1
|
Elsayed MM, Elkenany RM, Zakari AI, Badawy BM. Isolation and characterization of bacteriophages for combating multidrug-resistant Listeria monocytogenes from dairy cattle farms in conjugation with silver nanoparticles. BMC Microbiol 2023; 23:146. [PMID: 37217869 DOI: 10.1186/s12866-023-02893-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND This study aims to achieve biocontrol of multidrug-resistant Listeria monocytogenes in dairy cattle farms which poses a severe threat to our socio-economic balance and healthcare systems. METHODS Naturally occurring phages from dairy cattle environments were isolated and characterized, and the antimicrobial effect of isolated L. monocytogenes phages (LMPs) against multidrug-resistant L. monocytogenes strains were assessed alone and in conjugation with silver nanoparticles (AgNPs). RESULTS Six different phenotypic LMPs (LMP1-LMP6) were isolated from silage (n = 4; one by direct phage isolation and three by enrichment method) and manure (n = 2; both by enrichment method) from dairy cattle farms. The isolated phages were categorized into three different families by transmission electron microscopy (TEM): Siphoviridae (LMP1 and LMP5), Myoviridae (LMP2, LMP4, and LMP6), and Podoviridae (LMP3). The host range of the isolated LMPs was determined by the spot method using 22 multidrug-resistant L. monocytogenes strains. All 22 (100%) strains were susceptible to phage infection; 50% (3 out of 6) of the isolated phages showed narrow host ranges, while the other 50% showed moderate host ranges. We found that LMP3 (the phage with the shortest tail) had the ability to infect the widest range of L. monocytogenes strains. Eclipse and latent periods of LMP3 were 5 and 45 min, respectively. The burst size of LMP3 was 25 PFU per infected cell. LMP3 was stable with wide range of pH and temperature. In addition, time-kill curves of LMP3 alone at MOI of 10, 1 and 0.1, AgNPs alone, and LMP3 in combination with AgNPs against the most phage-resistant L. monocytogenes strain (ERIC A) were constructed. Among the five treatments, AgNPs alone had the lowest inhibition activity compared to LMP3 at a multiplicity of infection (MOI) of 0.1, 1, and 10. LMP3 at MOI of 0.1 in conjugation with AgNPs (10 µg/mL) exhibited complete inhibition activity after just 2 h, and the inhibition activity lasted for 24 h treatment. In contrast, the inhibition activity of AgNPs alone and phages alone, even at MOI of 10, stopped. Therefore, the combination of LMP3 and AgNPs enhanced the antimicrobial action and its stability and reduced the required concentrations of LMP3 and AgNPs, which would minimize the development of future resistance. CONCLUSIONS The results suggested that the combination of LMP3 and AgNPs could be used as a powerful and ecofriendly antibacterial agent in the dairy cattle farm environment to overcome multidrug-resistant L. monocytogenes.
Collapse
Affiliation(s)
- Mona M Elsayed
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Rasha M Elkenany
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Amira I Zakari
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Basma M Badawy
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Sasirekha R, Sharma O, Sugumar S. In silico analysis of diversity, specificity and molecular evolution of Stenotrophomonas phages. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:422-430. [PMID: 34792292 DOI: 10.1111/1758-2229.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
In this study, we have focused on the lytic phage proteins encoded by the Stenotrophomonas phages. A total of 60 lytic proteins were identified to be encoded by 19 different phages. Those proteins were characterized under eight classes: amidases, muramidases, pectate lyase, peptidases, holins and spanins. The phages encoding these proteins come under the family of Ackermannviridae, Autographiviridae, Myoviridae, Podoviridae and Siphoviridae. All the phages encoding those proteins were found to infect Stenotrophomonas maltophilia. Among the phages, about 50% were found to undergo a lytic lifecycle. The isolated proteins were clustered according to the similarity in the amino acid sequence. These clusters were used to make their phylogenetic tree. The co-occurrence of the amidase, pectate lyase and lipase genes in the phage genome was found using a correlation analysis.
Collapse
Affiliation(s)
- Revathy Sasirekha
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Osheen Sharma
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Shobana Sugumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
3
|
Buchholz HH, Bolaños LM, Bell AG, Michelsen ML, Allen MJ, Temperton B. A Novel and Ubiquitous Marine Methylophage Provides Insights into Viral-Host Coevolution and Possible Host-Range Expansion in Streamlined Marine Heterotrophic Bacteria. Appl Environ Microbiol 2022; 88:e0025522. [PMID: 35311512 PMCID: PMC9004378 DOI: 10.1128/aem.00255-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
The methylotrophic OM43 clade are Gammaproteobacteria that comprise some of the smallest free-living cells known and have highly streamlined genomes. OM43 represents an important microbial link between marine primary production and remineralization of carbon back to the atmosphere. Bacteriophages shape microbial communities and are major drivers of mortality and global marine biogeochemistry. Recent cultivation efforts have brought the first viruses infecting members of the OM43 clade into culture. Here, we characterize a novel myophage infecting OM43 called Melnitz. Melnitz was isolated independently from water samples from a subtropical ocean gyre (Sargasso Sea) and temperate coastal (Western English Channel) systems. Metagenomic recruitment from global ocean viromes confirmed that Melnitz is globally ubiquitous, congruent with patterns of host abundance. Bacteria with streamlined genomes such as OM43 and the globally dominant SAR11 clade use riboswitches as an efficient method to regulate metabolism. Melnitz encodes a two-piece tmRNA (ssrA), controlled by a glutamine riboswitch, providing evidence that riboswitch use also occurs for regulation during phage infection of streamlined heterotrophs. Virally encoded tRNAs and ssrA found in Melnitz were phylogenetically more closely related to those found within the alphaproteobacterial SAR11 clade and their associated myophages than those within their gammaproteobacterial hosts. This suggests the possibility of an ancestral host transition event between SAR11 and OM43. Melnitz and a related myophage that infects SAR11 were unable to infect hosts of the SAR11 and OM43, respectively, suggesting host transition rather than a broadening of host range. IMPORTANCE Isolation and cultivation of viruses are the foundations on which the mechanistic understanding of virus-host interactions and parameterization of bioinformatic tools for viral ecology are based. This study isolated and characterized the first myophage known to infect the OM43 clade, expanding our knowledge of this understudied group of microbes. The nearly identical genomes of four strains of Melnitz isolated from different marine provinces and the global abundance estimations from metagenomic data suggest that this viral population is globally ubiquitous. Genome analysis revealed several unusual features in Melnitz and related genomes recovered from viromes, such as a curli operon and virally encoded tmRNA controlled by a glutamine riboswitch, neither of which are found in the host. Further phylogenetic analysis of shared genes indicates that this group of viruses infecting the gammaproteobacterial OM43 shares a recent common ancestor with viruses infecting the abundant alphaproteobacterial SAR11 clade. Host ranges are affected by compatible cell surface receptors, successful circumvention of superinfection exclusion systems, and the presence of required accessory proteins, which typically limits phages to singular narrow groups of closely related bacterial hosts. This study provides intriguing evidence that for streamlined heterotrophic bacteria, virus-host transitioning may not be necessarily restricted to phylogenetically related hosts but is a function of shared physical and biochemical properties of the cell.
Collapse
Affiliation(s)
| | | | | | | | - Michael J. Allen
- University of Exeter, School of Biosciences, Exeter, UK
- Plymouth Marine Laboratory, Plymouth, UK
| | - Ben Temperton
- University of Exeter, School of Biosciences, Exeter, UK
| |
Collapse
|
4
|
Inhibition of Listeria monocytogenes by Phage Lytic Enzymes Displayed on Tailored Bionanoparticles. Foods 2022; 11:foods11060854. [PMID: 35327276 PMCID: PMC8951524 DOI: 10.3390/foods11060854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
The high mortality rate associated with Listeria monocytogenes and its ability to adapt to the harsh conditions employed in food processing has ensured that this pathogen remains a serious problem in the ready-to-eat food sector. Bacteriophage-derived enzymes can be applied as biocontrol agents to target specific foodborne pathogens. We investigated the ability of a listeriophage endolysin and derivatives thereof, fused to polyhydroxyalkanoate bionanoparticles (PHA_BNPs), to lyse and inhibit the growth of L. monocytogenes. Turbidity reduction assays confirmed the lysis of L. monocytogenes cells at 37 °C upon addition of the tailored BNPs. The application of BNPs also resulted in the growth inhibition of L. monocytogenes. BNPs displaying only the amidase domain of the phage endolysin were more effective at inhibiting growth under laboratory conditions (37 °C, 3 × 107 CFU/mL) than BNPs displaying the full-length endolysin (89% vs. 83% inhibition). Under conditions that better represent those found in food processing environments (22 °C, 1 × 103 CFU/mL), BNPs displaying the full-length endolysin demonstrated a greater inhibitory effect compared to BNPs displaying only the amidase domain (61% vs. 54% inhibition). Our results demonstrate proof-of-concept that tailored BNPs displaying recombinant listeriophage enzymes are active inhibitors of L. monocytogenes.
Collapse
|
5
|
Lachtara B, Wieczorek K, Osek J. Genetic Diversity and Relationships of Listeria monocytogenes Serogroup IIa Isolated in Poland. Microorganisms 2022; 10:532. [PMID: 35336111 PMCID: PMC8951407 DOI: 10.3390/microorganisms10030532] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
In the present study, 100 L. monocytogenes isolates of serogroup IIa from food and food production environments in Poland were characterized towards the presence of virulence, resistance, and stress response genes using whole-genome sequencing (WGS). The strains were also molecularly typed and compared with multi-locus sequence typing (MLST) and core genome MLST analyses. The present isolates were grouped into 6 sublineages (SLs), with the most prevalent SL155 (33 isolates), SL121 (32 isolates), and SL8 (28 isolates) and classified into six clonal complexes, with the most prevalent CC155 (33 strains), CC121 (32 isolates), and CC8 (28 strains). Furthermore, the strains were grouped to eight sequence types, with the most prevalent ST155 (33 strains), ST121 (30 isolates), and ST8 (28; strains) followed by 60 cgMLST types (CTs). WGS data showed the presence of several virulence genes or putative molecular markers playing a role in pathogenesis of listeriosis and involved in survival of L. monocytogenes in adverse environmental conditions. Some of the present strains were molecularly closely related to L. monocytogenes previously isolated in Poland. The results of the study showed that food and food production environments may be a source of L. monocytogenes of serogroup IIa with pathogenic potential.
Collapse
Affiliation(s)
| | | | - Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, 24-100 Pulawy, Poland; (B.L.); (K.W.)
| |
Collapse
|
6
|
Wan X, Geng P, Sun J, Yuan Z, Hu X. Characterization of two newly isolated bacteriophages PW2 and PW4 and derived endolysins with lysis activity against Bacillus cereus group strains. Virus Res 2021; 302:198489. [PMID: 34146612 DOI: 10.1016/j.virusres.2021.198489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 01/31/2023]
Abstract
This study characterized two novel Siphoviridae phages, PW2 and PW4, that can infect 52% and 44% of the tested Bacillus cereus group isolates and display relatively high activity against four cereulide-producing isolates belonging to B. weihenstephanensis and B. paranthracis. The genome sequences of PW2 and PW4 are similar to six known phages infecting B. cereus group isolates, which can be classified into two conserved groups, with the PW2 genome harboring conserved coding sequences (CDSs) from both groups. Two phage-derived endolysins, LysPW2 and LysPW4, which are predicted to encode N-acetylmuramoyl-L-alanine amidase, and their enzymatically active domains (EADs), LysPW2-EAD and LysPW4-EAD, were heterologously expressed. Both LysPW2 and LysPW4, especially the former, show a much wider host range than the phages, albeit still limited to the B. cereus group for the tested bacteria. The optimal temperature and pH for LysPW2 ability is 37 °C and pH 8.0 and for LysPW4 is 50 °C and pH 9.0. Neither LysPW2-EAD nor LysPW4-EAD show any lytic activity against vegetative cells of the tested B. cereus group isolates but can inhibit germination in 66.3% and 65.7% of spores, respectively. In addition, both LysPW2-EAD and LysPW4-EAD exhibit spore-binding capabilities.
Collapse
Affiliation(s)
- Xiaofu Wan
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China; University of the Chinese Academy of Sciences, Beijing 100039, China; College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Peiling Geng
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiahui Sun
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430070, China.
| | - Xiaomin Hu
- College of Life Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
7
|
Lachtara B, Osek J, Wieczorek K. Molecular Typing of Listeria monocytogenes IVb Serogroup Isolated from Food and Food Production Environments in Poland. Pathogens 2021; 10:pathogens10040482. [PMID: 33921133 PMCID: PMC8071568 DOI: 10.3390/pathogens10040482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes is one of the most important foodborne pathogens that may be present in food and in food processing environments. In the present study, 91 L. monocytogenes isolates of serogroup IVb from raw meat, ready-to-eat food and food production environments in Poland were characterized by whole genome sequencing (WGS). The strains were also compared, using core genome multi-locus sequence typing (cgMLST) analysis, with 186 genomes of L. monocytogenes recovered worldwide from food, environments, and from humans with listeriosis. The L. monocytogenes examined belonged to three MLST clonal complexes: CC1 (10; 11.0% isolates), CC2 (70; 76.9%), and CC6 (11; 12.1%). CC1 comprised of two STs (ST1 and ST515) which could be divided into five cgMLST, CC2 covered two STs (ST2 and ST145) with a total of 20 cgMLST types, whereas CC6 consisted of only one ST (ST6) classified as one cgMLST. WGS sequences of the tested strains revealed that they had several pathogenic markers making them potentially hazardous for public health. Molecular comparison of L. monocytogenes strains tested in the present study with those isolated from food and human listeriosis showed a relationship between the isolates from Poland, but not from other countries.
Collapse
|
8
|
Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C. Biases in Viral Metagenomics-Based Detection, Cataloguing and Quantification of Bacteriophage Genomes in Human Faeces, a Review. Microorganisms 2021; 9:524. [PMID: 33806607 PMCID: PMC8000950 DOI: 10.3390/microorganisms9030524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
The human gut is colonised by a vast array of microbes that include bacteria, viruses, fungi, and archaea. While interest in these microbial entities has largely focused on the bacterial constituents, recently the viral component has attracted more attention. Metagenomic advances, compared to classical isolation procedures, have greatly enhanced our understanding of the composition, diversity, and function of viruses in the human microbiome (virome). We highlight that viral extraction methodologies are crucial in terms of identifying and characterising communities of viruses infecting eukaryotes and bacteria. Different viral extraction protocols, including those used in some of the most significant human virome publications to date, have introduced biases affecting their a overall conclusions. It is important that protocol variations should be clearly highlighted across studies, with the ultimate goal of identifying and acknowledging biases associated with different protocols and, perhaps, the generation of an unbiased and standardised method for examining this portion of the human microbiome.
Collapse
Affiliation(s)
| | | | | | | | | | - Colin Hill
- APC Microbiome Ireland and School of Microbiology, University College Cork, T12 YT20 Cork, Ireland; (J.C.); (S.R.S.); (A.S.); (L.A.D.); (R.P.R.)
| |
Collapse
|
9
|
Stone E, Lhomet A, Neve H, Grant IR, Campbell K, McAuliffe O. Isolation and Characterization of Listeria monocytogenes Phage vB_LmoH_P61, a Phage With Biocontrol Potential on Different Food Matrices. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.521645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Genomic Diversity of Common Sequence Types of Listeria monocytogenes Isolated from Ready-to-Eat Products of Animal Origin in South Africa. Genes (Basel) 2019; 10:genes10121007. [PMID: 31817243 PMCID: PMC6947032 DOI: 10.3390/genes10121007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/08/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022] Open
Abstract
Listeria monocytogenes is a highly fatal foodborne causative agent that has been implicated in numerous outbreaks and related deaths of listeriosis in the world. In this study, six L. monocytogenes isolated from ready-to-eat (RTE) meat products were analysed using Whole Genome Sequencing (WGS) to identify virulence and resistance genes, prophage sequences, PCR-serogroups, and sequence types (STs). The WGS identified four different STs (ST1, ST121, ST204, and ST876) that belonged to serogroup 4b (lineage I) and 1/2a (lineage II). Core genome, and average nucleotide identity (ANI) phylogenetic analyses showed that the majority of strains from serogroup 4b (lineage I) clustered together. However, two isolates that belong to serogroup 1/2a (lineage II) grouped far from each other and the other strains. Examination of reference-guided scaffolds for the presence of prophages using the PHAge Search Tool Enhanced Release (PHASTER) software identified 24 diverse prophages, which were either intact or incomplete/questionable. The National Center for Biotechnology Information- Nucleotide Basic Local Alignment Search Tool (NCBI-BLASTn) revealed that Listeria monocytogenes strains in this study shared some known major virulence genes that are encoded in Listeria pathogenicity islands 1 and 3. In general, the resistance profiles for all the isolates were similar and encoded for multidrug, heavy metal, antibiotic, and sanitizer resistance genes. All the isolates in this study possessed genes that code for resistance to common food processing antiseptics such as Benzalkonium chloride.
Collapse
|
11
|
Valero‐Rello A. Diversity, specificity and molecular evolution of the lytic arsenal of
Pseudomonas
phages:
in silico
perspective. Environ Microbiol 2019; 21:4136-4150. [DOI: 10.1111/1462-2920.14767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/21/2023]
|
12
|
Pennone V, Sanz-Gaitero M, O'Connor P, Coffey A, Jordan K, van Raaij MJ, McAuliffe O. Inhibition of L. monocytogenes Biofilm Formation by the Amidase Domain of the Phage vB_LmoS_293 Endolysin. Viruses 2019; 11:v11080722. [PMID: 31390848 PMCID: PMC6723838 DOI: 10.3390/v11080722] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous Gram-positive bacterium that is a major concern for food business operators because of its pathogenicity and ability to form biofilms in food production environments. Bacteriophages (phages) have been evaluated as biocontrol agents for L. monocytogenes in a number of studies and, indeed, certain phages have been approved for use as anti-listerial agents in food processing environments (ListShield and PhageGuard Listex). Endolysins are proteins produced by phages in the host cell. They cleave the peptidoglycan cell wall, thus allowing release of progeny phage into the environment. In this study, the amidase domain of the phage vB_LmoS_293 endolysin (293-amidase) was cloned and expressed in Escherichia. coli (E. coli). Muralytic activity at different concentrations, pH and temperature values, lytic spectrum and activity against biofilms was determined for the purified 293-amidase protein. The results showed activity on autoclaved cells at three different temperatures (20 °C, 37 °C and 50 °C), with a wider specificity (L. monocytogenes 473 and 3099, a serotype 4b and serogroup 1/2b-3b-7, respectively) compared to the phage itself, which targets only L. monocytogenes serotypes 4b and 4e. The protein also inhibits biofilm formation on abiotic surfaces. These results show the potential of using recombinant antimicrobial proteins against pathogens in the food production environment.
Collapse
Affiliation(s)
- Vincenzo Pennone
- Teagasc Food Research Center, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
- Cork Institute of Technology, Bishopstown, Cork, T12 P928, Ireland
| | - Marta Sanz-Gaitero
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- Cork Institute of Technology, Bishopstown, Cork, T12 P928, Ireland
| | - Paula O'Connor
- Teagasc Food Research Center, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - Aidan Coffey
- Cork Institute of Technology, Bishopstown, Cork, T12 P928, Ireland.
| | - Kieran Jordan
- Teagasc Food Research Center, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - Mark J van Raaij
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Olivia McAuliffe
- Teagasc Food Research Center, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| |
Collapse
|
13
|
Cross-resistance to phage infection in Listeria monocytogenes serotype 1/2a mutants. Food Microbiol 2019; 84:103239. [PMID: 31421769 DOI: 10.1016/j.fm.2019.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 01/22/2023]
Abstract
Bacteriophage-based biocontrols are one of several tools available to control Listeria monocytogenes in food and food processing environments. The objective of this study was to determine if phage-resistance that has been characterized with a select few Listeria phages would also confer resistance to a diverse collection of over 100 other Listeria phages. We show that some mutations that are likely to emerge in bacteriophage-treated populations of serotype 1/2a L. monocytogenes can lead to cross-resistance against almost all types of characterized Listeria phages. Out of the 120 phages that showed activity against the parental strain, only one could form visible plaques on the mutant strain of L. monocytogenes lacking rhamnose in its wall teichoic acids. An additional two phages showed signs of lytic activity against this mutant strain; although no visible plaques were observed. The findings presented here are consistent with other studies showing mutations conferring phage resistance through loss of rhamnose likely pose the greatest challenge for phage-based biocontrol in serotype 1/2a strains.
Collapse
|
14
|
Dunne M, Hupfeld M, Klumpp J, Loessner MJ. Molecular Basis of Bacterial Host Interactions by Gram-Positive Targeting Bacteriophages. Viruses 2018; 10:v10080397. [PMID: 30060549 PMCID: PMC6115969 DOI: 10.3390/v10080397] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022] Open
Abstract
The inherent ability of bacteriophages (phages) to infect specific bacterial hosts makes them ideal candidates to develop into antimicrobial agents for pathogen-specific remediation in food processing, biotechnology, and medicine (e.g., phage therapy). Conversely, phage contaminations of fermentation processes are a major concern to dairy and bioprocessing industries. The first stage of any successful phage infection is adsorption to a bacterial host cell, mediated by receptor-binding proteins (RBPs). As the first point of contact, the binding specificity of phage RBPs is the primary determinant of bacterial host range, and thus defines the remediative potential of a phage for a given bacterium. Co-evolution of RBPs and their bacterial receptors has forced endless adaptation cycles of phage-host interactions, which in turn has created a diverse array of phage adsorption mechanisms utilizing an assortment of RBPs. Over the last decade, these intricate mechanisms have been studied intensely using electron microscopy and X-ray crystallography, providing atomic-level details of this fundamental stage in the phage infection cycle. This review summarizes current knowledge surrounding the molecular basis of host interaction for various socioeconomically important Gram-positive targeting phage RBPs to their protein- and saccharide-based receptors. Special attention is paid to the abundant and best-characterized Siphoviridae family of tailed phages. Unravelling these complex phage-host dynamics is essential to harness the full potential of phage-based technologies, or for generating novel strategies to combat industrial phage contaminations.
Collapse
Affiliation(s)
- Matthew Dunne
- Institute of Food Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| | - Mario Hupfeld
- Institute of Food Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| | - Jochen Klumpp
- Institute of Food Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| | - Martin J Loessner
- Institute of Food Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland.
| |
Collapse
|
15
|
Vongkamjan K, Benjakul S, Kim Vu HT, Vuddhakul V. Longitudinal monitoring of Listeria monocytogenes and Listeria phages in seafood processing environments in Thailand. Food Microbiol 2017; 66:11-19. [DOI: 10.1016/j.fm.2017.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|