genes and were subjected to in silico comparison with the established virulence factors of Vibrio vulnificus and Vibrio tasmaniensis. This comparative virulence profile provided novel insights about virulence genes and their putative functions related to chemotaxis, adherence, invasion, evasion of the host immune system, and damage of host tissue and cells. Thus, it supports the pathogenicity of V. echinoideorum. In conclusion, the interaction of V. echinoideorum with injured sea urchin facilitates the development of lesion syndrome and therefore, revealing its potentiality as an opportunistic pathogen.
Collapse
Affiliation(s)
- Jonathan Hira
- The Norwegian College of Fishery Science, The Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Klara Stensvåg
- The Norwegian College of Fishery Science, The Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
22
|
Skin Culturable Microbiota in Farmed European Seabass (Dicentrarchus labrax) in Two Aquacultures with and without Antibiotic Use. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study examined culturable skin microbiota that was associated with farmed European seabass (Dicentrarchus labrax). Healthy European seabass were sampled during summer commercial harvest from one conventional fish farm where antibiotics are used, and from another practicing a certified antibiotic-free fish aquaculture. Physicochemical and microbiological analysis of seawater and sediment were performed, as well as determination of culturable bacteria, including Vibrio, from skin swabs of European seabass and seawater and sediment at both farms. Samples were processed for isolation of bacteria and their characterization by molecular and antibiotic susceptibility tests. In both fish farms, most of the bacteria that were identified in the skin belonged to the genera Pseudomonas and Vibrio. Some of the microbiota that were identified are known to be pathogenic to fish: V. alginolyticus, V. anguillarum, and V. harveyi. Vibrio strains showed higher resistance to certain antibiotics compared to previous studies. This study provides, for the first time, information on the culturable skin bacteria that is associated with healthy European seabass under culture conditions with and without the use of antibiotics. This information will be useful in assessing how changes in culturable microbiota may affect the health of farmed European seabass, indicating a potential problem for fish health management during disease outbreaks.
Collapse
|
23
|
Cordone A, Coppola A, Severino A, Correggia M, Selci M, Cascone A, Vetriani C, Giovannelli D. From Sequences to Enzymes: Comparative Genomics to Study Evolutionarily Conserved Protein Functions in Marine Microbes. Methods Mol Biol 2022; 2498:77-88. [PMID: 35727541 DOI: 10.1007/978-1-0716-2313-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Comparative genomics is a research field that allows comparison between genomes of different life forms providing information on the organization of the compared genomes, both in terms of structure and encoded functions. Moreover, this approach provides a powerful tool to study and understand the evolutionary changes and adaptation among organisms. Comparative genomics can be used to compare phylogenetically close marine organisms showing different vital strategies and lifestyles and obtain information regarding specific adaptations and/or their evolutionary history. Here we report a basic comparative genomics protocol to extrapolate evolutionary information about a protein of interest conserved across diverse marine microbes. The outlined approach can be used in a number of different settings and might help to gain new insights into the evolution and adaptation of marine microorganisms.
Collapse
Affiliation(s)
- Angelina Cordone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Angelica Severino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Monica Correggia
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Matteo Selci
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Antonio Cascone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Costantino Vetriani
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, Naples, Italy.
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.
- National Research Council-Institute of Marine Biological Resources and Biotechnologies CNR-IRBIM, Ancona, Italy.
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Falmouth, MA, USA.
| |
Collapse
|
24
|
Lages MA, Lemos ML, Balado M. The Temperature-Dependent Expression of the High-Pathogenicity Island Encoding Piscibactin in Vibrionaceae Results From the Combined Effect of the AraC-Like Transcriptional Activator PbtA and Regulatory Factors From the Recipient Genome. Front Microbiol 2021; 12:748147. [PMID: 34867865 PMCID: PMC8639528 DOI: 10.3389/fmicb.2021.748147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
The high-pathogenicity island irp-HPI is widespread among Vibrionaceae encoding the piscibactin siderophore system. The expression of piscibactin genes in the fish pathogen Vibrio anguillarum is favored by low temperatures. However, information about the regulatory mechanism behind irp-HPI gene expression is scarce. In this work, in-frame deletion mutants of V. anguillarum defective in the putative regulators AraC1 and AraC2, encoded by irp-HPI, and in the global regulators H-NS and ToxRS, were constructed and their effect on irp-HPI gene expression was analyzed at 15 and 25°C. The results proved that only AraC1 (renamed as PbtA) is required for the expression of piscibactin biosynthesis and transport genes. PbtA inactivation led to an inability to grow under iron restriction, a loss of the outer membrane piscibactin transporter FrpA, and a significant decrease in virulence for fish. Inactivation of the global repressor H-NS, which is involved in silencing of horizontally acquired genes, also resulted in a lower transcriptional activity of the frpA promoter. Deletion of toxR-S, however, did not have a relevant effect on the expression of the irp-HPI genes. Therefore, while irp-HPI would not be part of the ToxR regulon, H-NS must exert an indirect effect on piscibactin gene expression. Thus, the temperature-dependent expression of the piscibactin-encoding pathogenicity island described in V. anguillarum is the result of the combined effect of the AraC-like transcriptional activator PbtA, harbored in the island, and other not yet defined regulator(s) encoded by the genome. Furthermore, different expression patterns were detected within different irp-HPI evolutionary lineages, which supports a long-term evolution of the irp-HPI genomic island within Vibrionaceae. The mechanism that modulates piscibactin gene expression could also be involved in global regulation of virulence factors in response to temperature changes.
Collapse
Affiliation(s)
- Marta A Lages
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
25
|
Ding Y, Song X, Cao X, He L, Liu S, Yu Z. Healthier Communities of Phytoplankton and Bacteria Achieved via the Application of Modified Clay in Shrimp Aquaculture Ponds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111569. [PMID: 34770083 PMCID: PMC8583407 DOI: 10.3390/ijerph182111569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/25/2022]
Abstract
The composition and stability of microbial communities in aquaculture water are crucial for the healthy growth of shrimp and present considerable risk to aquatic ecosystems. The modified clay (MC) method has been proposed as an efficient and safe solution for the mitigation of harmful algal blooms (HABs). Currently, the effects of MC on microbial communities in aquaculture water remain unknown. Here, we adopted the MC method to regulate shrimp-culture water quality and evaluated the effects of MC on the composition and stability of phytoplankton together with bacteria communities through high-throughput sequencing. On the one hand, a prominent change in the composition of microbial community was observed, with green algae becoming the most abundant genera and pathogens being infrequent in the MC-treated pond, which was more conducive to the growth of shrimp than that in the control pond. Moreover, MC could increase the diversity and stability of the microbial community structure in the water column, which had a higher anti-interference ability, as demonstrated by the analysis of the diversity and molecular ecological network. Taken together, MC could reduce the possibility for the occurrence of HABs and maintain a stable microbial community, which is beneficial for the health and high yield of shrimp.
Collapse
Affiliation(s)
- Yu Ding
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (X.C.); (L.H.); (S.L.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (X.C.); (L.H.); (S.L.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: ; Tel.: +86-532-82898587
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (X.C.); (L.H.); (S.L.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (X.C.); (L.H.); (S.L.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shanshan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (X.C.); (L.H.); (S.L.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.D.); (X.C.); (L.H.); (S.L.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
26
|
Silva DP, Villela HDM, Santos HF, Duarte GAS, Ribeiro JR, Ghizelini AM, Vilela CLS, Rosado PM, Fazolato CS, Santoro EP, Carmo FL, Ximenes DS, Soriano AU, Rachid CTCC, Vega Thurber RL, Peixoto RS. Multi-domain probiotic consortium as an alternative to chemical remediation of oil spills at coral reefs and adjacent sites. MICROBIOME 2021; 9:118. [PMID: 34020712 PMCID: PMC8138999 DOI: 10.1186/s40168-021-01041-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/22/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Beginning in the last century, coral reefs have suffered the consequences of anthropogenic activities, including oil contamination. Chemical remediation methods, such as dispersants, can cause substantial harm to corals and reduce their resilience to stressors. To evaluate the impacts of oil contamination and find potential alternative solutions to chemical dispersants, we conducted a mesocosm experiment with the fire coral Millepora alcicornis, which is sensitive to environmental changes. We exposed M. alcicornis to a realistic oil-spill scenario in which we applied an innovative multi-domain bioremediator consortium (bacteria, filamentous fungi, and yeast) and a chemical dispersant (Corexit® 9500, one of the most widely used dispersants), to assess the effects on host health and host-associated microbial communities. RESULTS The selected multi-domain microbial consortium helped to mitigate the impacts of the oil, substantially degrading the polycyclic aromatic and n-alkane fractions and maintaining the physiological integrity of the corals. Exposure to Corexit 9500 negatively impacted the host physiology and altered the coral-associated microbial community. After exposure, the abundances of certain bacterial genera such as Rugeria and Roseovarius increased, as previously reported in stressed or diseased corals. We also identified several bioindicators of Corexit 9500 in the microbiome. The impact of Corexit 9500 on the coral health and microbial community was far greater than oil alone, killing corals after only 4 days of exposure in the flow-through system. In the treatments with Corexit 9500, the action of the bioremediator consortium could not be observed directly because of the extreme toxicity of the dispersant to M. alcicornis and its associated microbiome. CONCLUSIONS Our results emphasize the importance of investigating the host-associated microbiome in order to detect and mitigate the effects of oil contamination on corals and the potential role of microbial mitigation and bioindicators as conservation tools. Chemical dispersants were far more damaging to corals and their associated microbiome than oil, and should not be used close to coral reefs. This study can aid in decision-making to minimize the negative effects of oil and dispersants on coral reefs. Video abstract.
Collapse
Affiliation(s)
- Denise P Silva
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Helena D M Villela
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Henrique F Santos
- Department of Marine Biology, Fluminense Federal University (UFF), Niterói, Brazil
| | - Gustavo A S Duarte
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - José Roberto Ribeiro
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Angela M Ghizelini
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Caren L S Vilela
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Phillipe M Rosado
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carolline S Fazolato
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Erika P Santoro
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Flavia L Carmo
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Dalton S Ximenes
- Processes Laboratory, Leopoldo Américo Miguez de Mello Research Center (CENPES), Petrobras, Rio de Janeiro, Brazil
| | - Adriana U Soriano
- Environmental Treatments, Wastes and Water Resources, Leopoldo Américo Miguez de Mello Research Center (CENPES), Petrobras, Rio de Janeiro, Brazil
| | - Caio T C C Rachid
- LABEM, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rebecca L Vega Thurber
- Department of Microbiology, Oregon State University, Nash Hall 226, OSU, Corvallis, OR, 97331, USA.
| | - Raquel S Peixoto
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
27
|
Ye L, Liu G, Yao T, Lu J. Monitoring of antimicrobial resistance genes in the spotted sea bass (Lateolabrax maculatus): Association with the microbiome and its environment in aquaculture ponds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116714. [PMID: 33592436 DOI: 10.1016/j.envpol.2021.116714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Antimicrobial resistance genes (ARGs) pose a serious threat to environment and human health. However, few studies address the abundance and distribution of ARGs associated with farmed fish and their aquaculture environment. Here we conducted an analysis of the abundance and distribution of gut and gill ARGs by quantitative PCR techniques associated with the spotted sea bass (Lateolabrax maculatus) as well as the bacterial communities in the surrounding environment (water and sediment). For this purpose, we sampled six aquaculture ponds in Zhuhai, Guangdong Province, the largest spotted sea bass cultivation site in China. Predominant ARGs were floR, sul2, and tetM-01 in the gut and tetQ, sul1, and floR in the gills. The copy numbers of sul1, sul2, and cmlA1-01 were significantly higher in the environment. Moreover, significant differences were found among the microbiota of the gut, gills, and environment. The former was more similar to those of the environmental microbial communities compared with other sources. The fish gut and gill microbiota were predominantly populated by Fusobacteria and Actinobacteria, respectively. In contrast, Proteobacteria were dominant in water and sediment. Correlation analysis showed that Fusobacteria and Actinobacteria positively correlated with floR and tetQ, respectively, indicating that these microbes were potential hosts for ARGs. Our results showed that ARGs in farmed fish showed marked difference with their aquaculture environment, thus providing a valuable reference for identifying deleterious ARGs in aquatic fish.
Collapse
Affiliation(s)
- Lingtong Ye
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| | - Guangfeng Liu
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Tuo Yao
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Jie Lu
- Key Laboratory of Aquatic Product Processing, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| |
Collapse
|
28
|
Santos LDO, de Lanna CA, Arcanjo ACDC, Bisch PM, von Krüger WMA. Genotypic Diversity and Pathogenic Potential of Clinical and Environmental Vibrio parahaemolyticus Isolates From Brazil. Front Microbiol 2021; 12:602653. [PMID: 33776949 PMCID: PMC7994283 DOI: 10.3389/fmicb.2021.602653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022] Open
Abstract
Vibrio parahaemolyticus strains recovered from human diarrheal stools (one in 1975 and two in 2001) and environmental sources (four, between 2008 and 2010) were investigated for the presence of virulence genes (trh, tdh, and vpadF), pandemic markers (orf8, toxRSnew), and with respect to their pathogenic potential in two systemic infection models. Based only on the presence or absence of these genetic markers, they were classified as follows: the environmental strains were non-pathogenic, whereas among the clinical strains, the one isolated in 1975 was pathogenic (non-pandemic), and the other two were pathogenic (pandemic). The pathogenic potential of the strains was evaluated in mice and Galleria mellonella larvae infection models, and except for the clinical (pathogenic, non-pandemic) isolate, the others produced lethal infection in both organisms, regardless of their source, serotype, and genotype (tdh, orf8, toxRSnew, and vpadF). Based on mice and larval mortality rates, the strains were then grouped according to virulence (high, intermediate, and avirulent), and remarkably similar results were obtained by using these models: The clinical strain (pathogenic and non-pandemic) was classified as avirulent, and other strains (four non-pathogenic and two pandemic) were considered of high or intermediate virulence. In summary, these findings demonstrate that G. mellonella larvae can indeed be used as an alternative model to study the pathogenicity of V. parahaemolyticus. Moreover, they raise doubts about the use of traditional virulence markers to predict pathogenesis of the species and show that reliable models are indispensable to determine the pathogenic potential of environmental isolates considered non-pathogenic, based on the absence of the long-standing virulence indicators.
Collapse
Affiliation(s)
- Leandro de O Santos
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristóvão A de Lanna
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Carolina da C Arcanjo
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanda M A von Krüger
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Diverse Horizontally-Acquired Gene Clusters Confer Sucrose Utilization to Different Lineages of the Marine Pathogen Photobacterium damselae subsp. damselae. Genes (Basel) 2020; 11:genes11111244. [PMID: 33105683 PMCID: PMC7690375 DOI: 10.3390/genes11111244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
The ability to metabolize sucrose is a variable trait within the family Vibrionaceae. The marine bacterium Photobacterium damselae subsp. damselae (Pdd), pathogenic for marine animals and humans, is generally described as negative for sucrose utilization (Scr−). Previous studies have reported sucrose-utilizing isolates (Scr+), but the genetic basis of this variable phenotype remains uncharacterized. Here, we carried out the genome sequencing of five Scr+ and two Scr−Pdd isolates and conducted a comparative genomics analysis with sixteen additional Pdd genomes sequenced in previous studies. We identified two different versions of a four-gene cluster (scr cluster) exclusive of Scr+ isolates encoding a PTS system sucrose-specific IIBC component (scrA), a fructokinase (scrK), a sucrose-6-phosphate hydrolase (scrB), and a sucrose operon repressor (scrR). A scrA deletion mutant did not ferment sucrose and was impaired for growth with sucrose as carbon source. Comparative genomics analyses suggested that scr clusters were acquired by horizontal transfer by different lineages of Pdd and were inserted into a recombination hot-spot in the Pdd genome. The incongruence of phylogenies based on housekeeping genes and on scr genes revealed that phylogenetically diverse gene clusters for sucrose utilization have undergone extensive horizontal transfer among species of Vibrio and Photobacterium.
Collapse
|
30
|
Modak TH, Gomez-Chiarri M. Contrasting Immunomodulatory Effects of Probiotic and Pathogenic Bacteria on Eastern Oyster, Crassostrea Virginica, Larvae. Vaccines (Basel) 2020; 8:vaccines8040588. [PMID: 33036213 PMCID: PMC7720132 DOI: 10.3390/vaccines8040588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022] Open
Abstract
Several Vibrio spp. cause acute and severe mortality events in hatcheries where larvae of bivalve mollusks are reared, potentially leading to subsequent shortage of bivalve seed for the grow-out industry. In particular, strains of Vibrio coralliilyticus have been identified as a major cause of disease in Pacific, Crassostrea gigas, and eastern, C. virginica, oyster hatcheries in the United States of America. Probiotic bacteria are an inexpensive, practical, and natural method of disease control. Previous research shows that pretreatment of larval oysters with probiotic bacteria Bacillus pumilus RI06-95 (RI) and Phaeobacter inhibens S4 (S4) significantly decreases mortality caused by experimental challenge with the bacterial pathogen V. coralliilyticus RE22 (RE22). This study aims to characterize the immune response of 6-10-day-old eastern oyster larvae to experimental challenge with pathogen V. coralliilyticus RE22 and probionts RI and S4. Treatments included (a) pathogen and probiont exposure at a concentration of 5 × 104 CFU per mL (~2500 bacterial cells per larva) for a duration of 6 h, (b) probiont exposure at the same concentration for a duration of 24 h, and (c) probiont RI daily treatment of larvae in the hatchery for 4, 11, and 15 days. Differential gene expression analysis compared pathogen or probiotic-treated transcriptomes to unexposed controls. Probiotic and pathogen treatment led to upregulation of transcripts coding for several immune pattern recognition receptors (PRRs) involved in environmental sensing and detection of microbes in oyster larvae. Larval oyster responses to pathogen RE22 suggested suppression of expression of genes in immune signaling pathways (myd88, tak1, nkap), failure in upregulation of immune effector genes, high metabolic demand, and oxidative stress that potentially contributed to mortality. On the other hand, the transcriptomic response to probiotic bacteria RI and S4 suggested activation of immune signaling pathways and expression of immune effectors (e.g., Cv-spi2, mucins and perforin-2). These key features of the host immune response to probiotic bacteria were shared despite the length of probiotic exposure, probiotic species, and the type of environment in which exposures were conducted. This study suggests that pre-exposure of eastern oyster larvae to probiotics for 6-24 h prior to pathogenic challenge leads to a robust and effective immune response that may contribute to protecting larvae from subsequent challenge with V. coralliilyticus RE22. This research provides new insights into host-microbe interactions in larval oysters that could be applied in the management of vibriosis in bivalve hatcheries.
Collapse
Affiliation(s)
- Tejashree H. Modak
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA;
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence:
| |
Collapse
|
31
|
Stabili L, Rizzo L, Basso L, Marzano M, Fosso B, Pesole G, Piraino S. The Microbial Community Associated with Rhizostoma pulmo: Ecological Significance and Potential Consequences for Marine Organisms and Human Health. Mar Drugs 2020; 18:md18090437. [PMID: 32839397 PMCID: PMC7551628 DOI: 10.3390/md18090437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
Jellyfish blooms are frequent and widespread in coastal areas worldwide, often associated with significant ecological and socio-economic consequences. Recent studies have also suggested cnidarian jellyfish may act as vectors of bacterial pathogens. The scyphomedusa Rhizostoma pulmo is an outbreak-forming jellyfish widely occurring across the Mediterranean basin. Using combination of culture-based approaches and a high-throughput amplicon sequencing (HTS), and based on available knowledge on a warm-affinity jellyfish-associated microbiome, we compared the microbial community associated with R. pulmo adult jellyfish in the Gulf of Taranto (Ionian Sea) between summer (July 2016) and winter (February 2017) sampling periods. The jellyfish-associated microbiota was investigated in three distinct compartments, namely umbrella, oral arms, and the mucus secretion. Actinobacteria, Bacteroidetes, Chlamydiae, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Fusobacteria, Planctomycetes, Proteobacteria, Rhodothermaeota, Spirochaetes, Tenericutes, and Thaumarchaeota were the phyla isolated from all the three R. pulmo compartments in the sampling times. In particular, the main genera Mycoplasma and Spiroplasma, belonging to the class Mollicutes (phylum Tenericutes), have been identified in all the three jellyfish compartments. The taxonomic microbial data were coupled with metabolic profiles resulting from the utilization of 31 different carbon sources by the BIOLOG Eco-Plate system. Microorganisms associated with mucus are characterized by great diversity. The counts of culturable heterotrophic bacteria and potential metabolic activities are also remarkable. Results are discussed in terms of R. pulmo ecology, the potential health hazard for marine and human life as well as the potential biotechnological applications related to the associated microbiome.
Collapse
Affiliation(s)
- Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
- Institute of Water Research of the National Research Council, S.S. di Taranto, Via Roma 3, 74123 Taranto, Italy
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Lucia Rizzo
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Lorena Basso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
| | - Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, 70121 Bari, Italy
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
- CoNISMa, Piazzale Flaminio 9, 00196 Rome, Italy
| |
Collapse
|
32
|
Garibay-Valdez E, Martínez-Córdova LR, López-Torres MA, Almendariz-Tapia FJ, Martínez-Porchas M, Calderón K. The implication of metabolically active Vibrio spp. in the digestive tract of Litopenaeus vannamei for its post-larval development. Sci Rep 2020; 10:11428. [PMID: 32651435 PMCID: PMC7351783 DOI: 10.1038/s41598-020-68222-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/11/2020] [Indexed: 11/19/2022] Open
Abstract
This work aimed to evaluate the link between the occurrence/abundance of Vibrio populations and bacterial composition in shrimp’s intestine (Litopenaeus vannamei) during post-larval ontogenetic development and in its culture water, and the correlation of these with environmental parameters. The total and metabolically active populations of Vibrio in the digestive tract of shrimp during its post-larval development were analysed using quantitative PCR (qPCR) and reverse transcription qPCR targeting the 16S rRNA gene sequence. A lab-scale shrimp bioassay was performed for 80 days in a recirculating aquarium under strictly controlled conditions. The results indicate that the Vibrio population from shrimp’s gut is associated with its developmental stage and the environment. Multivariate analyses revealed that the presence of Vibrio spp. drove the studied system, but their metabolically active performance was related to earlier developmental stages in an aqueous environment. Also, the samples taken from water of culture units to compare the influence of the aquatic environment on the intestinal microbial community during shrimp’s ontogenetic development showed significant differences. Finally, our results revealed that Vibrio is an important member of shrimp’s gut microbiota; however, its metabolic activity seems to be highly regulated, possibly by the host and by the rest of the microbiota.
Collapse
Affiliation(s)
- Estefanía Garibay-Valdez
- Centro de Investigación en Alimentos y Desarrollo A.C (CIAD), Carretera a La Victoria S/N, CP. 83304, Hermosillo, Sonora, Mexico
| | - Luis Rafael Martínez-Córdova
- Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico
| | - Marco A López-Torres
- Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico
| | - F Javier Almendariz-Tapia
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentos y Desarrollo A.C (CIAD), Carretera a La Victoria S/N, CP. 83304, Hermosillo, Sonora, Mexico
| | - Kadiya Calderón
- Departamento de Investigaciones Científicas y Tecnológicas (DICTUS), Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N, CP. 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
33
|
Chibani CM, Roth O, Liesegang H, Wendling CC. Genomic variation among closely related Vibrio alginolyticus strains is located on mobile genetic elements. BMC Genomics 2020; 21:354. [PMID: 32393168 PMCID: PMC7216594 DOI: 10.1186/s12864-020-6735-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through mobile genetic elements (MGEs). Our knowledge about the diversity and distribution of Vibrio MGEs is heavily biased towards human pathogens and our understanding of the distribution of core genomic signatures and accessory genes encoded on MGEs within specific Vibrio clades is still incomplete. We used nine different strains of the marine bacterium Vibrio alginolyticus isolated from pipefish in the Kiel-Fjord to perform a multiscale-comparative genomic approach that allowed us to investigate [1] those genomic signatures that characterize a habitat-specific ecotype and [2] the source of genomic variation within this ecotype. RESULTS We found that the nine isolates from the Kiel-Fjord have a closed-pangenome and did not differ based on core-genomic signatures. Unique genomic regions and a unique repertoire of MGEs within the Kiel-Fjord isolates suggest that the acquisition of gene-blocks by HGT played an important role in the evolution of this ecotype. Additionally, we found that ~ 90% of the genomic variation among the nine isolates is encoded on MGEs, which supports ongoing theory that accessory genes are predominately located on MGEs and shared by HGT. Lastly, we could show that these nine isolates share a unique virulence and resistance profile which clearly separates them from all other investigated V. alginolyticus strains and suggests that these are habitat-specific genes, required for a successful colonization of the pipefish, the niche of this ecotype. CONCLUSION We conclude that all nine V. alginolyticus strains from the Kiel-Fjord belong to a unique ecotype, which we named the Kiel-alginolyticus ecotype. The low sequence variation of the core-genome in combination with the presence of MGE encoded relevant traits, as well as the presence of a suitable niche (here the pipefish), suggest, that this ecotype might have evolved from a clonal expansion following HGT driven niche-adaptation.
Collapse
Affiliation(s)
- Cynthia Maria Chibani
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077, Göttingen, Germany
- Institute for Microbiology and Genetics, Georg-August University Goettingen, Grisebachstr. 8, 37077, Goettingen, Germany
| | - Olivia Roth
- GEOMAR, Helmholtz Centre for Ocean Research, Marine Evolutionary Ecology, Duesternbrooker Weg 20, 24105, Kiel, Germany
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077, Göttingen, Germany
| | - Carolin Charlotte Wendling
- GEOMAR, Helmholtz Centre for Ocean Research, Marine Evolutionary Ecology, Duesternbrooker Weg 20, 24105, Kiel, Germany.
- Department of Environmental Systems Science, ETH Zürich, Universitätsstraße 16, 8092, Zürich, Switzerland.
| |
Collapse
|
34
|
Homsy P, Skogberg K, Jahkola T. Three cases of fulminant cellulitis caused by non-O1, non-O139 Vibrio cholerae in Southern Finland. Infect Dis (Lond) 2020; 52:506-510. [PMID: 32324089 DOI: 10.1080/23744235.2020.1756399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Background: Non-O1, non-O139 Vibrio cholerae is endemic in temperate waters. Most often encountered as the pathogen in transient gastroenteritis, it can also cause severe soft tissue infections. While normally a rare pathogen in Finland, we observed seven cases of non-O1, non-O139 V. cholerae infections in Helsinki University Hospital during the hot summer of 2018. Here we present three of these cases with fulminant V. cholerae cellulitis in detail.Methods: Patients with tissue culture positive soft tissue infections between 2017 and 2019 were identified using a local laboratory database. Patients with severe infections requiring surgical revision were included in this series.Results: Three patients with tissue culture positive non-O1, non-O139 V. cholerae cellulitis were identified. All were treated in the summer of 2018 for fulminant lower leg cellulitis. Two patients were febrile and hemodynamically unstable at presentation. One had septicaemia. Surgical revisions were done within the first week of admission, and defects covered with partial-thickness skin grafts several weeks later. Antibiotic treatment varied and continued until the wounds were healed, between one and over two months in total.
Collapse
Affiliation(s)
- Pauliina Homsy
- Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kirsi Skogberg
- Department of Infections Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tiina Jahkola
- Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
35
|
Hernández-Cabanyero C, Sanjuán E, Fouz B, Pajuelo D, Vallejos-Vidal E, Reyes-López FE, Amaro C. The Effect of the Environmental Temperature on the Adaptation to Host in the Zoonotic Pathogen Vibrio vulnificus. Front Microbiol 2020; 11:489. [PMID: 32296402 PMCID: PMC7137831 DOI: 10.3389/fmicb.2020.00489] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Vibrio vulnificus is a zoonotic pathogen that lives in temperate, tropical and subtropical aquatic ecosystems whose geographical distribution is expanding due to global warming. The species is genetically variable and only the strains that belong to the zoonotic clonal-complex can cause vibriosis in both humans and fish (being its main host the eel). Interestingly, the severity of the vibriosis in the eel and the human depends largely on the water temperature (highly virulent at 28°C, avirulent at 20°C or below) and on the iron content in the blood, respectively. The objective of this work was to unravel the role of temperature in the adaptation to the host through a transcriptomic and phenotypic approach. To this end, we obtained the transcriptome of a zoonotic strain grown in a minimum medium (CM9) at 20, 25, 28, and 37°C, and confirmed the transcriptomic results by RT-qPCR and phenotypic tests. In addition, we compared the temperature stimulon with those previously obtained for iron and serum (from eel and human, respectively). Our results suggest that warm temperatures activate adaptive traits that would prepare the bacteria for host colonization (metabolism, motility, chemotaxis, and the protease activity) and fish septicemia (iron-uptake from transferrin and production of O-antigen of high molecular weight) in a generalized manner, while environmental iron controls the expression of a host-adapted virulent phenotype (toxins and the production of a protective envelope). Finally, our results confirm that beyond the effect of temperature on the V. vulnificus distribution in the environment, it also has an effect on the infectious capability of this pathogen that must be taken into account to predict the real risk of V. vulnificus infection caused by global warming.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Eva Sanjuán
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Belén Fouz
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - David Pajuelo
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Eva Vallejos-Vidal
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Amaro
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
36
|
Hackbusch S, Wichels A, Gimenez L, Döpke H, Gerdts G. Potentially human pathogenic Vibrio spp. in a coastal transect: Occurrence and multiple virulence factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136113. [PMID: 31864001 DOI: 10.1016/j.scitotenv.2019.136113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
An increase in human Vibrio spp. infections has been linked to climate change related events, in particular to seawater warming and heatwaves. However, there is a distinct lack of research of pathogenic Vibrio spp. occurrences in the temperate North Sea, one of the fastest warming seas globally. Particularly in the German Bight, Vibrio investigations are still scarce. This study focuses on the spatio-temporal quantification and pathogenic characterization of V. parahaemolyticus, V. vulnificus and V. cholerae over the course of 14 months. Species-specific MPN-PCR (Most probable number - polymerase chain reaction) conducted on selectively enriched surface water samples revealed seasonal patterns of all three species with increased abundances during summer months. The extended period of warm seawater coincided with prolonged Vibrio spp. occurrences in the German Bight. Temperature and nitrite were the factors explaining variations in Vibrio spp. abundances after generalized additive mixed models. The specific detection of pathogenic markers via PCR revealed trh-positive V. parahaemolyticus, pathogenic V. vulnificus (nanA, manIIA, PRXII) and V. cholerae serotype O139 presence. Additionally, spatio-temporally varying virulence profiles of V. cholerae with multiple accessory virulence-associated genes, such as the El Tor variant hemolysin (hlyAET), acyltransferase of the repeats-in-toxin cluster (rtxC), Vibrio 7th pandemic island II (VSP-II), Type III Secretion System (TTSS) and the Cholix Toxin (chxA) were detected. Overall, this study highlights that environmental human pathogenic Vibrio spp. comprise a reservoir of virulence-associated genes in the German Bight, especially in estuarine regions. Due to their known vast genetic plasticity, we point to the possible emergence of highly pathogenic V. cholerae strains. Particularly, the presence of V. cholerae serotype O139 is unusual and needs urgent continuous surveillance. Given the predictions of further warming and more frequent heatwave events, human pathogenic Vibrio spp. should be seriously considered as a developing risk to human health in the German Bight.
Collapse
Affiliation(s)
- Sidika Hackbusch
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany.
| | - Antje Wichels
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Luis Gimenez
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany; School of Ocean Sciences, Bangor University, LL50 5AB Menai Bridge, Anglesey, UK
| | - Hilke Döpke
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Gunnar Gerdts
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| |
Collapse
|
37
|
Brehm TT, Berneking L, Rohde H, Chistner M, Schlickewei C, Sena Martins M, Schmiedel S. Wound infection with Vibrio harveyi following a traumatic leg amputation after a motorboat propeller injury in Mallorca, Spain: a case report and review of literature. BMC Infect Dis 2020; 20:104. [PMID: 32019500 PMCID: PMC7001194 DOI: 10.1186/s12879-020-4789-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vibrio spp. are aquatic bacteria that are ubiquitous in warm estuarine and marine environments, of which 12 species are currently known to cause infections in humans. So far, only five human infections with V. harveyi have been reported. CASE PRESENTATION A 26-year old patient was transferred to our center by inter-hospital air transfer from Mallorca, Spain. Seven days before, he had suffered a complete amputation injury of his left lower leg combined with an open, multi-fragment, distal femur fracture after he had been struck by the propeller of a passing motorboat while snorkeling in the Mediterranean Sea. On admission he was febrile; laboratory studies showed markedly elevated inflammatory parameters and antibiotic treatment with ampicillin/sulbactam was initiated. Physical examination showed a tender and erythematous amputation stump, so surgical revision was performed and confirmed a putrid infection with necrosis of the subcutaneous tissue and the muscles. Tissue cultures subsequently grew V. harveyi with a minimal inhibitory concentration (MIC) of 16 mg/L for ampicillin, and antibiotic treatment was switched to ceftriaxone and ciprofloxacin. Throughout the following days, the patient repeatedly had to undergo surgical debridement but eventually the infection could be controlled, and he was discharged. CONCLUSIONS We report the first human infection with V. harveyi acquired in Spain and the second infection acquired in the Mediterranean Sea. This case suggests that physicians and microbiologists should be aware of the possibility of wound infections caused by Vibrio spp. acquired in the ocean environment, especially during hot summer months. Since Vibrio spp. preferentially grow at water temperatures above 18 °C, global warming is responsible for an abundance of these bacteria in coastal waters. This will likely lead to a worldwide increase in reports of Vibrio-associated diseases in the future.
Collapse
Affiliation(s)
- Thomas Theo Brehm
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Berneking
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rohde
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Chistner
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Schlickewei
- Department of Trauma, Hand, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stefan Schmiedel
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
38
|
Mello DF, Trevisan R, Danielli NM, Dafre AL. Vulnerability of glutathione-depleted Crassostrea gigas oysters to Vibrio species. MARINE ENVIRONMENTAL RESEARCH 2020; 154:104870. [PMID: 32056707 DOI: 10.1016/j.marenvres.2019.104870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Glutathione (GSH) is a major cellular antioxidant molecule participating in several biological processes, including immune function. In this study, we investigated the importance of GSH to oysters Crassostrea gigas immune response. Oysters were treated with the GSH-synthesis inhibitor buthionine sulfoximine (BSO), and the function of immune cells and mortality were evaluated after a bacterial challenge with different Vibrio species. BSO caused a moderate decrease (20-40%) in GSH levels in the gills, digestive gland, and hemocytes. As expected, lower GSH decreased survival to peroxide exposure. Hemocyte function was preserved after BSO treatment, however, oysters became more susceptible to challenges with Vibrio anguillarum, V. alginolyticus, or V. harveyi, but not with V. parahaemolyticus and V. vulnificus, indicating a species-specific vulnerability. Our study indicates that in natural habitats or in mariculture farms, disturbances in GSH metabolism may pre-dispose oysters to bacterial infection, decreasing survival.
Collapse
Affiliation(s)
- Danielle Ferraz Mello
- Biochemistry Department, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil.
| | - Rafael Trevisan
- Biochemistry Department, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| | - Naissa Maria Danielli
- Biochemistry Department, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| | - Alcir Luiz Dafre
- Biochemistry Department, Federal University of Santa Catarina, 88040-900, Florianopolis, SC, Brazil
| |
Collapse
|
39
|
Antunes P, Novais C, Peixe L. Food-to-Humans Bacterial Transmission. Microbiol Spectr 2020; 8:10.1128/microbiolspec.mtbp-0019-2016. [PMID: 31950894 PMCID: PMC10810214 DOI: 10.1128/microbiolspec.mtbp-0019-2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 12/17/2022] Open
Abstract
Microorganisms vehiculated by food might benefit health, cause minimal change within the equilibrium of the host microbial community or be associated with foodborne diseases. In this chapter we will focus on human pathogenic bacteria for which food is conclusively demonstrated as their transmission mode to human. We will describe the impact of foodborne diseases in public health, the reservoirs of foodborne pathogens (the environment, human and animals), the main bacterial pathogens and food vehicles causing human diseases, and the drivers for the transmission of foodborne diseases related to the food-chain, host or bacteria features. The implication of food-chain (foodborne pathogens and commensals) in the transmission of resistance to antibiotics relevant to the treatment of human infections is also evidenced. The multiplicity and interplay of drivers related to intensification, diversification and globalization of food production, consumer health status, preferences, lifestyles or behaviors, and bacteria adaptation to different challenges (stress tolerance and antimicrobial resistance) from farm to human, make the prevention of bacteria-food-human transmission a modern and continuous challenge. A global One Health approach is mandatory to better understand and minimize the transmission pathways of human pathogens, including multidrug-resistant pathogens and commensals, through food-chain.
Collapse
Affiliation(s)
- Patrícia Antunes
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal
| | - Carla Novais
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
40
|
Abstract
Abstract
Purpose
The aquaculture sector is a major contributor to the economic and nutritional security for a number of countries. India’s total seafood exports for the year 2017–2018 accounted for US$ Million 7082. One of the major setbacks in this sector is the frequent outbreaks of diseases often due to bacterial pathogens. Vibriosis is one of the major diseases caused by bacteria of Vibrio spp., causing significant economic loss to the aquaculture sector. The objective of this study was to understand the genetic composition of Vibrio spp.
Methods
Thirty-five complete genomes were downloaded from GenBank comprising seven vibrio species, namely, Vibrio alginolyticus, V. anguillarum, V. campbellii, V. harveyi, V. furnissii, V. parahaemolyticus, and V. vulnificus. Pan-genome analysis was carried out with coding sequences (CDS) generated from all the Vibrio genomes. In addition, genomes were mined for genes coding for toxin-antitoxin systems, antibiotic resistance, genomic islands, and virulence factors.
Results
Results revealed an open pan-genome comprising of 2004 core, 8249 accessory, and 6780 unique genes. Downstream analysis of genomes and the identified unique genes resulted in 312 antibiotic resistance genes, 430 genes coding for toxin and antitoxin systems along with 4802, and 4825 putative virulent genes from genomic island regions and unique gene sets, respectively.
Conclusion
Pan-genome and other downstream analytical procedures followed in this study have the potential to predict strain-specific genes and their association with habitat and pathogenicity.
Collapse
|
41
|
Yuan L, Wang L, Li ZH, Zhang MQ, Shao W, Sheng GP. Antibiotic resistance and microbiota in the gut of Chinese four major freshwater carp from retail markets. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113327. [PMID: 31600703 DOI: 10.1016/j.envpol.2019.113327] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Fish-associated antibiotic resistance genes (ARGs) have attracted increasing attention due to their potential risks to human beings via the food chain. However, data are scarce regarding the antibiotic resistance in fish themselves. Herein, the antibiotic resistance genes (ARGs) were assessed in the gut of four major Chinese freshwater carp (i.e., silver carp, grass carp, bighead carp, and crucian carp) from food retail markets. Results show that the abundances of target ARGs (e.g., tetA, tetO, tetQ, tetW, sulI, sulII, and blaTEM-1) and class 1 integrase (intI1) were in the range 9.4 × 10-6 - 1.6 × 10-1 and 6.7 × 10-5 - 5.2 × 10-2 gene copies per 16S rRNA gene, respectively. The sulI, sulII, and tetQ strongly correlated with silver and mercury resistance genes (e.g., silE and merR). The microbial taxa of fish gut could be partly separated among retail markets based on the PCA analysis. About 15.0% of the OTUs in fish gut were shared and 74.5% of the shared OTUs were identified as Acidobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, and Proteobacteria. These phyla may constitute the core microbiota in the guts of the four Chinese freshwater carp. The possible ARG hosts were revealed based on the network analysis, and the presence of pathogen-associated resistant genera in fish gut highlights the need to fully understand their potential human health risks.
Collapse
Affiliation(s)
- Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Ming-Qi Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Wei Shao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science & Technology of China, Hefei 230026, China.
| |
Collapse
|
42
|
Potential pathogenicity and antibiotic resistance of aquatic Vibrio isolates from freshwater in Slovakia. Folia Microbiol (Praha) 2019; 65:545-555. [PMID: 31773555 DOI: 10.1007/s12223-019-00760-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to evaluate the potential pathogenicity and antibiotic resistance of 31 environmental Vibrio isolates obtained from surface water in southern and eastern Slovakia. Isolates were identified as Vibrio cholerae non-O1/non-O139 and Vibrio metschnikovii by biochemical tests, MALDI biotyping, and 16S RNA gene sequencing. Analysis of the susceptibility to 13 antibacterial agents showed susceptibility of all isolates to ciprofloxacin, trimethoprim/sulfamethoxazole, chloramphenicol, gentamicin, imipenem, tetracyclin, and doxycycline. We recorded high rates of resistance to β-lactams and streptomycin. Investigation of antibiotic resistance showed five different antibiotic profiles with resistance to antibacterials from three classes, but no multidrug resistance was observed. The investigation of the pathogenic potential of V. cholerae isolates showed that neither the cholera toxin coding gene ctxA nor the genes zot (zonula occludens toxin), ace (accessory cholera toxin), and tcpA (toxin-coregulated pilus) were present in any of 31 isolated samples. Gene ompU (outer membrane protein) was confirmed in 80% and central regulatory protein-coding gene toxR in 71% of V. cholerae isolates, respectively. A high prevalence of the hemolysin coding gene hlyA in all V. cholerae was observed. The data point toward the importance of systematic monitoring and comparative studies of potentially pathogenic vibrios in European countries.
Collapse
|
43
|
Garin-Fernandez A, Wichels A. Looking for the hidden: Characterization of lysogenic phages in potential pathogenic Vibrio species from the North Sea. Mar Genomics 2019; 51:100725. [PMID: 31757758 DOI: 10.1016/j.margen.2019.100725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/30/2022]
Abstract
The incidence of potentially pathogenic Vibrio species in the marine environment around Europe, is correlated with the increase of surface seawater temperature. Despite their importance, little is known about the trigger factors of potential outbreak-causing strains in this region. As prophages may compose a major reservoir of virulence traits in marine ecosystems, this study aims to identify and characterize the genomes of lysogenic Vibrio phages exemplarily from the North Sea. Therefore, 31 isolates from potentially pathogenic Vibrio species from the North Sea were screened for inducible prophages with mitomycin C. From them, one V. cholerae isolate and 40% V. parahaemolyticus isolates carried inducible prophages. Three lysogenic phages were selected for genomic characterization. The phage vB_VpaM_VP-3212 (unclassified Myoviridae) has a genome with a length of 36.81 Kbp and 55 CDS were identified. This lysogenic phage of V. parahaemolyticus contains genes related to replicative transposition mechanism, such as transposase and mobile elements similar to Mu-like viruses. The phage vB_VpaP_VP-3220 (Podoviridae, unclassified Nona33virus) has a genome length of 58,14 Kbp and contains 63 CDS. This V. parahaemolyticus phage probably uses a headful (pac) packaging replication mechanism. The phage vB_VchM_VP-3213 (unclassified Myoviridae) has a genome with a length of 41 Kbp and 63 CDS were identified, including integrase and Xer system for lysogenic recombination. This lysogenic phage of V. cholerae has similar genomic features as lambdoid phages. Although no pathogenicity genes were identified, their similarity among other phage genomes indicates that these phages can affect the development of pathogenic Vibrio strains in marine environments.
Collapse
Affiliation(s)
- Alexa Garin-Fernandez
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, Helgoland, Germany; Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Antje Wichels
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, Helgoland, Germany
| |
Collapse
|
44
|
Lages MA, Balado M, Lemos ML. The Expression of Virulence Factors in Vibrio anguillarum Is Dually Regulated by Iron Levels and Temperature. Front Microbiol 2019; 10:2335. [PMID: 31681201 PMCID: PMC6803810 DOI: 10.3389/fmicb.2019.02335] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/25/2019] [Indexed: 01/24/2023] Open
Abstract
Vibrio anguillarum causes a hemorrhagic septicemia that affects cold- and warm-water adapted fish species. The main goal of this work was to determine the temperature-dependent changes in the virulence factors that could explain the virulence properties of V. anguillarum for fish cultivated at different temperatures. We have found that although the optimal growth temperature is around 25°C, the degree of virulence of V. anguillarum RV22 is higher at 15°C. To explain this result, an RNA-Seq analysis was performed to compare the whole transcriptome profile of V. anguillarum RV22 cultured under low-iron availability at either 25 or 15°C, which would mimic the conditions that V. anguillarum finds during colonization of fish cultivated at warm- or cold-water temperatures. The comparative analysis of transcriptomes at high- and low-iron conditions showed profound metabolic adaptations to grow under low iron. These changes were characterized by a down-regulation of the energetic metabolism and the induction of virulence-related factors like biosynthesis of LPS, production of hemolysins and lysozyme, membrane transport, heme uptake, or production of siderophores. However, the expression pattern of virulence factors under iron limitation showed interesting differences at warm and cold temperatures. Chemotaxis, motility, as well as the T6SS1 genes are expressed at higher levels at 25°C than at 15°C. By contrast, hemolysin RTX pore-forming toxin, T6SS2, and the genes associated with exopolysaccharides synthesis were preferentially expressed at 15°C. Notably, at this temperature, the siderophore piscibactin system was strongly up-regulated. In contrast, at 25°C, piscibactin genes were down-regulated and the vanchrobactin siderophore system seems to supply all the necessary iron to the cell. The results showed that V. anguillarum adjusts the expression of virulence factors responding to two environmental signals, iron levels and temperature. Thus, the relative relevance of each virulence factor for each fish species could vary depending on the water temperature. The results give clues about the physiological adaptations that allow V. anguillarum to cause infections in different fishes and could be relevant for vaccine development against fish vibriosis.
Collapse
Affiliation(s)
- Marta A Lages
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
45
|
Tiwari A, Kauppinen A, Pitkänen T. Decay of Enterococcus faecalis, Vibrio cholerae and MS2 Coliphage in a Laboratory Mesocosm Under Brackish Beach Conditions. Front Public Health 2019; 7:269. [PMID: 31608267 PMCID: PMC6771298 DOI: 10.3389/fpubh.2019.00269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/09/2019] [Indexed: 01/22/2023] Open
Abstract
Enterococci are fecal indicator bacteria (FIB) used for monitoring the microbial quality of bathing water. However, the reliability of health protection by monitoring FIB is questioned. This study evaluated the decay pattern of Enterococcus faecalis in beach environment and compared it with decay patterns of the pathogen Vibrio cholerae and the virus indicator MS2 coliphage. Tests were done in an experimental mesocosm simulating natural Nordic summer daylight conditions with and without the aquatic plant Myriophyllum sibiricum. The decay of the spiked test microbes (E. faecalis, V. cholera, and MS2) was enumerated up to 27 days from two coastal bathing water mesocosms with subtidal sediment. E. faecalis and V. cholerae exhibited non-linear biphasic decay patterns and were detected upmost toward the end of the experiment in the water, sediment, and vegetation. The gene copies of V. cholerae dropped to a minimum by days 6–8 but then the numbers increased back up to nearly the spiked level. The MS2 coliphage was detected only up to 8–10 days into the experiment solely in the water where a log-linear decay pattern was seen. The test microbe, sample origin (water, sediment or vegetation) and, as determined for E. faecalis, the enumeration method (culture-based or qPCR) affected the decay pattern. E. faecalis decayed faster in water than in sediment and vegetation. Positive correlations between culturable E. faecalis counts with V. cholerae gene copies and MS2 counts were recorded on the first few days of the experiment. This study demonstrated the important role of water, sediment and vegetation regarding the partitioning of pathogens and fecal indicators in coastal environment. The enumeration of the enterococci counts alone was not sufficient for predicting the numbers of pathogens such as Vibrio spp. in bathing water. The growth of Vibrio spp. in the Baltic Sea deserves more attention and might require water quality monitoring to be applied for these pathogens in the coming years due to the predicted rise in sea surface temperature favoring Vibrio spp. growth. Further, different decay patterns observed between MS2 and enterococci emphasize the need for and importance of a viral indicator in assessing water quality more comprehensively.
Collapse
Affiliation(s)
- Ananda Tiwari
- The Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Ari Kauppinen
- The Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Tarja Pitkänen
- The Finnish Institute for Health and Welfare, Kuopio, Finland
| |
Collapse
|
46
|
Defoirdt T. Amino acid-derived quorum sensing molecules controlling the virulence of vibrios (and beyond). PLoS Pathog 2019; 15:e1007815. [PMID: 31295324 PMCID: PMC6622552 DOI: 10.1371/journal.ppat.1007815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Tom Defoirdt
- Center for Microbial Ecology and Technology (cmet), Ghent University, Gent, Belgium
- * E-mail:
| |
Collapse
|
47
|
Montánchez I, Ogayar E, Plágaro AH, Esteve-Codina A, Gómez-Garrido J, Orruño M, Arana I, Kaberdin VR. Analysis of Vibrio harveyi adaptation in sea water microcosms at elevated temperature provides insights into the putative mechanisms of its persistence and spread in the time of global warming. Sci Rep 2019; 9:289. [PMID: 30670759 PMCID: PMC6343004 DOI: 10.1038/s41598-018-36483-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
Discovering the means to control the increasing dissemination of pathogenic vibrios driven by recent climate change is challenged by the limited knowledge of the mechanisms in charge of Vibrio spp. persistence and spread in the time of global warming. To learn about physiological and gene expression patterns associated with the long-term persistence of V. harveyi at elevated temperatures, we studied adaptation of this marine bacterium in seawater microcosms at 30 °C which closely mimicked the upper limit of sea surface temperatures around the globe. We found that nearly 90% of cells lost their culturability and became partly damaged after two weeks, thus suggesting a negative impact of the combined action of elevated temperature and shortage of carbon on V. harveyi survival. Moreover, further gene expression analysis revealed that major adaptive mechanisms were poorly coordinated and apparently could not sustain cell fitness. On the other hand, elevated temperature and starvation promoted expression of many virulence genes, thus potentially reinforcing the pathogenicity of this organism. These findings suggest that the increase in disease outbreaks caused by V. harveyi under rising sea surface temperatures may not reflect higher cell fitness, but rather an increase in virulence enabling V. harveyi to escape from adverse environments to nutrient rich, host-pathogen associations.
Collapse
Affiliation(s)
- Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Elixabet Ogayar
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Ander Hernández Plágaro
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, 08003, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, 08003, Spain
| | - Maite Orruño
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain
| | - Inés Arana
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain. .,Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain. .,IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain.
| |
Collapse
|
48
|
Matanza XM, Osorio CR. Transcriptome changes in response to temperature in the fish pathogen Photobacterium damselae subsp. damselae: Clues to understand the emergence of disease outbreaks at increased seawater temperatures. PLoS One 2018; 13:e0210118. [PMID: 30596794 PMCID: PMC6312309 DOI: 10.1371/journal.pone.0210118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
The marine bacterium Photobacterium damselae subsp. damselae (Pdd) is a generalist and facultative pathogen that causes disease in a wide range of marine animals including fish species of importance in aquaculture. Disease outbreaks in fish farms have been correlated with an increased water temperature during summer months. In this study, we have used RNA sequencing to analyze the transcriptome of Pdd RM-71 cultured at two different temperatures, which simulated temperature conditions experienced during free swimming lifestyle at mid latitudes in winter months (15°C) and during outbreaks in aquaculture in warm summer months (25°C). The enhanced bacterial growth of Pdd observed at 25°C in comparison to 15°C suggests that an elevated seawater temperature contributes to the build-up of a sufficient bacterial population to cause disease. In comparison to growth at 15°C, growth at 25°C resulted in the upregulation of genes involved in DNA synthesis, nutrient uptake, chemotaxis, flagellar motility, secretion systems and antimicrobial resistance. Plasmid-encoded virulence factors, which include a putative adhesin/invasin OmpU, a transferrin receptor and a serum resistance protein, were also upregulated. Transcription factor RpoS, genes involved in cold shock response, modulation of cell envelope and amino acid metabolism, as well as genes of yet unknown function were downregulated at 25°C. Notably, the gene encoding damselysin cytotoxin (Dly) was among the most highly transcribed genes at the two assayed temperatures, at levels comparable to the most highly expressed housekeeping genes. This study contributes to our understanding of the regulatory networks and biology of a generalist marine bacterial pathogen, and provides evidence that temperature regulates multiple physiological and virulence-related functions in Pdd.
Collapse
Affiliation(s)
- Xosé M. Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos R. Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
49
|
Lopez-Joven C, Rolland JL, Haffner P, Caro A, Roques C, Carré C, Travers MA, Abadie E, Laabir M, Bonnet D, Destoumieux-Garzón D. Oyster Farming, Temperature, and Plankton Influence the Dynamics of Pathogenic Vibrios in the Thau Lagoon. Front Microbiol 2018; 9:2530. [PMID: 30405583 PMCID: PMC6207591 DOI: 10.3389/fmicb.2018.02530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Abstract
Vibrio species have been associated with recurrent mass mortalities of juvenile oysters Crassostrea gigas threatening oyster farming worldwide. However, knowledge of the ecology of pathogens in affected oyster farming areas remains scarce. Specifically, there are no data regarding (i) the environmental reservoirs of Vibrio populations pathogenic to oysters, (ii) the environmental factors favoring their transmission, and (iii) the influence of oyster farming on the persistence of those pathogens. This knowledge gap limits our capacity to predict and mitigate disease occurrence. To address these issues, we monitored Vibrio species potentially pathogenic to C. gigas in 2013 and 2014 in the Thau Lagoon, a major oyster farming region in the coastal French Mediterranean. Sampling stations were chosen inside and outside oyster farms. Abundance and composition of phyto-, microzoo-, and mesozooplankton communities were measured monthly. The spatial and temporal dynamics of plankton and Vibrio species were compared, and positive correlations between plankton species and vibrios were verified by qPCR on isolated specimens of plankton. Vibrio crassostreae was present in the water column over both years, whereas Vibrio tasmaniensis was mostly found in 2013 and Vibrio aestuarianus was never detected. Moreover, V. tasmaniensis and V. crassostreae were found both as free-living or plankton-attached vibrios 1 month after spring mortalities of the oyster juveniles. Overall, V. crassostreae was associated with temperature and plankton composition, whereas V. tasmaniensis correlated with plankton composition only. The abundance of Vibrio species in the water column was similar inside and outside oyster farms, suggesting important spatial dispersion of pathogens in surrounding areas. Remarkably, a major increase in V. tasmaniensis and V. crassostreae was measured in the sediment of oyster farms during cold months. Thus, a winter reservoir of pathogenic vibrios could contribute to their ecology in this Mediterranean shellfish farming ecosystem.
Collapse
Affiliation(s)
- Carmen Lopez-Joven
- IHPE, Université de Montpellier, CNRS, Ifremer, UPVD, Montpellier, France
| | - Jean-Luc Rolland
- IHPE, Université de Montpellier, CNRS, Ifremer, UPVD, Montpellier, France
| | - Philippe Haffner
- IHPE, Université de Montpellier, CNRS, Ifremer, UPVD, Montpellier, France
| | - Audrey Caro
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Cécile Roques
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Claire Carré
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Marie-Agnès Travers
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, LGPMM-SG2M, La Tremblade, France
| | - Eric Abadie
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Mohamed Laabir
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Delphine Bonnet
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | |
Collapse
|
50
|
Kirschner A, Pleininger S, Jakwerth S, Rehak S, Farnleitner A, Huhulescu S, Indra A. Application of three different methods to determine the prevalence, the abundance and the environmental drivers of culturable Vibrio cholerae in fresh and brackish bathing waters. J Appl Microbiol 2018; 125:1186-1198. [PMID: 29856502 PMCID: PMC6175421 DOI: 10.1111/jam.13940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 02/01/2023]
Abstract
AIMS Three cultivation methods were used to study the prevalence and abundance of Vibrio cholerae in Eastern Austrian bathing waters and to elucidate the main factors controlling their distribution. METHODS AND RESULTS Vibrio cholerae abundance was monitored at 36 inland bathing sites with membrane filtration (MF), a standard most probable number (MPN) approach and direct plating (DP). Membrane filtration yielded the most reliable and sensitive results and allowed V. cholerae detection at 22 sites with concentrations up to 39 000 CFU per 100 ml, all belonging to serogroups other than O1 and O139 and not coding for cholera toxin and toxin coregulated pilus. Direct plating turned out as an easy method for environments with high V. cholerae abundances, conductivity was the only significant predictor of V. cholerae abundance in the bathing waters at warm water temperatures. CONCLUSIONS Vibrio cholerae nonO1/nonO139 are widely prevalent in Eastern Austrian bathing waters. Instead of the standard MPN approach, MF and DP are recommended for V. cholerae monitoring. Conductivity can be used as a first easy-to-measure parameter to identify potential bathing waters at risk. SIGNIFICANCE AND IMPACT OF THE STUDY Vibrio cholerae nonO1/nonO139 infections associated with bathing activities are an increasing public health issue in many countries of the northern hemisphere. However, there are only limited data available on the prevalence and abundance of V. cholerae in coastal and inland bathing waters. For monitoring V. cholerae prevalence and abundance, reliable and simple quantification methods are needed. Moreover, prediction of V. cholerae abundance from environmental parameters would be a helpful tool for risk assessment. This study identified the best culture-based quantification methods and a first quick surrogate parameter to attain these aims.
Collapse
Affiliation(s)
- A.K.T. Kirschner
- Institute for Hygiene and Applied ImmunologyWater HygieneMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre for Water & HealthViennaAustria
- Research Department Water Quality and HealthKarl Landsteiner University of Health SciencesKremsAustria
| | - S. Pleininger
- Institute for Medical Microbiology and HygieneAustrian Agency for Health and Food SafetyViennaAustria
| | - S. Jakwerth
- Institute for Hygiene and Applied ImmunologyWater HygieneMedical University ViennaViennaAustria
- Interuniversity Cooperation Centre for Water & HealthViennaAustria
| | - S. Rehak
- Institute for Medical Microbiology and HygieneAustrian Agency for Health and Food SafetyViennaAustria
| | - A.H. Farnleitner
- Interuniversity Cooperation Centre for Water & HealthViennaAustria
- Institute of Chemical, Environmental & Bioscience EngineeringTechnische Universität WienViennaAustria
- Research Department Water Quality and HealthKarl Landsteiner University of Health SciencesKremsAustria
| | - S. Huhulescu
- Institute for Medical Microbiology and HygieneAustrian Agency for Health and Food SafetyViennaAustria
| | - A. Indra
- Institute for Medical Microbiology and HygieneAustrian Agency for Health and Food SafetyViennaAustria
| |
Collapse
|