1
|
Maskur M, Prihanto AA, Firdaus M, Kobun R, Nurdiani R. Review of the potential of bioactive compounds in seaweed to reduce histamine formation in fish and fish products. Ital J Food Saf 2025. [PMID: 39882994 DOI: 10.4081/ijfs.2025.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025] Open
Abstract
The formation of histamine in food is influenced by temperature, and histamine growth can be inhibited by maintaining a cold chain. However, simply relying on temperature control is insufficient, as certain bacteria can produce the enzyme histidine decarboxylase even at temperatures below 5°C. To address this issue, various methods, such as modified atmosphere packaging, high hydrostatic pressure, and irradiation, have been developed to control histamine in fishery products. However, these methods often require significant investments. Therefore, there is a need for a cost-effective solution to overcome this problem. This review explores a cost-effective solution through the utilization of bioactive compounds derived from underexplored seaweeds. Seaweed bioactive compounds, either in their pure form or as extracts, offer a promising alternative method to regulate histamine generation in fishery products due to their antibacterial activity, and this review provides comprehensive insights into the potential of different seaweed-derived bioactive compounds as inhibitors of histamine production, detailing their diverse applications in fishery products. It also explores the mechanism by which bioactive compounds prevent histamine formation by bacteria, focusing on the potential of seaweed bioactive compounds to inhibit bacterial histidine decarboxylase. Future trends in the inhibition of histidine decarboxylation are also discussed. The bioactive compounds considered, such as flavonoids, alkaloids, terpenes, and phenolic acids, exhibit their antibacterial effects through various mechanisms, including the inhibition of DNA and RNA synthesis, disruption of cytoplasmic and cell membranes, and inhibition of enzymes by reacting with sulfhydryl groups on proteins. In conclusion, the integration of underexplored seaweeds in fishery product preservation represents a promising and innovative approach for future food safety and sustainability.
Collapse
Affiliation(s)
- Muhammad Maskur
- Doctoral Program, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java; Polytechnic of Marine and Fisheries Bone, Bone, South Sulawesi.
| | - Asep Awaludin Prihanto
- Department Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java.
| | - Muhamad Firdaus
- Department Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java.
| | - Rovina Kobun
- Food Security Research Lab, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah.
| | - Rahmi Nurdiani
- Department Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Malang, East Java.
| |
Collapse
|
2
|
Sun J, Jin X, Li Y. Current strategies for nonalcoholic fatty liver disease treatment (Review). Int J Mol Med 2024; 54:88. [PMID: 39129305 PMCID: PMC11335354 DOI: 10.3892/ijmm.2024.5412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common chronic hepatic disease, has become a leading health problem worldwide. The present review summarized the methods and mechanisms to treat NAFLD, including the Mediterranean diet, physical activity and exercise, bariatric surgery and specific therapeutic agents, including statins, peroxisome proliferator‑activated receptor agonists, cenicriviroc and farnesoid X receptor agonists. Biologically active substances, such as peptides, alkaloids, polyphenolic compounds, silymarin, antibiotics, fatty acids, vitamins, probiotics, synbiotics and lamiaceae have also demonstrated actions that combat NAFLD. Considering their different mechanisms of action, combining some of them may prove an efficacious treatment for NAFLD. In this light, the present review describes recent progress and future prospects in treating NAFLD.
Collapse
Affiliation(s)
- Jing Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Xiuli Jin
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Yiling Li
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
3
|
Huang Z, Wang Q, Cao J, Zhou D, Li C. Mechanisms of polyphenols on quality control of aquatic products in storage: A review. Crit Rev Food Sci Nutr 2024; 64:6298-6317. [PMID: 36655433 DOI: 10.1080/10408398.2023.2167803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aquatic products are easily spoiled during storage due to oxidation, endogenous enzymes, and bacteria. At the same time, compared with synthetic antioxidants, based on the antibacterial and antioxidant mechanism of biological agents, the development of natural, nontoxic, low-temperature, better-effect green biological preservatives is more acceptable to consumers. The type and molecular structure of polyphenols affect their antioxidant and antibacterial effectiveness. This review will describe how they achieve their antioxidant and antibacterial effects. And the recent literature on the mechanism and application of polyphenols in the preservation of aquatic products was updated and summarized. The conclusion is that in aquatic products, polyphenols alleviate lipid oxidation, protein degradation and inhibit the growth and reproduction of microorganisms, so as to achieve the effect of storage quality control. And put forward suggestions on the application of the research results in aquatic products. We hope to provide theoretical support for better exploration of the application of polyphenols and aquatic product storage.
Collapse
Affiliation(s)
- Zhiliang Huang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qi Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Dayong Zhou
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Świder O, Roszko MŁ, Wójcicki M. The inhibitory effects of plant additives on biogenic amine formation in fermented foods - a review. Crit Rev Food Sci Nutr 2023; 64:12935-12960. [PMID: 37724793 DOI: 10.1080/10408398.2023.2258964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Fermented food has unique properties and high nutritional value, and thus, should constitute a basic element of a balanced and health-promoting diet. However, it can accumulate considerable amount of biogenic amines (BAs), which ingested in excess can lead to adverse health effects. The application of plant-derived additives represents a promising strategy to ensure safety or enhance the functional and organoleptic properties of fermented food. This review summarizes currently available data on the application of plant-origin additives with the aim to reduce BA content in fermented products. The importance of ensuring fermented food safety has been highlighted considering the growing evidence of beneficial effects resulting from the consumption of this type of food, as well as the increasing number of individuals sensitive to BAs. The examined plant-origin additives reduced the BA concentration to varying degrees, and their efficacy depended on the type of additive, matrix, autochthonous, and inoculated microorganisms, as well as the manufacturing conditions. The main mechanisms of action include antimicrobial effects and the inhibition of microbial decarboxylases. Further research on the optimization of bioactive substances extraction, standardization of their chemical composition, and development of detailed procedures for its use in fermented products manufacturing are needed.
Collapse
Affiliation(s)
- Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Marek Łukasz Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
5
|
Zeng Y, Luo Y, Wang L, Zhang K, Peng J, Fan G. Therapeutic Effect of Curcumin on Metabolic Diseases: Evidence from Clinical Studies. Int J Mol Sci 2023; 24:ijms24043323. [PMID: 36834734 PMCID: PMC9959718 DOI: 10.3390/ijms24043323] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Metabolic diseases have become a serious threat to human health worldwide. It is crucial to look for effective drugs from natural products to treat metabolic diseases. Curcumin, a natural polyphenolic compound, is mainly obtained from the rhizomes of the genus Curcuma. In recent years, clinical trials using curcumin for the treatment of metabolic diseases have been increasing. In this review, we provide a timely and comprehensive summary of the clinical progress of curcumin in the treatment of three metabolic diseases, namely type 2 diabetes mellitus (T2DM), obesity and non-alcoholic fatty liver disease (NAFLD). The therapeutic effects and underlying mechanisms of curcumin on these three diseases are presented categorically. Accumulating clinical evidence demonstrates that curcumin has good therapeutic potential and a low number of side effects for the three metabolic diseases. It can lower blood glucose and lipid levels, improve insulin resistance and reduce inflammation and oxidative stress. Overall, curcumin may be an effective drug for the treatment of T2DM, obesity and NAFLD. However, more high-quality clinical trials are still required in the future to verify its efficacy and determine its molecular mechanisms and targets.
Collapse
Affiliation(s)
- Yujiao Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuting Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kun Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayan Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: ; Tel.: +86-28-61656141
| |
Collapse
|
6
|
Bacillus subtilis K-C3 as Potential Starter to Improve Nutritional Components and Quality of Shrimp Paste and Corresponding Changes during Storage at Two Alternative Temperatures. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study aimed to evaluate Bacillus subtilis K-C3 as a potential starter to improve shrimp paste quality, particularly in terms of nutritional profiles. The quality/characteristic changes of shrimp paste with and without inoculation during storage for 18 months when stored at low (4 °C) and room (28 °C) temperature were also investigated. The results found that this B. strain increased essential amino acids (EAAs) and polyunsaturated fatty acids (PUFAs), as well as antioxidant properties including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activities, ferric reducing antioxidant power (FRAP) and metal chelating activity in the experimental shrimp paste compared to traditional shrimp paste (p < 0.05). The faster development of some characteristics of inoculated samples were also noted, as indicated by the higher total viable count (TVC), formal and amino nitrogen content, pH, and browning index, as well as biogenic amines, indicating different quality which may be further responsible for different product acceptability. The changes in quality/characteristics of shrimp paste were observed throughout the 18 months of storage. Shrimp paste stored at room temperature accelerated those changes faster than samples stored at low temperature (p < 0.05); however, the quality of them still meets the product’s standard even storage for 18 months. Meanwhile, shrimp paste stored at a low temperature had an amount of yeast and mold over the limitation (>3.00 log CFU/g), indicating food spoilage. Thus, storage at room temperature can extend this product’s shelf-life better than storage at low temperature. Overall, inoculation with B. subtilis K-C3, in conjunction with storage at room temperature, resulted in quality improvement and maintenance in shrimp paste, particularly in the aspects of nutritional profiles and safety concern, as the shrimp paste should have a shelf-life of at least 18 months.
Collapse
|
7
|
Effects of Compound Feed Attractants on Growth Performance, Feed Utilization, Intestinal Histology, Protein Synthesis, and Immune Response of White Shrimp (Litopenaeus Vannamei). Animals (Basel) 2022; 12:ani12192550. [PMID: 36230291 PMCID: PMC9559290 DOI: 10.3390/ani12192550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
To investigate the effects of compound attractants on the growth performance, feed utilization, intestinal morphology, protein synthesis, and immune response of Litopenaeus vannamei, the following seven diets were formulated: a positive control (P), a negative control (N), and five diets with compound attractants which were labeled as A, B, C, D, and E, each with four of five tested attractants (yeast extract, squid visceral powder, fish soluble, and squid paste, shrimp paste), respectively. Shrimp (0.71 ± 0.00 g) were distributed to seven groups of four replicates and fed for 7 weeks. Results showed that the final body weight, feed intake, specific growth rate, and weight gain of shrimp in the B and D groups were the greatest. Hemolymph total antioxidant capacity of shrimp in the B, D, and E groups reached the highest level. In the hepatopancreas, the activity of total nitric oxide synthase, malondialdehyde content, the expression levels of sod, myd88, eif4e2, and raptor in shrimp fed the B diet were the highest, and the highest levels of dorsal and relish were observed in the C group. In the intestine, intestinal muscle thickness and expression levels of toll and eif2α in the C group were the highest, while the highest expression level of sod and relish occurred in the B group. In summary, the B and E diets promoted the feed intake, growth performance and the antioxidant enzyme activity of L. vannamei. The C diet enhanced the protein synthesis of shrimp. Regression analysis indicated that the WG and FI of shrimp were increased as the dietary inclusion levels of squid paste and shrimp paste increased, while they were decreased as the dietary inclusion levels of yeast extract and fish soluble increased.
Collapse
|
8
|
Gao Y, Lu Y, Zhang N, Udenigwe CC, Zhang Y, Fu Y. Preparation, pungency and bioactivity of gingerols from ginger ( Zingiber officinale Roscoe): a review. Crit Rev Food Sci Nutr 2022; 64:2708-2733. [PMID: 36135317 DOI: 10.1080/10408398.2022.2124951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ginger has been widely used for different purposes, such as condiment, functional food, drugs, and cosmetics. Gingerols, the main pungent component in ginger, possess a variety of bioactivities. To fully understand the significance of gingerols in the food and pharmaceutical industry, this paper first recaps the composition and physiochemical properties of gingerols, and the major extraction and synthesis methods. Furthermore, the pungency and bioactivity of gingerols are reviewed. In addition, the food application of gingerols and future perspectives are discussed. Gingerols, characterized by a 3-methoxy-4-hydroxyphenyl moiety, are divided into gingerols, shogaols, paradols, zingerone, gingerdiones and gingerdiols. At present, gingerols are extracted by conventional, innovative, and integrated extraction methods, and synthesized by chemical, biological and in vitro cell synthesis methods. Gingerols can activate transient receptor potential vanilloid type 1 (TRPV1) and induce signal transduction, thereby exhibiting its pungent properties and bioactivity. By targeted mediation of various cell signaling pathways, gingerols display potential anticancer, antibacterial, blood glucose regulatory, hepato- and renal-protective, gastrointestinal regulatory, nerve regulatory, and cardiovascular protective effects. This review contributes to the application of gingerols as functional ingredients in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Yuge Gao
- College of Food Science, Southwest University, Chongqing, China
- Westa College, Southwest University, Chongqing, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| |
Collapse
|
9
|
Ahmed SHH, Gonda T, Hunyadi A. Medicinal chemistry inspired by ginger: exploring the chemical space around 6-gingerol. RSC Adv 2021; 11:26687-26699. [PMID: 35480015 PMCID: PMC9037716 DOI: 10.1039/d1ra04227k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/24/2021] [Indexed: 12/22/2022] Open
Abstract
Ginger (Zingiber officinale Roscoe) has been used as a spice and as a traditional remedy since ancient times, especially in traditional Chinese medicine. It has been applied as a treatment for many diseases either alone or in combination with other remedies. Many studies were conducted on ginger and its constituents and a wide array of bioactivities were reported, e.g., antioxidant, anti-inflammatory, antiemetic, and anticancer activity. Most of these had been correlated to gingerols and shogaols, the most abundant secondary metabolites in ginger. This inspired several research groups to explore the biomedical value of the chemical space around these compounds, and many of their synthetic or semi-synthetic analogues have been prepared and studied for various bioactivities. Thanks to this, many valuable structure activity relationships have been revealed for such compounds. Herein, we provide a brief summary on the synthetic derivatization efforts that had so far been implemented on 6-gingerol, the main constituent of fresh ginger. This review covers 160 natural, semisynthetic, or synthetic 6-gingerol derivatives and their reported bioactivities. Structure and reported bioactivities of semi-synthetic and synthetic 6-gingerol derivatives.![]()
Collapse
Affiliation(s)
- Sara Hassan Hassan Ahmed
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged Eötvös str. 6 H-6720 Szeged Hungary +3662546456.,Faculty of Pharmacy, University of Khartoum 1996 Khartoum Sudan
| | - Tímea Gonda
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged Eötvös str. 6 H-6720 Szeged Hungary +3662546456
| | - Attila Hunyadi
- Institute of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged Eötvös str. 6 H-6720 Szeged Hungary +3662546456.,Interdisciplinary Centre for Natural Products, University of Szeged Eötvös str. 6 H-6720 Szeged Hungary
| |
Collapse
|
10
|
Shi C, Liu M, Zhao H, Liang L, Zhang B. Formation and Control of Biogenic Amines in Sufu-A Traditional Chinese Fermented Soybean Product: A Critical Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1936002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chenshan Shi
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Miaomiao Liu
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongfei Zhao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lisong Liang
- State Key Laboratory of Tree Genetics and Breeding/Research Institute of Forestry, Chinese Academy of Forestry, Beijing China
| | - Bolin Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
11
|
Zhang S, Xu M, Zhang W, Liu C, Chen S. Natural Polyphenols in Metabolic Syndrome: Protective Mechanisms and Clinical Applications. Int J Mol Sci 2021; 22:ijms22116110. [PMID: 34204038 PMCID: PMC8201163 DOI: 10.3390/ijms22116110] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) is a chronic disease, including abdominal obesity, dyslipidemia, hyperglycemia, and hypertension. It should be noted that the occurrence of MetS is closely related to oxidative stress-induced mitochondrial dysfunction, ectopic fat accumulation, and the impairment of the antioxidant system, which in turn further aggravates the intracellular oxidative imbalance and inflammatory response. As enriched anti-inflammatory and antioxidant components in plants, natural polyphenols exhibit beneficial effects, including improving liver fat accumulation and dyslipidemia, reducing blood pressure. Hence, they are expected to be useful in the prevention and management of MetS. At present, epidemiological studies indicate a negative correlation between polyphenol intake and MetS incidence. In this review, we summarized and discussed the most promising natural polyphenols (including flavonoid and non-flavonoid drugs) in the precaution and treatment of MetS, including their anti-inflammatory and antioxidant properties, as well as their regulatory functions involved in glycolipid homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Siyu Chen
- Correspondence: ; Tel./Fax: +86-25-86185645
| |
Collapse
|
12
|
Sivamaruthi BS, Kesika P, Chaiyasut C. A narrative review on biogenic amines in fermented fish and meat products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:1623-1639. [PMID: 33897002 PMCID: PMC8021659 DOI: 10.1007/s13197-020-04686-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/06/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022]
Abstract
Biogenic amines (BAs) are organic nitrogenous compounds, formed mostly by decarboxylation of corresponding amino acids. BAs are responsible for several biological events. However, if the concentration of BAs reached the threshold level, it causes mild to serious health problems in human. The objective of this manuscript was to summarize the prevalence and prevention of Bas formation, detection methods and factors affecting the BAs formation in fermented fish and meat products. Meat sausages are the fermented meat product that contains high BAs. Fish sauces are reported to have high BAs compared to other fish products. Several chemosensors and chromatography methods are available to screen and detect BAs in foods. The prevention measures are vital to avoid toxic outbreaks. The use of starter culture, application of physical factors, control of environmental factors, and use of polyphenols could prevent or diminish the formation of BAs in fermented foods. The literature survey warrants that the development of potent starter with desirable characters, maintenance of hygienic food production and regular monitoring of commercial products are necessary to ensure the quality and safety of fermented fish and meat product.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
13
|
Wu Q, Zhou J. The application of polyphenols in food preservation. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:35-99. [PMID: 34507646 DOI: 10.1016/bs.afnr.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyphenols are a kind of complex secondary metabolites in nature, widely exist in the flowers, bark, roots, stems, leaves, and fruits of plants. Numerous studies have shown that plant-derived polyphenols have a variety of bioactivities due to their unique chemical structure, such as antioxidant, antimicrobial, and prevention of chronic diseases, cardiovascular disease, cancer, osteoporosis, and neurodegeneration. With the gradual rise of natural product development, plant polyphenols have gradually become one of the research hotspots in the field of food science due to their wide distribution in the plants, and the diversity of physiological functions. Owing to the extraordinary antioxidant and antibacterial activity of polyphenols, plant-derived polyphenols offer an alternative to chemical additives used in the food industry, such as oil, seafood, meat, beverages, and food package materials. Based on this, this chapter provides an overview of the potential antioxidant and antibacterial mechanisms of plant polyphenols and their application in food preservation, it would be providing a reference for the future development of polyphenols in the food industry.
Collapse
Affiliation(s)
- Qian Wu
- Hubei University of Technology, Wuhan, China.
| | - Jie Zhou
- Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|
14
|
Houicher A, Bensid A, Regenstein JM, Özogul F. Control of biogenic amine production and bacterial growth in fish and seafood products using phytochemicals as biopreservatives: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100807] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Chemical Biopreservative Effects of Red Seaweed on the Shelf Life of Black Tiger Shrimp ( Penaeus monodon). Foods 2020; 9:foods9050634. [PMID: 32423120 PMCID: PMC7278703 DOI: 10.3390/foods9050634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/24/2022] Open
Abstract
Hypnea musciformis (HM) and Acanthophora muscoides (AM) red seaweeds were evaluated for their antioxidant properties and efficacy to extend the chemical shelf life of black tiger shrimp (Penaeus monodon) during 14-daystorage. Treated shrimp were soaked in five percent ethanolic solution with 500 µg/mL of AM or HM powder for 30 min. HM had more phenols and flavonoids, increased radical scavenging activity, and greater H2O2 reducing power than AM in vitro. Biochemical quality indicators were significantly higher in the control group, followed by HM- and AM-treated samples during storage. On day 14 of storage, controls contained significantly higher amounts of biogenic amines than HM- or AM-treated samples. The shelf life of chilled stored shrimp increased due to the presence of compounds of butylated hydroxytoluene, sulfurous acid, heptadecane, mono (2-ethylhexyl), and 1,2-propanediol found in AM extract and sulfurous acid and 1,2-propanediol found in HM extract. A control group was soaked in the same ethanolic solution as treated samples without algae powder for 30 min. Each group was kept ice-cold during the soaking period. The results obtained demonstrate the usefulness of two seaweed extracts, Hypnea musciformis and Acanthophora muscoides, combined with ice by decreasing the formation of toxic biogenic amines in shrimp, enhancing its shelf life during ice storage.
Collapse
|
16
|
Cheng C, Li Z, Zhao X, Liao C, Quan J, Bode AM, Cao Y, Luo X. Natural alkaloid and polyphenol compounds targeting lipid metabolism: Treatment implications in metabolic diseases. Eur J Pharmacol 2020; 870:172922. [DOI: 10.1016/j.ejphar.2020.172922] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 01/06/2023]
|
17
|
Cai L, Nian L, Cao A, Wu W, Wang J, Wang Y, Li J. Effects of xylitol and stevioside on the physical and rheological properties of gelatin from cod skin. FOOD SCI TECHNOL INT 2018; 24:639-650. [DOI: 10.1177/1082013218784389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Jelly and confectionery products are high in sugar and calories. Xylitol and stevioside are natural low-calorie sweeteners and they can be used as an alternative; however, their effects on fish gelatin are unknown. The gelatin was extracted from cod skins and added to xylitol or stevioside (0, 2, 6, 10, 14, and 20% (w/v)) to form gel products. This paper investigated how xylitol and stevioside affected the physical and rheological behaviors of fish gelatin, such as color, gel strength, texture profile analysis, storage modulus (G′), loss modulus (G″), and viscosity. Results showed that the change of color and viscosity in gel products were similar when various concentrations of xylitol or stevioside were added to the fish gelatin. But the effects of xylitol/stevioside on texture profile analysis and G′, G″ were different, which might due to the structure variation in xylitol and stevioside. The linear structure of xylitol resulted in ionic interaction, hydrogen bonding, van der Waals forces, and hydrophobic association between xylitol and fish gelatin. Therefore, xylitol is a promising sweetener substitute, which was probably related to its greater solubility and number of –OH groups.
Collapse
Affiliation(s)
- Luyun Cai
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Linyu Nian
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Ailing Cao
- Xiaoshan Entry-Exit Inspection and Quarantine Bureau, Hangzhou, China
| | - Wenjin Wu
- Research Institute of Agricultural Products Processing and Nuclear-Agricultural Technology, Wuhan, China
| | - Jing Wang
- China Rural Technology Development Center, Beijing, China
| | - Yanbo Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| |
Collapse
|
18
|
Mi H, Zhao B, Wang C, Yi S, Xu Y, Li J. Effect of 6-gingerol on physicochemical properties of grass carp (Ctenopharyngodon idellus) surimi fortified with perilla oil during refrigerated storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4807-4814. [PMID: 28374423 DOI: 10.1002/jsfa.8350] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/28/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Surimi is produced from deboned fish muscle through washing to remove blood, lipids, sarcoplasmic proteins and other impurities. There is an increasing interest in the fortification of surimi with ω-3 polyunsaturated fatty acids because of their health benefits. However, lipid oxidation should be considered as an important factor during storage. Hence, in this study, the quality properties and oxidative stability of surimi fortified with 30 g kg-1 perilla oil (PO), or 5 g kg-1 6-gingerol (GI) or their combination (PO+GI) was investigated. RESULTS Perilla oil significantly improved whiteness of surimi gel, but negatively influenced its gel strength, water holding capacity (WHC) and texture. However, there was no significant difference in texture properties among GI, PO+GI and control groups. During the whole storage period, GI and PO+GI groups had higher gel strength and WHC than control and PO groups. Moreover, lower thiobarbituric acid reactive substances (TBARS), total volatile basic nitrogen (TVB-N), carbonyl content and total plate count (TPC) were observed in GI group compared with other groups. CONCLUSION Perilla oil and 6-gingerol could be applied together to effectively fortify surimi qualities. Additionally, 6-gingerol could prevent lipid and protein oxidation and microbial growth of surimi during refrigerated storage. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongbo Mi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Bo Zhao
- College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Cong Wang
- College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Shumin Yi
- College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Yongxia Xu
- College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University; Food Safety Key Lab of Liaoning Province; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| |
Collapse
|
19
|
Liu X, Shen B, Du P, Wang N, Wang J, Li J, Sun A. Transcriptomic analysis of the response of Pseudomonas fluorescens to epigallocatechin gallate by RNA-seq. PLoS One 2017; 12:e0177938. [PMID: 28545064 PMCID: PMC5435343 DOI: 10.1371/journal.pone.0177938] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is a main constituent of green tea polyphenols that are widely used as food preservatives and are considered to be safe for consumption. However, the underlying antimicrobial mechanism of EGCG and the bacterial response to EGCG are not clearly understood. In the present study, a genome-wide transcriptional analysis of a typical spoilage bacterium, Pseudomonas fluorescens that responded to EGCG was performed using RNA-seq technology. A total of 26,365,414 and 23,287,092 clean reads were generated from P. fluorescens treated with or without 1 mM EGCG and the clean reads were aligned to the reference genome. Differential expression analysis revealed 291 upregulated genes and 134 downregulated genes and the differentially expressed genes (DEGs) were verified using RT-qPCR. Most of the DGEs involved in iron uptake, antioxidation, DNA repair, efflux system, cell envelope and cell-surface component synthesis were significantly upregulated by EGCG treatment, while most genes associated with energy production were downregulated. These transcriptomic changes are likely to be adaptive responses of P. fluorescens to iron limitation and oxidative stress, as well as DNA and envelope damage caused by EGCG. The expression of specific genes encoding the extra-cytoplasmic function sigma factor (PvdS, RpoE and AlgU) and the two-component sensor histidine kinase (BaeS and RpfG) were markedly changed by EGCG treatment, which may play important roles in regulating the stress responses of P. fluorescens to EGCG. The present data provides important insights into the molecular action of EGCG and the possible cross-resistance mediated by EGCG on P. fluorescens, which may ultimately contribute to the optimal application of green tea polyphenols in food preservation.
Collapse
Affiliation(s)
- Xiaoxiang Liu
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Bimiao Shen
- Department of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Peng Du
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Jiaxue Wang
- Department of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Jianrong Li
- Food Safety Key Lab of Liaoning Province, Bohai University, Jinzhou, Liaoning, China
| | - Aihua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
- * E-mail:
| |
Collapse
|
20
|
Cai L, Wang Q, Dong Z, Liu S, Zhang C, Li J. Biochemical, Nutritional, and Sensory Quality of the Low Salt Fermented Shrimp Paste. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2017. [DOI: 10.1080/10498850.2016.1276111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Luyun Cai
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Jinzhou, China
- College of Food Science, Southwest University, Chongqing, China
| | - Qingjun Wang
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Jinzhou, China
| | - Zhijian Dong
- Department of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Chaohua Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Food Safety Key Lab of Liaoning Province, Jinzhou, China
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|