1
|
Alterations in Epiphytic Bacterial Communities during the Occurrence of Green Rot Disease in Saccharina japonica Seedlings. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacteria are one of the causes of green rot disease (GRD) in Saccharina japonica mariculture, which may lead to complete failure of seedling production. However, the association between bacterial community and host disease severity remains largely unknown. Therefore, in this study, the bacterial communities associated with GRD-infected seedlings with naturally varying disease severity from two seedling hatcheries in Northern China were analyzed to investigate the interactions between bacterial communities and GRD. The results indicated incorrect nutrient supply in both sites. Gammaproteobacteria, Alphaproteobacteria, and Bacteroidetes were prevalent in all samples. Significant structural alterations were detected for epibacterial communities, which were further evidenced by differently abundant bacterial taxa associated with seedlings with varying disease severity. The predicted pathways of bacterial adhesion and antimicrobial compounds biosynthesis were significantly enriched in less severely diseased seedlings, whereas glutathione metabolism and lipopolysaccharide biosynthesis were significantly increased in more severely diseased seedlings. The predicted categories of a two-component system, flagellar assembly, bacterial chemotaxis, and biofilm formation were significantly enriched in the bacterioplankton in more severely infected seawater. The differential bacterial community compositions and predicted functions provide new clues to elucidate the mechanism underlying the interaction between GRD occurrence and bacterial communities.
Collapse
|
2
|
Díaz-Almeyda EM, Ryba T, Ohdera AH, Collins SM, Shafer N, Link C, Prado-Zapata M, Ruhnke C, Moore M, González Angel AM, Pollock FJ, Medina M. Thermal Stress Has Minimal Effects on Bacterial Communities of Thermotolerant Symbiodinium Cultures. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.764086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Algae in the dinoflagellate family Symbiodiniaceae are endocellular photosymbionts of corals and other cnidarians. This close relationship is disrupted when seawater temperature increases, causing coral bleaching eventually affecting entire coral reefs. Although the relationship between animal host and photosymbiont has been well-studied, little is known about the bacterial community associated with Symbiodiniaceae in culture. We compared the microbial communities of three isolates from different species of the genus Symbiodinium (formerly known as Symbiodinium clade A) with different ecophysiology, levels of interaction with the animal host, and thermal adaptations. Two species, Symbiodinium microadriaticum and Symbiodinium necroappettens, exhibit intermediate thermotolerance, with a decrease of both growth rate and photochemical efficiency with increased temperature. The third species, Symbiodinium pilosum, has high thermotolerance with no difference in growth rate or photochemical efficiency at 32°C. Microbial communities were characterized after 27 days of growth under control (26°C) and high temperature (32°C). Data shows stronger grouping of bacterial assemblages based on Symbiodinium species than temperature. Microbial communities did not group phylogenetically. We found a shared set of fifteen ASVs belonging to four genera and three families that remained in all three Symbiodiniaceae species. These included Labrenzia, Phycisphaeraceae (SM1A02), Roseovarius, and Muricauda, which are all commonly associated with corals and Symbiodiniaceae cultures. Few ASVs differed significantly by temperature within species. S. pilosum displayed significantly lower levels of microbial diversity and greater individual variability in community composition at 32°C compared to 26°C. These results suggest that bacteria associated or co-cultured with thermotolerant Symbiodinium might play an important role in thermotolerance. Further research on the functional metabolic pathways of these bacteria might hold the key to understanding Symbiodinium’s ability to tolerate thermal stress.
Collapse
|
3
|
Yang Q, Zhang Y, Ahmad M, Ling J, Zhou W, Zhang Y, Dong J. Microbial community structure shifts and potential Symbiodinium partner bacterial groups of bleaching coral Pocillopora verrucosa in South China Sea. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:966-974. [PMID: 33774743 DOI: 10.1007/s10646-021-02380-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The community structure of coral associated microorganisms will change greatly in coral bleaching. However, the relationship between specific bacteria groups and Symbiodinium, which is easy to be found in the bleaching process, has been ignored for a long time. In this study, the changes of coral microbial community during a natural bleaching event in the South China Sea were studied by 16S rRNA gene high-throughput sequencing. The microbial community composition of bleached corals was significantly different from that of normal corals (P < 0.001). OTUs belong to Bacillus, Exiguobacterium, Oceanobacillus, Saccharibacteria and Ostreobiaceae was significantly increased in the bleaching corals. The relative abundance of 30.9% OTUS changed significantly during coral bleaching. The relative abundance of potential coral pathogenic groups was not significantly different between normal and bleaching corals. Symbiodinium positively correlated bacterial groups accounted for 6.9% and 4.3% in the normal corals and bleached corals, respectively. The dominated groups of potential Symbiodinium-partner bacteria are Lactococcus and Bacillus. The potential Symbiodinium-partner bacterial groups in bleached corals were significantly lower than that in the normal corals, which further showed their coexistence with Symbiodinium. This study provides insight into the role of potential Symbiodinium-partner bacterial groups in the coral bleaching process and supports the theory of beneficial microorganisms for corals.
Collapse
Affiliation(s)
- Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Manzoor Ahmad
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yanying Zhang
- Ocean School, Yantai University, Yantai, 264005, China.
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301, Guangzhou, China.
- Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences and Hainan Key Laboratory of Tropical Marine Biotechnology, 572000, Sanya, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510070, China.
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
4
|
The microbial profile of a tissue necrosis affecting the Atlantic invasive coral Tubastraea tagusensis. Sci Rep 2021; 11:9828. [PMID: 33972618 PMCID: PMC8110780 DOI: 10.1038/s41598-021-89296-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
The Southwestern Atlantic rocky reef ecosystems are undergoing significant changes due to sun-corals (Tubastraea tagusensis and T. coccinea) invasion. At Búzios Island, on the northern coast of São Paulo State, where the abundance of T. tagusensis is particularly high, some colonies are displaying tissue necrosis, a phenomenon never reported for this invasive nor any other azooxanthellate coral species. Using next-generation sequencing, we sought to understand the relationship between T. tagusensis tissue necrosis and its microbiota. Thus, through amplicon sequencing, we studied both healthy and diseased coral colonies. Results indicate a wide variety of bacteria associated with healthy colonies and an even higher diversity associated with those corals presenting tissue necrosis, which displayed nearly 25% more microorganisms. Also, as the microbial community associated with the seven healthy colonies did not alter composition significantly, it was possible to verify the microbial succession during different stages of tissue necrosis (i.e., initial, intermediate, and advanced). Comparing the microbiome from healthy corals to those in early tissue necrosis suggests 21 potential pathogens, which might act as the promoters of such disease.
Collapse
|
5
|
Zanotti AA, Gregoracci GB, Capel KCC, Kitahara MV. Microbiome of the Southwestern Atlantic invasive scleractinian coral, Tubastraea tagusensis. Anim Microbiome 2020; 2:29. [PMID: 33499978 PMCID: PMC7807860 DOI: 10.1186/s42523-020-00047-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022] Open
Abstract
Background Commonly known as sun-coral, Tubastraea tagusensis is an azooxanthellate scleractinian coral that successfully invaded the Southwestern Atlantic causing significant seascape changes. Today it is reported to over 3500 km along the Brazilian coast, with several rocky shores displaying high substrate coverage. Apart from its singular invasiveness capacity, the documentation and, therefore, understanding of the role of symbiotic microorganisms in the sun-coral invasion is still scarce. However, in general, the broad and constant relationship between corals and microorganisms led to the development of co-evolution hypotheses. As such, it has been shown that the microbial community responds to environmental factors, adjustment of the holobiont, adapting its microbiome, and improving the hosts’ fitness in a short space of time. Here we describe the microbial community (i.e. Bacteria) associated with sun-coral larvae and adult colonies from a locality displaying a high invasion development. Results The usage of high throughput sequencing indicates a great diversity of Bacteria associated with T. tagusensis, with Cyanobacteria, Proteobacteria, Bacteroidetes, Actinobacteria, Planctomycetes, and Firmicutes corresponding to the majority of the microbiome in all samples. However, T. tagusensis’ microbial core consists of only eight genera for colonies, and, within them, three are also present in the sequenced larvae. Overall, the microbiome from colonies sampled at different depths did not show significant differences. The microbiome of the larvae suggests a partial vertical transfer of the microbial core in this species. Conclusion Although diverse, the microbiome core of adult Tubastraea tagusensis is composed of only eight genera, of which three are transferred from the mother colony to their larvae. The remaining bacteria genera are acquired from the seawater, indicating that they might play a role in the host fitness and, therefore, facilitate the sun-coral invasion in the Southwestern Atlantic.
Collapse
Affiliation(s)
- Aline Aparecida Zanotti
- Programa de Pós Graduação em Sistemas Costeiros e Oceânicos (PGSISCO), Universidade Federal do Paraná (UFPR), Pontal do Paraná, Brazil. .,Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo (USP), São Sebastião, Brazil.
| | - Gustavo Bueno Gregoracci
- Departamento de Ciências do Mar (DCMar), Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | | | - Marcelo Visentini Kitahara
- Programa de Pós Graduação em Sistemas Costeiros e Oceânicos (PGSISCO), Universidade Federal do Paraná (UFPR), Pontal do Paraná, Brazil.,Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo (USP), São Sebastião, Brazil.,Departamento de Ciências do Mar (DCMar), Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
6
|
Ng JCY, Chiu JMY. Changes in biofilm bacterial communities in response to combined effects of hypoxia, ocean acidification and nutrients from aquaculture activity in Three Fathoms Cove. MARINE POLLUTION BULLETIN 2020; 156:111256. [PMID: 32510398 DOI: 10.1016/j.marpolbul.2020.111256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic nutrient enrichment results in hypoxia, ocean acidification and elevated nutrients (HOAN) in coastal environments throughout the world. Here, we examined the composition of biofilm bacterial communities from a nutrient-excessive fish farm with low dissolved oxygen (DO) and pH levels using 16S rRNA gene sequencing. HOAN was accompanied by higher bacterial diversity and richness, and resulted in an altered community composition than the control site. HOAN resulted in more Flavobacteriales, Rhizobiales, Epsilonproteobacteria and Vibrionales, but less Oceanospirillales and Alteromonadales. Photobacterium sp. and Vibrio sp. were mostly found to be exclusive to HOAN conditions, suggesting that HOAN could possibly proliferate the presence of these potential pathogens. Our study suggests the complexity of bacterial communities to hypoxia and acidification in response to increased nutrient loads, along with identities of nutrient, oxygen and pH-susceptible bacterial groups that are most likely affected under this ocean trend.
Collapse
Affiliation(s)
- Jenny C Y Ng
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jill M Y Chiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
7
|
Clerissi C, de Lorgeril J, Petton B, Lucasson A, Escoubas JM, Gueguen Y, Dégremont L, Mitta G, Toulza E. Microbiota Composition and Evenness Predict Survival Rate of Oysters Confronted to Pacific Oyster Mortality Syndrome. Front Microbiol 2020; 11:311. [PMID: 32174904 PMCID: PMC7056673 DOI: 10.3389/fmicb.2020.00311] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/12/2020] [Indexed: 01/01/2023] Open
Abstract
Pacific Oyster Mortality Syndrome (POMS) affects Crassostrea gigas oysters worldwide and causes important economic losses. Disease dynamic was recently deciphered and revealed a multiple and progressive infection caused by the Ostreid herpesvirus OsHV-1 μVar, triggering an immunosuppression followed by microbiota destabilization and bacteraemia by opportunistic bacterial pathogens. However, it remains unknown if microbiota might participate to protect oysters against POMS, and if microbiota characteristics might be predictive of oyster mortalities. To tackle this issue, we transferred full-sib progenies of resistant and susceptible oyster families from hatchery to the field during a period in favor of POMS. After 5 days of transplantation, oysters from each family were either sampled for individual microbiota analyses using 16S rRNA gene-metabarcoding or transferred into facilities to record their survival using controlled condition. As expected, all oysters from susceptible families died, and all oysters from the resistant family survived. Quantification of OsHV-1 and bacteria showed that 5 days of transplantation were long enough to contaminate oysters by POMS, but not for entering the pathogenesis process. Thus, it was possible to compare microbiota characteristics between resistant and susceptible oysters families at the early steps of infection. Strikingly, we found that microbiota evenness and abundances of Cyanobacteria (Subsection III, family I), Mycoplasmataceae, Rhodobacteraceae, and Rhodospirillaceae were significantly different between resistant and susceptible oyster families. We concluded that these microbiota characteristics might predict oyster mortalities.
Collapse
Affiliation(s)
- Camille Clerissi
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France.,PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | - Julien de Lorgeril
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Bruno Petton
- Ifremer, LEMAR UMR 6539 (Université de Bretagne Occidentale, CNRS, IRD, Ifremer), Argenton-en-Landunvez, France
| | - Aude Lucasson
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Jean-Michel Escoubas
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Yannick Gueguen
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | | | - Guillaume Mitta
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| | - Eve Toulza
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
8
|
Ezzat L, Lamy T, Maher RL, Munsterman KS, Landfield KM, Schmeltzer ER, Clements CS, Vega Thurber RL, Burkepile DE. Parrotfish predation drives distinct microbial communities in reef-building corals. Anim Microbiome 2020; 2:5. [PMID: 33500004 PMCID: PMC7807759 DOI: 10.1186/s42523-020-0024-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Coral-associated microbial communities are sensitive to multiple environmental and biotic stressors that can lead to dysbiosis and mortality. Although the processes contributing to these microbial shifts remain inadequately understood, a number of potential mechanisms have been identified. For example, predation by various corallivore species, including ecologically-important taxa such as parrotfishes, may disrupt coral microbiomes via bite-induced transmission and/or enrichment of potentially opportunistic bacteria. Here, we used a combination of mesocosm experiments and field-based observations to investigate whether parrotfish corallivory can alter coral microbial assemblages directly and to identify the potentially relevant pathways (e.g. direct transmission) that may contribute to these changes. RESULTS Our mesocosm experiment demonstrated that predation by the parrotfish Chlorurus spilurus on Porites lobata corals resulted in a 2-4x increase in bacterial alpha diversity of the coral microbiome and a shift in bacterial community composition after 48 h. These changes corresponded with greater abundance of both potentially beneficial (i.e. Oceanospirillum) and opportunistic bacteria (i.e. Flammeovirgaceae, Rhodobacteraceae) in predated compared to mechanically wounded corals. Importantly, many of these taxa were detectable in C. spilurus mouths, but not in corals prior to predation. When we sampled bitten and unbitten corals in the field, corals bitten by parrotfishes exhibited 3x greater microbial richness and a shift in community composition towards greater abundance of both potential beneficial symbionts (i.e. Ruegeria) and bacterial opportunists (i.e. Rhodospiralles, Glaciecola). Moreover, we observed 4x greater community variability in naturally bitten vs. unbitten corals, a potential indicator of dysbiosis. Interestingly, some of the microbial taxa detected in naturally bitten corals, but not unbitten colonies, were also detected in parrotfish mouths. CONCLUSIONS Our findings suggest that parrotfish corallivory may represent an unrecognized route of bacterial transmission and/or enrichment of rare and distinct bacterial taxa, both of which could impact coral microbiomes and health. More broadly, we highlight how underappreciated pathways, such as corallivory, may contribute to dysbiosis within reef corals, which will be critical for understanding and predicting coral disease dynamics as reefs further degrade.
Collapse
Affiliation(s)
- Leïla Ezzat
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Thomas Lamy
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Rebecca L Maher
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Katrina S Munsterman
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Kaitlyn M Landfield
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Cody S Clements
- School of Biological Sciences and Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Deron E Burkepile
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
9
|
Quéré G, Intertaglia L, Payri C, Galand PE. Disease Specific Bacterial Communities in a Coralline Algae of the Northwestern Mediterranean Sea: A Combined Culture Dependent and -Independent Approach. Front Microbiol 2019; 10:1850. [PMID: 31555220 PMCID: PMC6722220 DOI: 10.3389/fmicb.2019.01850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/26/2019] [Indexed: 12/02/2022] Open
Abstract
Crustose coralline red algae (CCA) are important components of marine ecosystems thriving from tropical waters and up to the poles. They fulfill important ecological services including framework building and induction of larval settlement. Like other marine organisms, CCAs have not been spared by the increase in marine disease outbreaks. The white-band syndrome has been recently observed in corallines from the Mediterranean Sea indicating that the disease threat has extended from tropical to temperate waters. Here, we examined the microbiome and the pathobiome of healthy and diseased Neogoniolithon brassica-florida coralline algae in the Mediterranean Sea by combining culture-dependent and -independent approaches. The coralline white-band syndrome was associated with a distinct pathobiome compared to healthy tissues and showed similarities with the white-band syndrome described in the Caribbean Sea. A sequence related to the genus Hoeflea, order Rhizobiales, characterized the white-band disease pathobiome described by amplicon sequencing. No representative of this genus was isolated by culture. We, however, successfully isolated an abundant member of the healthy CCA microbiome, an Alphaproteobateria of the family Rhodobacteraceae. In conclusion, we did not identify a potential causative agent of the disease, but through the complementarity of culture dependent and independent approaches we characterized the healthy microbiome of the coralline and the possible opportunistic bacteria colonizing diseased tissues.
Collapse
Affiliation(s)
- Gaëlle Quéré
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France.,UMR 9220 ENTROPIE, 'Ecologie Marine Tropicale des Océans Pacifique et Indien', IRD, CNRS, Université de La Réunion, Noumea, New Caledonia
| | - Laurent Intertaglia
- Plateforme Bio2Mar, CNRS, Observatoire Océanologique de Banyuls, Sorbonne Université, Banyuls-sur-Mer, France
| | - Claude Payri
- UMR 9220 ENTROPIE, 'Ecologie Marine Tropicale des Océans Pacifique et Indien', IRD, CNRS, Université de La Réunion, Noumea, New Caledonia
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| |
Collapse
|
10
|
Hernandez-Agreda A, Leggat W, Ainsworth TD. A Comparative Analysis of Microbial DNA Preparation Methods for Use With Massive and Branching Coral Growth Forms. Front Microbiol 2018; 9:2146. [PMID: 30245683 PMCID: PMC6137167 DOI: 10.3389/fmicb.2018.02146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/21/2018] [Indexed: 12/24/2022] Open
Abstract
In the last two decades, over 100 studies have investigated the structure of the coral microbiome. However, as yet there are no standardized methods applied to sample preservation and preparation, with different studies using distinct methods. There have also been several comparisons made of microbiome data generated across different studies, which have not addressed the influence of the methodology employed over each of the microbiome datasets. Here, we assess three different preservation methods; salt saturated dimethyl sulfoxide (DMSO) – EDTA, snap freezing with liquid nitrogen and 4% paraformaldehyde solution, and two different preparation methodologies; bead beating and crushing, that have been applied to study the coral microbiome. We compare the resultant bacterial assemblage data for two coral growth forms, the massive coral Goniastrea edwardsi and the branching coral Isopora palifera. We show that microbiome datasets generated from differing preservation and processing protocols are comparable in composition (presence/absence). Significant discrepancies between preservation and homogenization methods are observed in structure (relative abundance), and in the occurrence and dominance of taxa, with rare (low abundance and low occurrence) phylotypes being the most variable fraction of the microbial community. Finally, we provide evidence to support chemical preservation with DMSO as effective as snap freezing samples for generating reliable and robust microbiome datasets. In conclusion, we recommend where possible a standardized preservation and extraction method be taken up by the field to provide the best possible practices for detailed assessments of symbiotic and conserved bacterial associations.
Collapse
Affiliation(s)
- Alejandra Hernandez-Agreda
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - William Leggat
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| | - Tracy D Ainsworth
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia.,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
11
|
Mathur V, del Campo J, Kolisko M, Keeling PJ. Global diversity and distribution of close relatives of apicomplexan parasites. Environ Microbiol 2018; 20:2824-2833. [DOI: 10.1111/1462-2920.14134] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Varsha Mathur
- Department of Botany; University of British Columbia; Vancouver British Columbia Canada
| | - Javier del Campo
- Department of Botany; University of British Columbia; Vancouver British Columbia Canada
- Department of Marine Biology and Oceanography; Institut de Ciències del Mar (CSIC); Barcelona Spain
| | - Martin Kolisko
- Department of Botany; University of British Columbia; Vancouver British Columbia Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences; Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Patrick J. Keeling
- Department of Botany; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
12
|
Zhang Y, Sun J, Mu H, Lun JCY, Qiu JW. Molecular pathology of skeletal growth anomalies in the brain coral Platygyra carnosa: A meta-transcriptomic analysis. MARINE POLLUTION BULLETIN 2017; 124:660-667. [PMID: 28363426 DOI: 10.1016/j.marpolbul.2017.03.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
Coral skeletal growth anomaly (GA) is a common coral disease. Although extensive ecological characterizations of coral GA have been performed, the molecular pathology of this disease remains largely unknown. We compared the meta-transcriptome of normal and GA-affected polyps of Platygyra carnosa using RNA-Seq. Approximately 50 million sequences were generated from four pairs of normal and GA-affected tissue samples. There were 109 differentially expressed genes (DEGs) in P. carnosa and 31 DEGs in the coral symbiont Symbiodinium sp. These differentially expressed host genes were enriched in GO terms related to osteogenesis and oncogenesis. There were several differentially expressed immune genes, indicating the presence of both bacteria and viruses in GA-affected tissues. The differentially expressed Symbiodinium genes were enriched in reproduction, nitrogen metabolism and pigment formation, indicating that GA affects the physiology of the symbiont. Our results have provided new insights into the molecular pathology of coral GA.
Collapse
Affiliation(s)
- Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jin Sun
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; Division of Life Sciences, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Huawei Mu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Janice C Y Lun
- Agriculture, Fisheries and Conservation Department, The Government of the Hong Kong Special Administrative Region, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
13
|
Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale. Sci Rep 2016; 6:27277. [PMID: 27263657 PMCID: PMC4893704 DOI: 10.1038/srep27277] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/18/2016] [Indexed: 02/04/2023] Open
Abstract
Mass mortality events in populations of the iconic red coral Corallium rubrum have been related to seawater temperature anomalies that may have triggered microbial disease development. However, very little is known about the bacterial community associated with the red coral. We therefore aimed to provide insight into this species’ bacterial assemblages using Illumina MiSeq sequencing of 16S rRNA gene amplicons generated from samples collected at five locations distributed across the western Mediterranean Sea. Twelve bacterial species were found to be consistently associated with the red coral, forming a core microbiome that accounted for 94.6% of the overall bacterial community. This core microbiome was particularly dominated by bacteria of the orders Spirochaetales and Oceanospirillales, in particular the ME2 family. Bacteria belonging to these orders have been implicated in nutrient cycling, including nitrogen, carbon and sulfur. While Oceanospirillales are common symbionts of marine invertebrates, our results identify members of the Spirochaetales as other important dominant symbiotic bacterial associates within Anthozoans.
Collapse
|