1
|
Lima JMS, Carneiro KO, Pinto UM, Todorov SD. Bacteriocinogenic anti-listerial properties and safety assessment of Enterococcus faecium and Lactococcus garvieae strains isolated from Brazilian artisanal cheesemaking environment. J Appl Microbiol 2024; 135:lxae159. [PMID: 38925659 DOI: 10.1093/jambio/lxae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
AIMS This study aimed to prospect and isolate lactic acid bacteria (LAB) from an artisanal cheese production environment, to assess their safety, and to explore their bacteriocinogenic potential against Listeria monocytogenes. METHODS AND RESULTS Samples were collected from surfaces of an artisanal-cheese production facility and after rep-PCR and 16S rRNA sequencing analysis, selected strains were identified as to be belonging to Lactococcus garvieae (1 strain) and Enterococcus faecium (14 isolates, grouped into three clusters) associated with different environments (worktables, cheese mold, ripening wooden shelves). All of them presented bacteriocinogenic potential against L. monocytogenes ATCC 7644 and were confirmed as safe (γ-hemolytic, not presenting antibiotic resistance, no mucus degradation properties, and no proteolytic or gelatinase enzyme activity). Additionally, cell growth, acidification and bacteriocins production kinetics, bacteriocin stability in relation to different temperatures, pH, and chemicals were evaluated. According to performed PCR analysis all studied strains generated positive evidence for the presence of entA and entP genes (for production of enterocins A and enterocins P, respectively). However, pediocin PA-1 associated gene was recorded only in DNA obtained from E. faecium ST02JL and Lc. garvieae ST04JL. CONCLUSIONS It is worth considering the application of these safe LAB or their bacteriocins in situ as an alternative means of controlling L. monocytogenes in cheese production environments, either alone or in combination with other antimicrobials.
Collapse
Affiliation(s)
- João Marcos Scafuro Lima
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Kayque Ordonho Carneiro
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Uelinton Manoel Pinto
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
- Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, 05508-000, SP, Brazil
| |
Collapse
|
2
|
Sioziou E, Kakouri A, Bosnea L, Samelis J. Antilisterial activity of raw sheep milk from two native Epirus breeds: Culture-dependent identification, bacteriocin gene detection and primary safety evaluation of the antagonistic LAB biota. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100209. [PMID: 38116185 PMCID: PMC10727937 DOI: 10.1016/j.crmicr.2023.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Raw milk from native small ruminant breeds in Epirus, Greece, is a valuable natural source of autochthonous lactic acid bacteria (LAB) strains with superior biotechnological properties. In this study, two bulk milks (RM1, RM2) from two local sheep yards, intended for traditional Kefalotyri cheese production, were preselected for bacteriocin-like antilisterial activity by in vitro tests. Their antagonistic LAB biota was quantified followed by polyphasic (16S rRNA gene sequencing; IGS for Enterococcus; a multiplex-PCR for Leuconostoc) identification of 42 LAB (RM1/18; RM2/24) isolates further evaluated for bacteriocin encoding genes and primary safety traits. Representative isolates of the numerically dominant mesophilic LAB were Leuconostoc mesenteroides (10) in both RMs, Streptococcus parauberis (7) in RM2, and Lactococcus lactis (1) in RM1; the subdominant thermophilic LAB isolates were Enterococcus durans (8), E. faecium (6), E. faecalis (3), E. hirae (1), E. hermanniensis (1), Streptococcus lutetiensis (2), S. equinus (1) and S. gallolyticus (1). Based on their rpoB, araA, dsr and sorA profiles, six Ln. mesenteroides strains (8 isolates) were atypical lying between the subspecies mesenteroides and dextranicum, whereas two strains profiled with Ln. mesenteroides subsp. jonggajibkimchi that is first-time reported in Greek dairy food. Two RM1 E. faecium strain biotypes (3 isolates) showed strong, enterocin-mediated antilisterial activity due to entA/entB/entP possession. One E. durans from RM1 possessed entA and entP, while additional nine RM2 isolates of the E. faecium/durans group processed entA or entP singly. All showed direct (cell-associated) antilisterial activity only, as also both S. lutetiensis strains from RM2 did strongly. Desirably, no LAB isolate was β-hemolyrtic, or cytolysin-positive, or possessed vanA, vanB for vancomycin resistance, or agg, espA, hyl, and IS16 virulence genes. However, all three E. faecalis from RM2 possessed gelE and/or ace virulence genes. In conclusion, all Ln. mesenteroides strains, the two safe, enterocin A-B-P-producing E. faecium strains, and the two antilisterial S. lutetiensis strains should be validated further as potential costarter or adjunct cultures in Kefalotyri cheese. The prevalence of α-hemolytic pyogenic streptococci in raw milk, mainly S. parauberis in RM2, requires consideration in respect to subclinical mastitis in sheep and the farm hygiene overall.
Collapse
Affiliation(s)
- Eleni Sioziou
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DIMITRA, Ethnikis Antistaseos 3, Katsikas, Ioannina 45221, Greece
| | - Athanasia Kakouri
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DIMITRA, Ethnikis Antistaseos 3, Katsikas, Ioannina 45221, Greece
| | - Loulouda Bosnea
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DIMITRA, Ethnikis Antistaseos 3, Katsikas, Ioannina 45221, Greece
| | - John Samelis
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DIMITRA, Ethnikis Antistaseos 3, Katsikas, Ioannina 45221, Greece
| |
Collapse
|
3
|
Weber M, Göpfert B, von Wezyk S, Savin-Hoffmeyer M, Lipski A. Correlation between Bacterial Cell Density and Abundance of Antibiotic Resistance on Milking Machine Surfaces Assessed by Cultivation and Direct qPCR Methods. MICROBIAL ECOLOGY 2023; 86:1676-1685. [PMID: 37166501 PMCID: PMC10497690 DOI: 10.1007/s00248-023-02225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
The relative abundance of antibiotic-resistant bacteria and antibiotic-resistance genes was surveyed for different parts of a milking machine. A cultivation approach based on swab samples showed a highly diverse microbiota, harboring resistances against cloxacillin, ampicillin, penicillin, and tetracycline. This approach demonstrated a substantial cloxacillin resistance of numerous taxa within milking machine microbiota coming along with regular use of cloxacillin for dry-off therapy of dairy cows. For the less abundant tetracycline-resistant bacteria we found a positive correlation between microbial cell density and relative abundance of tetracycline-resistant microorganisms (R2 = 0.73). This indicated an accelerated dispersion of resistant cells for sampling locations with high cell density. However, the direct quantification of the tetM gene from the swap samples by qPCR showed the reverse relation to bacterial density if normalized against the abundance of 16S rRNA genes (R2 = 0.88). The abundance of 16S rRNA genes was analyzed by qPCR combined with a propidium monoazide treatment, which eliminates 16S rRNA gene signals in negative controls.
Collapse
Affiliation(s)
- Mareike Weber
- Institute of Nutrition and Food Sciences, Department of Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Bettina Göpfert
- Institute of Nutrition and Food Sciences, Department of Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Sina von Wezyk
- Institute of Nutrition and Food Sciences, Department of Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany
| | - Michael Savin-Hoffmeyer
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - André Lipski
- Institute of Nutrition and Food Sciences, Department of Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115, Bonn, Germany.
| |
Collapse
|
4
|
Đorđević J, Ledina T, Golob M, Mohar Lorbeg P, Čanžek Majhenič A, Bogovič Matijašić B, Bulajić S. Safety evaluation of enterococci isolated from raw milk and artisanal cheeses made in Slovenia and Serbia. FOOD SCI TECHNOL INT 2023; 29:765-775. [PMID: 35912485 DOI: 10.1177/10820132221117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enterococci represent a significant part of the non-starter LAB microbiota of artisanal cheeses produced mainly from raw milk. Common approaches to safety evaluation of enterococci isolates include assessment of antimicrobial resistance and virulence potential. Hence, a collection of 47 (n = 22, Serbia; n = 25, Slovenia) dairy enterococcal isolates, of which E. faecalis (n = 28), E. faecium (n = 11), E. durans (n = 5), E. casseliflavus (n = 2), and E. gallinarum (n = 1), was analyzed. The susceptibility to 12 antimicrobials was tested using a broth microdilution method, and the presence of the selected antimicrobial resistance and virulence genes was investigated using PCR. Isolates were resistant to tetracycline (TET) (25.5%), erythromycin (ERY) (17.0%), gentamycin and chloramphenicol (CHL) (∼6%). No resistance to ampicillin (AMP), ciprofloxacin (CIP), daptomycin (DAP), linezolid (LZD), teicoplanin (TEI), tigecycline (TGC) and vancomycin (VAN) was detected. Among all the resistance determinants analyzed, ermB gene was detected most frequently. All 10 virulence genes analyzed were detected with a distribution of cpd (72.3%), cob and ccf (70.2%), gelE (68.1%), hyl (59.6%), agg (53.2%) and esp (46.8%). The genes encoding cytolysin (cylA, cylM and cylB) were amplified to a lesser extent (21.3%, 21.3% and 12.8%, respectively). However, due to the limited number of enterococci isolates analyzed in the present study, further studies are still required in order to better document the safety status of dairy enterococci.
Collapse
Affiliation(s)
- Jasna Đorđević
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Tijana Ledina
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Majda Golob
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Mohar Lorbeg
- Biotechnical Faculty, Institute of Dairy Science and Probiotics, Ljubljana, Slovenia
| | | | | | - Snežana Bulajić
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Macit E, Yücel N, Dertli E. The characterization of the non-starter lactic acid bacteria and yeast microbiota and the chemical and aromatic properties of traditionally produced Turkish White Cheese. Braz J Microbiol 2023; 54:2227-2241. [PMID: 37624476 PMCID: PMC10484850 DOI: 10.1007/s42770-023-01098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Turkish White Cheese is a brined (or pickled) cheese with a salty, acidic flavor and a soft or semi-hard texture. It is the most produced and consumed type of cheese in Turkey. The purpose of this study was to determine the non-starter lactic acid bacteria and yeast microbiota of traditionally produced Turkish White Cheese and analyze the chemical properties and the aroma profile of the cheese. The results of the study identified 27 distinct strains belonging to 14 the non-starter lactic acid bacteria species and 49 different strains belonging to 11 yeast species. Lactobacillus plantarum was found to be the dominant species among the lactic acid bacteria, while Candida zeylanoides was the dominant yeast species in the White Cheese samples. In addition, Kluyveromyces lactis and Debaryomyces hansenii were prominent yeast species in cheese samples. Turkish White Cheese samples had different aromatic properties. The study is highly significant as it anaylzed both non-starter lactic acid bacteria and yeast microbiota of traditionally produced Turkish White Cheese through molecular methods. It also determined and analyzed a number of chemical and aromatic properties of White Cheese.
Collapse
Affiliation(s)
- Emine Macit
- Atatürk University, Faculty of Tourism, Department of Gastronomy and Culinary Arts, 25240, Erzurum, Turkey.
| | - Nur Yücel
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, Turkey
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul, Turkey
| |
Collapse
|
6
|
Castellano P, Melian C, Burgos C, Vignolo G. Bioprotective cultures and bacteriocins as food preservatives. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:275-315. [PMID: 37722775 DOI: 10.1016/bs.afnr.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food preservation technologies face the challenge of extending product shelf life applying different factors to prevent the microbiological spoilage of food and inhibit/inactivate food borne pathogens maintaining or even enhancing its quality. One such preservation strategy is the application of bacteriocins or bacteriocin-producer cultures as a kind of food biopreservation. Bacteriocins are ribosomally synthesized small polypeptide molecules that exert antagonistic activity against closely related and unrelated bacteria without harming the producing strain by specific immunity proteins. This chapter aims to contribute to current knowledge about innovative natural preservative agents and their application in the food industry. Specifically, its purpose is to analyze the classification of bacteriocins from lactic acid bacteria (LAB), desirable characteristics of bacteriocins that position them in a privileged place in food biopreservation technology, their success story as well as the bacteriocinogenic LAB in various food systems. Finally, challenges and barrier strategies used to enhance the efficiency of the bacteriocins antimicrobial effect are presented in this chapter.
Collapse
Affiliation(s)
- Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina.
| | - Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Carla Burgos
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| |
Collapse
|
7
|
Souza LV, Martins E, Moreira IMFB, de Carvalho AF. Strategies for the Development of Bioprotective Cultures in Food Preservation. Int J Microbiol 2022; 2022:6264170. [PMID: 37645592 PMCID: PMC10462446 DOI: 10.1155/2022/6264170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 08/31/2023] Open
Abstract
Consumers worldwide are increasingly demanding food with fewer ingredients, preferably without chemical additives. The trend called "Clean Label" has stimulated the development and commercialization of new types of bioprotective bacterial cultures. These bacteria are not considered new, and several cultures have been available on the market. Additionally, new bioprotective bacteria are being identified to service the clean label trend, extend the shelf life, and, mainly, improve the food safety of food. In this context, the lactic acid bacteria (LAB) have been extensively prospected as a bioprotective culture, as they have a long history in food production and their antimicrobial activity against spoilage and pathogenic microorganisms is well established. However, to make LAB cultures available in the market is not that easy, the strains should be characterized phenotypically and genotypically, and studies of safety and technological application are necessary to validate their bioprotection performance. Thus, this review presents information on the bioprotection mechanisms developed by LAB in foods and describes the main strategies used to identify and characterize bioprotective LAB with potential application in the food industry.
Collapse
Affiliation(s)
- Luana Virgínia Souza
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| | - Evandro Martins
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| | - Isabella Maria Fernandes Botelho Moreira
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| | - Antônio Fernandes de Carvalho
- Inovaleite—Department of Food Technology, Federal University of Viçosa (Universidade Federal de Viçosa) (UFV), Avenida Peter Henry Rolfs, s/n—Campus Universitário, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
8
|
Dutta B, Lahiri D, Nag M, Abukhader R, Sarkar T, Pati S, Upadhye V, Pandit S, Amin MFM, Al Tawaha ARMS, Kumar M, Ray RR. Multi-Omics Approach in Amelioration of Food Products. Front Microbiol 2022; 13:955683. [PMID: 35903478 PMCID: PMC9315205 DOI: 10.3389/fmicb.2022.955683] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Determination of the quality of food products is an essential key factor needed for safe-guarding the quality of food for the interest of the consumers, along with the nutritional and sensory improvements that are necessary for delivering better quality products. Bacteriocins are a group of ribosomally synthesized antimicrobial peptides that help in maintaining the quality of food. The implementation of multi-omics approach has been important for the overall enhancement of the quality of the food. This review uses various recent technologies like proteomics, transcriptomics, and metabolomics for the overall enhancement of the quality of food products. The matrix associated with the food products requires the use of sophisticated technologies that help in the extraction of a large amount of information necessary for the amelioration of the food products. This review would provide a wholesome view of how various recent technologies can be used for improving the quality food products and for enhancing their shelf-life.
Collapse
Affiliation(s)
- Bandita Dutta
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Rose Abukhader
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore, India
- Skills Innovation & Academic Network (SIAN) Institute, Association for Biodiversity Conservation & Research (ABC), Balasore, India
| | - Vijay Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, India
| | - Soumya Pandit
- Department of Life Sciences, Sharda University, Noida, India
| | | | | | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
9
|
Impact of an Omega-3-Enriched Sheep Diet on the Microbiota and Chemical Composition of Kefalograviera Cheese. Foods 2022; 11:foods11060843. [PMID: 35327266 PMCID: PMC8954529 DOI: 10.3390/foods11060843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Kefalograviera is a well-known hard Greek cheese. The aim of this study was to determine how milk produced from ewes fed omega-3-enriched diets could influence the microbiota as well as the chemical composition of Kefalograviera cheese. At the start of the trial, 30 dairy ewes (Lesvos and Chios crossbreed) were selected and fed a conventional diet, based on alfalfa hay, straw and concentrate feed that contained soybean meal for a period of thirty days. Then, for a period of sixty days the same ewes were fed an omega-3-enriched concentrate feed with a lower level of soybean meal that contained 10% flaxseed and 10% lupins. Milk yield was collected individually on Days 30, 60 and 90 and used to produce three different batches of Kefalograviera cheeses, at the same cheese factory, by using a traditional recipe and identical preparation conditions (pasteurization of milk, salt, rennet and culture). Sample analysis was done after six months of Kefalograviera cheese ripening. MALDI-TOF-MS (matrix-assisted laser desorption/ionization time of flight mass spectrometry) identification was performed by contrasting the samples’ mass spectra with the corresponding reference database. The correlation between the different Kefalograviera cheeses revealed the predominant species being Lactococcus lactis, Lactobacillus rhamnosus, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus paracasei, Enterococcus faecium and Enterococcus faecalis, with significant quantitative differences between the experimental groups and the controls. Pediococcus spp. was isolated only from the experimental groups’ cheeses and Staphylococcus spp. only from the controls’ cheese, suggesting—among other differences—a bacterial microbiota distinction between the groups. Moreover, increased levels of alpha-linolenic acid and total polyunsaturated omega-3 fatty acids were noted in the enriched Kefalograviera cheeses. These promising findings suggest that enriched Kefalograviera cheese could be manufactured via enriching the ewes’ diets, with potential benefits for the consumers’ health.
Collapse
|
10
|
Terzić-Vidojević A, Veljović K, Popović N, Tolinački M, Golić N. Enterococci from Raw-Milk Cheeses: Current Knowledge on Safety, Technological, and Probiotic Concerns. Foods 2021; 10:2753. [PMID: 34829034 PMCID: PMC8624194 DOI: 10.3390/foods10112753] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
The present study is focused on the safety, technological characteristics, and probiotic evaluation of Enterococcus species from different artisanal raw milk dairy products, mainly cheeses with ripening. Apart from proteolytic and lipolytic activities, most enterococci show the ability to metabolize citrate and convert it to various aromatic compounds. Long-ripened cheeses therefore have a specific flavor that makes them different from cheeses produced from thermally treated milk with commercial starter cultures. In addition, enterococci are producers of bacteriocins effective against spoilage and pathogenic bacteria, so they can be used as food preservatives. However, the use of enterococci in the dairy industry should be approached with caution. Although originating from food, enterococci strains may carry various virulence factors and antibiotic-resistance genes and can have many adverse effects on human health. Still, despite their controversial status, the use of enterococci in the food industry is not strictly regulated since the existence of these so-called desirable and undesirable traits in enterococci is a strain-dependent characteristic. To be specific, the results of many studies showed that there are some enterococci strains that are safe for use as starter cultures or as probiotics since they do not carry virulence factors and antibiotic-resistance genes. These strains even exhibit strong health-promoting effects such as stimulation of the immune response, anti-inflammatory activity, hypocholesterolemic action, and usefulness in prevention/treatment of some diseases.
Collapse
Affiliation(s)
- Amarela Terzić-Vidojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (N.P.); (M.T.); (N.G.)
| | | | | | | | | |
Collapse
|
11
|
The Many Faces of Enterococcus spp.-Commensal, Probiotic and Opportunistic Pathogen. Microorganisms 2021; 9:microorganisms9091900. [PMID: 34576796 PMCID: PMC8470767 DOI: 10.3390/microorganisms9091900] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
Enterococcus spp. are Gram-positive, facultative, anaerobic cocci, which are found in the intestinal flora and, less frequently, in the vagina or mouth. Enterococcus faecalis and Enterococcus faecium are the most common species found in humans. As commensals, enterococci colonize the digestive system and participate in the modulation of the immune system in humans and animals. For many years reference enterococcal strains have been used as probiotic food additives or have been recommended as supplements for the treatment of intestinal dysbiosis and other conditions. The use of Enterococcus strains as probiotics has recently become controversial due to the ease of acquiring different virulence factors and resistance to various classes of antibiotics. Enterococci are also seen as opportunistic pathogens. This problem is especially relevant in hospital environments, where enterococcal outbreaks often occur. Their ability to translocate from the gastro-intestinal tract to various tissues and organs as well as their virulence and antibiotic resistance are risk factors that hinder eradication. Due to numerous reports on the plasticity of the enterococcal genome and the acquisition of pathogenic microbial features, we ask ourselves, how far is this commensal genus from acquiring pathogenicity? This paper discusses both the beneficial properties of these microorganisms and the risk factors related to their evolution towards pathogenicity.
Collapse
|
12
|
Isolation and Identification of Dominant Bacteria from Raw Donkey Milk Produced in a Region of Morocco by QIIME 2 and Evaluation of Their Antibacterial Activity. ScientificWorldJournal 2021; 2021:6664636. [PMID: 34421400 PMCID: PMC8371658 DOI: 10.1155/2021/6664636] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/21/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, the interest in donkey milk has increased considerably because it proved high nutritive and functional values of their ingredients. Its chemical composition is widely studied, but its microbiota, especially lactic acid bacteria, remains less studied. This study focuses on analyzing, isolating, and identifying lactic acid bacteria and evaluating their capacity to produce biomolecules with antibacterial activity. Among 44 strains identified, 43 are Gram-positive, and most are catalase-negative and cocci-shaped. Five strains were selected to evaluate their antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli. Different induction methods allowed to amplify the antibacterial effects against these pathogenic strains.
Collapse
|
13
|
Enterococcal Species Associated with Slovak Raw Goat Milk, Their Safety and Susceptibility to Lantibiotics and Durancin ED26E/7. Processes (Basel) 2021. [DOI: 10.3390/pr9040681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Goat milk has become a popular item of human consumption due to its originality. Enterococci are ubiquitous bacteria, and they can also be found in traditional dairy products. This study focuses on the safety of enterococci from Slovak raw goat milk and on their susceptibility to lantibiotic bacteriocins and durancin ED26E/7, which has not previously been studied. Biofilm formation ability in enterococci, virulence factor genes, enzyme production and antibiotic profile were investigated. Samples of raw goat milk (53) were collected from 283 goats in Slovakia. MALDI-TOF mass spectrometry identified three enterococcal species: Enterococcus faecium, E. hirae and E. mundtii, with dominant occurrence of the species E. faecium. Low-grade biofilm formation ability (0.1 ≤ A570 < 1.0) was found in four strains of E. faecium. Gelatinase, hyaluronidase, aggregation substance and enterococcal surface protein genes were absent in these enterococci. Gene efaAfm (adhesin) was detected in five E. faecium strains. However, it was not detected in biofilm-forming strains. Enterococci detected in Slovak raw goat milk were found not to have pathogenic potential; four strains even produced high amounts of useful β-galactosidase. The strains were susceptible to lantibiotic bacteriocin treatment and to durancin ED26E/7 as well, which represents original information in dairy production.
Collapse
|
14
|
Safety Evaluation, Biogenic Amine Formation, and Enzymatic Activity Profiles of Autochthonous Enterocin-Producing Greek Cheese Isolates of the Enterococcus faecium/durans Group. Microorganisms 2021; 9:microorganisms9040777. [PMID: 33917761 PMCID: PMC8068099 DOI: 10.3390/microorganisms9040777] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022] Open
Abstract
Autochthonous single (Ent+) or multiple (m-Ent+) enterocin-producing strains of dairy enterococci show promise for use as bioprotective adjunct cultures in traditional cheese technologies, provided they possess no pathogenic traits. This study evaluated safety, decarboxylase activity, and enzymatic (API ZYM) activity profiles of nine Ent+ or m-Ent+ Greek cheese isolates previously assigned to four distinct E. faecium (represented by the isolates KE64 (entA), GL31 (entA), KE82 (entA-entB-entP) and KE77 (entA-entB-entP-bac31)) and two E. durans (represented by the isolates KE100 (entP) and KE108 (entP-bac31-cyl)) strain genotypes. No strain was β-hemolytic or harbored vanA and vanB or the virulence genes agg, ace, espA, IS16, hyl, or gelE. All strains were of moderate to high sensitivity to ampicillin, ciprofloxacin, chloramphenicol, erythromycin, gentamicin, penicillin, tetracycline, and vancomycin, except for the E. faecium KE64 and KE82 strains, which were resistant to erythromycin and penicillin. All cheese strains showed moderate to strong esterase-lipase and aminopeptidase activities and formed tyramine, but none formed histamine in vitro. In conclusion, all Ent+ or m-Ent+ strain genotypes of the E. faecium/durans group, except for the cyl-positive E. durans KE108, were safe for use as adjunct cultures in traditional Greek cheeses. Further in situ biotechnological evaluations of the strains in real cheese-making trials are required.
Collapse
|
15
|
Lawpidet P, Tengjaroenkul B, Saksangawong C, Sukon P. Global Prevalence of Vancomycin-Resistant Enterococci in Food of Animal Origin: A Meta-Analysis. Foodborne Pathog Dis 2021; 18:405-412. [PMID: 33684315 DOI: 10.1089/fpd.2020.2892] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are a leading cause of nosocomial infections in patients worldwide. VRE contamination in food of animal origin may create a risk for human health. This study was conducted to estimate the pooled prevalence of VRE in food of animal origin worldwide, to assess the result heterogeneity, and to determine cumulative evidence and the trend of the prevalence over time. Relevant studies were retrieved from PubMed, Scopus, and Web of Science. A random-effects model was used to calculate the pooled prevalence of VRE in food of animal origin. Subgroup meta-analysis was used to assess the heterogeneity of the results. A cumulative meta-analysis and meta-regression were conducted to determine cumulative evidence and the trend of the prevalence of VRE in food of animal origin over time, respectively. Of the 1352 retrieved studies, 50 articles were included. The pooled prevalence of VRE in food of animal origin was 11.7% (95% confidence interval [95% CI] = 8.4 to 16.0). Subgroup meta-analyses showed a significant difference in the prevalence of VRE for two characteristics. First, for the source of food, the prevalence of VRE was highest in aquatic food (43.4% [95% CI = 28.4 to 59.7]) and lowest in dairy food (4.1% [95% CI = 1.7 to 9.8]). Second, for continents, the prevalence of VRE was highest in Africa (18.5% [95% CI = 12.8 to 26.1]) and lowest in North America (0.3% [95% CI = 0.1 to 1.1]). Cumulative evidence showed two distinct features in two different periods. The pooled prevalence of VRE rapidly decreased from 79.3% in 1998 to 13.1% in 2003; it has slightly fluctuated between 10.5% and 20.5% since 2004. The results of the meta-regression indicated that the prevalence gradually decreased over time. In conclusion, the estimate of overall VRE prevalence worldwide in food of animal origin was ∼12%, indicating the burden of VRE contamination in food of animal origin.
Collapse
Affiliation(s)
| | - Bundit Tengjaroenkul
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research and Development on Toxic Substances, Microorganisms and Feed Additives in Livestock and Aquatic Animals for Food Safety, Khon Kaen University, Khon Kaen, Thailand
| | | | - Peerapol Sukon
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand.,Research and Development on Toxic Substances, Microorganisms and Feed Additives in Livestock and Aquatic Animals for Food Safety, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
16
|
Ng ZJ, Zarin MA, Lee CK, Tan JS. Application of bacteriocins in food preservation and infectious disease treatment for humans and livestock: a review. RSC Adv 2020; 10:38937-38964. [PMID: 35518417 PMCID: PMC9057404 DOI: 10.1039/d0ra06161a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases caused by bacteria that can be transmitted via food, livestock and humans are always a concern to the public, as majority of them may cause severe illnesses and death. Antibacterial agents have been investigated for the treatment of bacterial infections. Antibiotics are the most successful antibacterial agents that have been used widely for decades to ease human pain caused by bacterial infections. Nevertheless, the emergence of antibiotic-resistant bacteria has raised awareness amongst public about the downside of using antibiotics. The threat of antibiotic resistance to global health, food security and development has been emphasized by the World Health Organization (WHO), and research studies have been focused on alternative antimicrobial agents. Bacteriocin, a natural antimicrobial peptide, has been chosen to replace antibiotics for its application in food preservation and infectious disease treatment for livestock and humans, as it is less toxic.
Collapse
Affiliation(s)
- Zhang Jin Ng
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| | - Mazni Abu Zarin
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| | - Chee Keong Lee
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| | - Joo Shun Tan
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| |
Collapse
|
17
|
Valledor SJD, Bucheli JEV, Holzapfel WH, Todorov SD. Exploring Beneficial Properties of the Bacteriocinogenic Enterococcus faecium ST10Bz Strain Isolated from Boza, a Bulgarian Cereal-Based Beverage. Microorganisms 2020; 8:microorganisms8101474. [PMID: 32992853 PMCID: PMC7600690 DOI: 10.3390/microorganisms8101474] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
The bacteriocin-producing strain Enterococcus faecium ST10Bz, isolated from boza, a Bulgarian cereal-based beverage, exhibited strong activity against Listeria strains, vancomycin-resistant and other Enterococcus strains, but not against most of the other lactic acid bacteria (LAB) strains included in the test panel. Bacteriocin ST10Bz was proven as a stable antimicrobial, even after exposure to various environmental conditions, including varying pH values, temperatures, and commonly used chemicals in industry and laboratory practice. Bacteriocin activity against L. monocytogenes ATCC®15313™ was recorded at 25,600 AU/mL when the producer strain was cultured in MRS broth at 25 °C and 30 °C, and 19,200 AU/mL, when cultured at 37 °C. Additionally, bacteriocin ST10Bz exhibited bactericidal mode of action when added to actively growing cultures of L. monocytogenes ATCC®15313™ and Enterococcus faecalis 200A. E. faecium ST10Bz was susceptible to the antibiotics kanamycin, gentamycin, ampicillin, streptomycin, tylosin, chloramphenicol, clindamycin, tetracycline, and vancomycin; with no evidence for vanA, B, C, D, E, or G genes. PCR analysis of DNA from strain ST10Bz generated positive results for presence of some bacterial adhesion genes, including map, mub and ef-tu, as well as the gamma aminobutyric acid (GABA) production-related gene, gad. Under simulated gastrointestinal conditions in single and co-culture with L. monocytogenes ATCC®15313™ and E. faecalis 200A, E. faecium ST10Bz showed a high survival rate and the ability to reduce the viable numbers of the two test strains.
Collapse
|
18
|
Terzić-Vidojević A, Veljović K, Tolinački M, Živković M, Lukić J, Lozo J, Fira Đ, Jovčić B, Strahinić I, Begović J, Popović N, Miljković M, Kojić M, Topisirović L, Golić N. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. Food Res Int 2020; 136:109494. [PMID: 32846575 DOI: 10.1016/j.foodres.2020.109494] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.
Collapse
Affiliation(s)
- Amarela Terzić-Vidojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia.
| | - Katarina Veljović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milica Živković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jovanka Lukić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Lozo
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Đorđe Fira
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Branko Jovčić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Ivana Strahinić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Begović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Marija Miljković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Ljubiša Topisirović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| |
Collapse
|
19
|
Graham K, Stack H, Rea R. Safety, beneficial and technological properties of enterococci for use in functional food applications - a review. Crit Rev Food Sci Nutr 2020; 60:3836-3861. [PMID: 31924117 DOI: 10.1080/10408398.2019.1709800] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enterococci are ubiquitous lactic acid bacteria (LAB) that predominantly reside in the gastrointestinal tract of humans and animals but are also widespread in food and the environment due to their robust nature. Enterococci have the paradoxical position of providing several benefits of technological interest in food fermentations but are also considered as opportunistic pathogens capable of causing infection in immunocompromised patients. Several species of the genus have been correlated with disease development in humans such as bacteremia, urinary tract infections, and endocarditis. The pathogenesis of enterococci has been attributed to the increasing incidence of antibiotic resistance and the possession of virulence determinants. On the contrary, enterococci have led to improvements in the aroma, texture, and flavor of fermented dairy products, while their beneficial use as probiotic and protective cultures has also been documented. Furthermore, they have emerged as important candidates for the generation of bioactive peptides, particularly from milk, which provide new opportunities for the development of functional foods and nutraceuticals for human nutrition and health. The detection of pathogenic traits among some species is compromising their use in food applications and subsequently, the genus neither has Generally Regarded as Safe (GRAS) status nor has it been included in the Qualified Presumption of Safety (QPS) list. Nevertheless, the use of certain enterococcal strains in food has been permitted on the basis of a case-by-case assessment. Promisingly, enterococcal virulence factors appear strain specific and food isolates harbor fewer determinants than clinical isolates, while they also remain largely susceptible to clinically relevant antibiotics and thus, have a lower potential for pathogenicity. Ideally, strains considered for use in foods should not possess any virulence determinants and should be susceptible to clinically relevant antibiotics. Implementation of an appropriate risk/benefit analysis, establishment of a strain's innocuity, and consideration for relevant guidelines, legislation, and regulatory aspects surrounding functional food development, may help industry, health-staff and consumers accept enterococci, like other LAB, as important candidates for useful and beneficial applications in food biotechnology.
Collapse
Affiliation(s)
- Ken Graham
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Helena Stack
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | - Rosemary Rea
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| |
Collapse
|
20
|
Terra MR, Tosoni NF, Furlaneto MC, Furlaneto-Maia L. Assessment of vancomycin resistance transfer among enterococci of clinical importance in milk matrix. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:925-929. [PMID: 31382830 DOI: 10.1080/03601234.2019.1647753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dissemination of vancomycin resistance in enterococci has been associated with horizontal transfer of mobile genetic elements. Aim of the study was to evaluate if milk matrix is a suitable environment to support transferability of vancomycin resistance (vanA) gene from clinical vancomycin-resistant Enterococcus faecium to vancomycin-sensitive Enterococcus faecalis. Enterococci strains were firstly screened for the presence of cpd (inducible sex pheromone determinant) gene, vanA and tetL genes (vancomycin and tetracycline resistance markers, respectively) and the gelE (extracellular metalloendopeptidase) gene to define the mating pairs. Based on these selection markers, we investigated the transferability of eight plasmid-borne vanA harbored by E. faecium (vanA+, cpd-, tetL- and gelE-) into two E. faecalis (vanA-, cpd+, tetL + and gelE+) recipient strains in milk matrix. The strains were mated in a 1:1 ratio in 7% reconstituted milk and incubated at 37 °C. Transconjugants emerged from all 16 matings within 2 h of incubation and were evidenced by dual antibiotic resistance (vancomycin and tetracycline). The vancomycin-resistance of trasconjugants was maintained even after ten subsequent passages on nonselective medium. Transconjugants were positive for vanA, tetL and gelE genes. This study indicates milk matrix as suitable environment to support gene exchange between Enterococcus species.
Collapse
Affiliation(s)
- Marcia R Terra
- Department of Microbiology, Universitry Campus, State University of Londrina, Londrina, Brazil
| | - Natara F Tosoni
- Department of Food Technology, Campus of Londrina, Federal Technological University of Paraná, Londrina, Brazil
| | - Marcia C Furlaneto
- Department of Microbiology, Universitry Campus, State University of Londrina, Londrina, Brazil
| | - Luciana Furlaneto-Maia
- Department of Food Technology, Campus of Londrina, Federal Technological University of Paraná, Londrina, Brazil
| |
Collapse
|
21
|
Popović N, Djokić J, Brdarić E, Dinić M, Terzić-Vidojević A, Golić N, Veljović K. The Influence of Heat-Killed Enterococcus faecium BGPAS1-3 on the Tight Junction Protein Expression and Immune Function in Differentiated Caco-2 Cells Infected With Listeria monocytogenes ATCC 19111. Front Microbiol 2019; 10:412. [PMID: 30891021 PMCID: PMC6411766 DOI: 10.3389/fmicb.2019.00412] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/18/2019] [Indexed: 12/14/2022] Open
Abstract
Listeria monocytogenes, the common foodborne pathogenic bacteria species, compromises the intestinal epithelial barrier, leading to development of the listeriosis, a severe disease especially among immunocompromised individuals. L. monocytogenes infection usually requires antibiotic treatment, however, excessive use of antibiotics promotes emergence of antibiotic resistance and the destruction of gut microbiota. Probiotics, including lactic acid bacteria (LAB), have been repeatedly proven as an alternative approach for the treatment of various infections. We have analyzed the potential of Enterococcus faecium BGPAS1-3, a dairy isolate exhibiting strong direct antilisterial effect, to modulate the response of differentiated Caco-2 intestinal epithelial cells to L. monocytogenes ATCC 19111 infection. We showed that the molecule with antilisterial effect is a bacterial cell-wall protein that is highly resistant to the high-temperature treatment. When we tested the antilisterial potential of heat-killed BGPAS1-3, we found that it could prevent tight junction disruption in differentiated Caco-2 monolayer infected with L. monocytogenes ATCC 19111, induce antilisterial host response mechanisms, and stimulate the production of protective TGF-β in intestinal epithelial cells. We also showed that the modulation of MyD88 dependent TLR2 and TLR4 pathways by BGPAS1-3 are involved in host response against L. monocytogenes ATCC 19111. Since heat-killed BGPAS1-3 possess strong antilisterial effects, such postbiotic could be used as a controllable and safe therapeutic.
Collapse
Affiliation(s)
| | - Jelena Djokić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
22
|
Vandera E, Kakouri A, Koukkou AI, Samelis J. Major ecological shifts within the dominant nonstarter lactic acid bacteria in mature Greek Graviera cheese as affected by the starter culture type. Int J Food Microbiol 2019; 290:15-26. [DOI: 10.1016/j.ijfoodmicro.2018.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/27/2018] [Accepted: 09/16/2018] [Indexed: 11/25/2022]
|
23
|
The genome sequence of Enterococcus faecium 8S3, lactic acid–producing bacterium from Slovak cheese – bryndza with biotechnological potential. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
He Q, Hou Q, Wang Y, Li J, Li W, Kwok LY, Sun Z, Zhang H, Zhong Z. Comparative genomic analysis of Enterococcus faecalis: insights into their environmental adaptations. BMC Genomics 2018; 19:527. [PMID: 29996769 PMCID: PMC6042284 DOI: 10.1186/s12864-018-4887-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Enterococcus faecalis is widely studied as a common gut commensal and a nosocomial pathogen. In fact, Enterococcus faecalis is ubiquitous in nature, and it has been isolated from various niches, including the gastrointestinal tract, faeces, blood, urine, water, and fermented foods (such as dairy products). In order to elucidate the role of habitat in shaping the genome of Enterococcus faecalis, we performed a comparative genomic analysis of 78 strains of various origins. RESULTS Although no correlation was found between the strain isolation habitat and the phylogeny of Enterococcus faecalis from our whole genome-based phylogenetic analysis, our results revealed some environment-associated features in the analysed Enterococcus faecalis genomes. Significant differences were found in the genome size and the number of predicted open reading frames (ORFs) between strains originated from different environments. In general, strains from water sources had the smallest genome size and the least number of predicted ORFs. We also identified 293 environment-specific genes, some of which might link to the adaptive strategies for survival in particular environments. In addition, the number of antibiotic resistance genes was significantly different between strains isolated from dairy products, water, and blood. Strains isolated from blood had the largest number of antibiotic resistance genes. CONCLUSION These findings improve our understanding of the role of habitat in shaping the genomes of Enterococcus faecalis.
Collapse
Affiliation(s)
- Qiuwen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Qiangchuan Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Yanjie Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Jing Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China. .,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.
| |
Collapse
|
25
|
Kopčáková A, Dubíková K, Šuľák M, Javorský P, Kmeť V, Lauková A, Pristaš P. Restriction-modification systems and phage resistance of enterococci from ewe milk. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Popović N, Dinić M, Tolinački M, Mihajlović S, Terzić-Vidojević A, Bojić S, Djokić J, Golić N, Veljović K. New Insight into Biofilm Formation Ability, the Presence of Virulence Genes and Probiotic Potential of Enterococcus sp. Dairy Isolates. Front Microbiol 2018; 9:78. [PMID: 29441056 PMCID: PMC5797593 DOI: 10.3389/fmicb.2018.00078] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/12/2018] [Indexed: 11/15/2022] Open
Abstract
Enterococci have controversial status due to their emerging role in nosocomial infections and transmission of antibiotic resistance genes, while some enterococci strains are used as probiotics for humans and animals and starter cultures in dairy industry. In order to improve our understanding of factors involved in the safe use of enterococci as potential probiotics, the antibiotic susceptibility, virulence and probiotic traits of 75 dairy enterococci isolates belonging to Enterococcus durans (50), En. faecium (15), En. faecalis (6), En. italicus (3), and En. hirae (1) were evaluated. The results revealed that ciprofloxacin resistance and biofilm formation are correlated with isolates originated from Golija mountain (Serbia), while gelatinase activity was more common in isolates from Prigorje region (Croatia), pointing to uncontrolled use of antibiotics and anthropogenic impact on dairy products' microbiota in these regions. The virulence genes were sporadically present in 13 selected dairy enterococci isolates. Interestingly, biofilm formation was correlated with higher ability of strains to reduce the adhesion of E. coli and Salmonella Enteritidis to HT29-MTX cells. To our knowledge this is the first study reporting the presence of the esp gene (previously correlated with pathogenesis) in dairy enterococci isolates, mostly associated with the genes involved in adhesion property. Hence, the results of this study revealed that the virulence genes are sporadically present in dairy isolates and more correlated to adhesion properties and biofilm formation, implicating their role in gut colonization rather than to the virulence traits.
Collapse
Affiliation(s)
- Nikola Popović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Miroslav Dinić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Maja Tolinački
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sanja Mihajlović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Amarela Terzić-Vidojević
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Jelena Djokić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nataša Golić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Katarina Veljović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
27
|
Veljović K, Popović N, Miljković M, Tolinački M, Terzić-Vidojević A, Kojić M. Novel Aggregation Promoting Factor AggE Contributes to the Probiotic Properties of Enterococcus faecium BGGO9-28. Front Microbiol 2017; 8:1843. [PMID: 29018422 PMCID: PMC5622976 DOI: 10.3389/fmicb.2017.01843] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/08/2017] [Indexed: 01/07/2023] Open
Abstract
The understanding of mechanisms of interactions between various bacterial cell surface proteins and host receptors has become imperative for the study of the health promoting features of probiotic enterococci. This study, for the first time, describes a novel enterococcal aggregation protein, AggE, from Enterococcus faecium BGGO9-28, selected from a laboratory collection of enterococcal isolates with auto-aggregation phenotypes. Among them, En. faecium BGGO9-28 showed the strongest auto-aggregation, adhesion to components of ECM and biofilm formation. Novel aggregation promoting factor AggE, a protein of 178.1 kDa, belongs to the collagen-binding superfamily of proteins and shares similar architecture with previously discovered aggregation factors from lactic acid bacteria (LAB). Its expression in heterologous enterococcal and lactococcal hosts demonstrates that the aggE gene is sufficient for cell aggregation. The derivatives carrying aggE exhibited the ten times higher adhesion ability to collagen and fibronectin, possess about two times higher adhesion to mucin and contribute to the increase of biofilm formation, comparing to the control strains. Analysis for the presence of virulence factors (cytolysin and gelatinase production), antibiotic resistance (antibiotic susceptibility) and genes (cylA, agg, gelE, esp, hylN, ace, efaAfs, and efaAfm) showed that BGGO9-28 was sensitive to all tested antibiotics, without hemolytic or gelatinase activity. This strain does not carry any of the tested genes encoding for known virulence factors. Results showed that BGGO9-28 was resistant to low pH and high concentrations of bile salts. Also, it adhered strongly to the Caco-2 human epithelial cell line. In conclusion, the results of this study indicate that the presence of AggE protein on the cell surface in enterococci is a desirable probiotic feature.
Collapse
Affiliation(s)
- Katarina Veljović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Miljković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Amarela Terzić-Vidojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|