1
|
Ren X, Sun M, Hui J, Yang J, Zhang J, Li P, Lin G. Combined Transcriptome and Metabolome Analyses Provide New Insights into the Changes in the Flesh Color of Anthocyanins in Strawberry ( Fragaria × ananassa (Weston) Duchesne ex Rozier). Genes (Basel) 2024; 15:1391. [PMID: 39596590 PMCID: PMC11593598 DOI: 10.3390/genes15111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Strawberries are bright in color, sweet and sour in taste, and rich in nutrients and flavonoid compounds such as anthocyanins and proanthocyanidins. The synthesis and accumulation of anthocyanins are the decisive factors that make strawberries appear bright red. From the perspective of plant breeding, a change in flesh color is an important goal. METHODS In this study, two strawberry plants with different flesh colors were selected, and transcriptome and metabolome analyses were performed during the color change period (S1) and ripening period (S2). RESULTS RNA-seq revealed a total of 13,341 differentially expressed genes (DEGs) between and within materials, which were clustered into 5 clusters. A total of 695 metabolites were detected via metabolome analysis, and 243 differentially regulated metabolites (DRMs) were identified. The anthocyanin biosynthesis, starch and sucrose metabolism and glycolysis/gluconeogenesis pathways were determined to be important regulatory pathways for changes in strawberry flesh color through a joint analysis of RNA-seq data and the metabolome. The leucoanthocyanidin reductase (LAR) and chalcone synthase (CHS) gene is a key gene related to anthocyanins, cinnamic acid, and phenylalanine. In addition, through joint RNA-seq and metabolome analyses combined with weighted gene co-expression network analysis (WGCNA), we identified 9 candidate genes related to strawberry flesh color. CONCLUSIONS Our research findings have laid the groundwork for a more comprehensive understanding of the molecular mechanisms governing the color transformation in strawberry flesh. Additionally, we have identified novel genetic resources that can be instrumental in advancing research related to strawberry color change.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guocang Lin
- Comprehensive Experimental Field, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (X.R.); (M.S.); (J.H.); (J.Y.); (J.Z.); (P.L.)
| |
Collapse
|
2
|
Xia J, Luo Y, Chen M, Liu Y, Wang Z, Deng S, Xu J, Han Y, Sun J, Jiang L, Song H, Cheng C. Characterization of a DsbA family protein reveals its crucial role in oxidative stress tolerance of Listeria monocytogenes. Microbiol Spectr 2023; 11:e0306023. [PMID: 37823664 PMCID: PMC10715225 DOI: 10.1128/spectrum.03060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE The adaption and tolerance to various environmental stresses are the fundamental factors for the widespread existence of Listeria monocytogenes. Anti-oxidative stress is the critical mechanism for the survival and pathogenesis of L. monocytogenes. The thioredoxin (Trx) and glutaredoxin (Grx) systems are known to contribute to the anti-oxidative stress of L. monocytogenes, but whether the Dsb system has similar roles remains unknown. This study demonstrated that the DsbA family protein Lmo1059 of L. monocytogenes participates in bacterial oxidative stress tolerance, with Cys36 as the key amino acid of its catalytic activity and anti-oxidative stress ability. It is worth noting that Lmo1059 was involved in the invading and cell-to-cell spread of L. monocytogenes. This study lays a foundation for further understanding the specific mechanisms of oxidative cysteine repair and antioxidant stress regulation of L. monocytogenes, which contributes to an in-depth understanding of the environmental adaptation mechanisms for foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Jing Xia
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yaru Luo
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Mianmian Chen
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yuqing Liu
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Zhe Wang
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Simin Deng
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Jiali Xu
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Yue Han
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Jing Sun
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Lingli Jiang
- Ningbo College of Health Sciences, Ningbo, Zhejiang, China
| | - Houhui Song
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| | - Changyong Cheng
- College of Animal Science and Technology &College of Veterinary Medicine, Zhejiang A&F University, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Liu X, Pang X, Wu Y, Wu Y, Xu L, Chen Q, Niu J, Zhang X. New Insights into the Lactic Acid Resistance Determinants of Listeria monocytogenes Based on Transposon Sequencing and Transcriptome Sequencing Analyses. Microbiol Spectr 2023; 11:e0275022. [PMID: 36541787 PMCID: PMC9927151 DOI: 10.1128/spectrum.02750-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can tolerate a variety of extreme environments. In particular, its acid resistance (AR) capability is considered one of the key factors threating food safety. Here, we employed a microbial functional genomic technology termed transposon sequencing (Tn-seq), leading to the identification of two genes involved in cell wall peptidoglycan biosynthesis (murF) and phosphate transport (lmo2248) that play key roles in lactic acid resistance (LAR) of L. monocytogenes. Deletion of lmo2248 significantly impaired the ability of LAR in L. monocytogenes, demonstrating the accuracy of the Tn-seq results. Transcriptome analysis revealed that 31.7% of the L. monocytogenes genes on the genome were differentially expressed under lactic acid (LA) treatment, in which genes involved in phosphate transport were influenced most significantly. These findings shed light on the LAR mechanisms of L. monocytogenes, which may contribute to the development of novel strategies against foodborne pathogens. IMPORTANCE Listeria monocytogenes is a Gram-positive foodborne pathogen with high lethality and strong stress resistance, and its strong acid tolerance leads to many foodborne illnesses occurring in low-pH foods. Lactic acid is a generally recognized as safe (GRAS) food additive approved for use by the FDA. However, the genetic determinants of lactic acid resistance in L. monocytogenes have not been fully identified. In this study, the lactic acid resistance determinants of L. monocytogenes were comprehensively identified by Tn-seq on a genome-wide scale. Two genes, murF (cell wall peptidoglycan biosynthesis) and lmo2248 (phosphate transport), were identified to play an important role in the lactic acid resistance. Moreover, genome-wide transcriptomic analysis showed that phosphotransferase system (PTS)-related genes play a key role at the transcriptional level. These findings contribute to a better understanding of the lactic acid resistance mechanism of L. monocytogenes and may provide unique targets for the development of other novel antimicrobial agents.
Collapse
Affiliation(s)
- Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Linan Xu
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jianrui Niu
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Xinglin Zhang
- College of Agriculture and Forestry, Linyi University, Linyi, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Rukit J, Boonmee A, Kijpornyongpan T, Tulsook K, Baranyi J, Chaturongakul S. Roles of Alternative Sigma Factors in Invasion and Growth Characteristics of Listeria monocytogenes 10403S Into Human Epithelial Colorectal Adenocarcinoma Caco-2 Cell. Front Microbiol 2022; 13:901484. [PMID: 35910626 PMCID: PMC9329085 DOI: 10.3389/fmicb.2022.901484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular bacterium with a broad host range. With its housekeeping sigma factor and four alternative ones (namely SigB, SigC, SigH, and SigL), L. monocytogenes can express genes in response to changing environments. However, the roles of these sigma factors in intracellular survival are still unclear. The objectives of this study were to characterize the role of each alternative σ factor on L. monocytogenes invasion and growth inside human epithelial colorectal adenocarcinoma Caco-2 cells. We used L. monocytogenes 10403S wild type and its 15 alternative sigma factor deletion mutants at a multiplicity of infection of 100 and 1 in invasion and intracellular growth assays in the Caco-2 cells, respectively. At 1.5, 2, 4, 6, 8, 10, and 12 h post-infection, Caco-2 cells were lysed, and intracellular L. monocytogenes were enumerated on brain-heart infusion agar. Colony-forming and growth rates were compared among strains. The results from phenotypic characterization confirmed that (i) SigB is the key factor for L. monocytogenes invasion and (ii) having only SigA (ΔsigBCHL strain) is sufficient to invade and multiply in the host cell at similar levels as the wild type. Our previous study suggested the negative role of SigL in bile stress response. In this study, we have shown that additional deletion of the rpoN (or sigL) gene to ΔsigB, ΔsigC, or ΔsigH could restore the impaired invasion efficiencies of the single mutant, suggesting the absence of SigL could enhance host invasion. Therefore, we further investigated the role of SigL during extracellular and intracellular life cycles. Using RNA sequencing, we identified 118 and 16 SigL-dependent genes during the extracellular and intracellular life cycles, respectively. The sigL gene itself was induced by fivefolds prior to the invasion, and 5.3 folds during Caco-2 infection, further suggesting the role of SigL in intracellular growth.
Collapse
Affiliation(s)
- Junyaluck Rukit
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Teeratas Kijpornyongpan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Kan Tulsook
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - József Baranyi
- Institute of Nutrition, University of Debrecen, Debrecen, Hungary
| | - Soraya Chaturongakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- *Correspondence: Soraya Chaturongakul,
| |
Collapse
|
6
|
Boichis E, Ran Sapir S, Herskovits AA. Bone Marrow-Derived Macrophage (BMDM ) Infection by Listeria monocytogenes. Methods Mol Biol 2022; 2427:83-93. [PMID: 35619027 DOI: 10.1007/978-1-0716-1971-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Listeria monocytogenes is a gram-positive bacterium adapted to life as both an environmental saprophyte and a pathogenic parasite of mammalian hosts, with a transcriptomic program tailored for each niche. Study of the L. monocytogenes pathogenic lifestyle requires conditions that mimic the mammalian niche. Of the myriad experimental models used to achieve such conditions, the bone marrow-derived macrophage (BMDM) is a relatively simple and reliable primary immune cell model for L. monocytogenes infections. Here we describe the extraction, preparation, and storage of BMDMs and their use in L. monocytogenes infection experiments.
Collapse
Affiliation(s)
- Etai Boichis
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Ran Sapir
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anat A Herskovits
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Kragh ML, Truelstrup Hansen L. Initial Transcriptomic Response and Adaption of Listeria monocytogenes to Desiccation on Food Grade Stainless Steel. Front Microbiol 2020; 10:3132. [PMID: 32038566 PMCID: PMC6987299 DOI: 10.3389/fmicb.2019.03132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes survives exposure to a variety of stresses including desiccation in the food industry. Strand-specific RNA sequencing was applied to analyze changes in the transcriptomes of two strains of L. monocytogenes (Lm 568 and Lm 08-5578) during desiccation [15°C, 43% relative humidity (RH)] on food grade stainless steel surfaces over 48 h to simulate a weekend with no food production. Both strains showed similar survival during desiccation with a 1.8-2 Log CFU/cm2 reduction after 48 h. Analysis of differentially expressed (DE) genes (>twofold, adjusted p-value <0.05) revealed that the initial response to desiccation was established after 6 h and remained constant with few new genes being DE after 12, 24, and 48 h. A core of 81 up- and 73 down-regulated DE genes were identified as a shared, strain independent response to desiccation. Among common upregulated genes were energy and oxidative stress related genes e.g., qoxABCD (cytochrome aa3) pdhABC (pyruvate dehydrogenase complex) and mntABCH (manganese transporter). Common downregulated genes related to anaerobic growth, proteolysis and the two component systems lmo1172/lmo1173 and cheA/cheY, which are involved in cold growth and flagellin production, respectively. Both strains upregulated additional genes involved in combatting oxidative stress and reactive oxygen species (ROS), including sod (superoxide dismutase), kat (catalase), tpx (thiol peroxidase) and several thioredoxins including trxAB, lmo2390 and lmo2830. Osmotic stress related genes were also upregulated in both strains, including gbuABC (glycine betaine transporter) and several chaperones clpC, cspA, and groE. Significant strain differences were also detected with the food outbreak strain Lm 08-5578 differentially expressing 1.9 × more genes (726) compared to Lm 568 (410). Unique to Lm 08-5578 was a significant upregulation of the expression of the alternative transcription factor σB and its regulon. A number of long antisense transcripts (lasRNA) were upregulated during desiccation including anti0605, anti0936, anti1846, and anti0777, with the latter controlling flagellum biosynthesis and possibly the downregulation of motility genes observed in both strains. This exploration of the transcriptomes of desiccated L. monocytogenes provides further understanding of how this bacterium encounters and survives the stress faced when exposed to dry conditions in the food industry.
Collapse
|
8
|
Cortes BW, Naditz AL, Anast JM, Schmitz-Esser S. Transcriptome Sequencing of Listeria monocytogenes Reveals Major Gene Expression Changes in Response to Lactic Acid Stress Exposure but a Less Pronounced Response to Oxidative Stress. Front Microbiol 2020; 10:3110. [PMID: 32038553 PMCID: PMC6985202 DOI: 10.3389/fmicb.2019.03110] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
Listeria monocytogenes is a well-characterized pathogen that represents a major threat to food safety. In this study, we examine the chromosomal and plasmid transcriptomes of two different L. monocytogenes strains, 6179 [belonging to sequence type (ST) 121] and R479a (ST8), in response to 30 min exposure to oxidative (0.01% hydrogen peroxide) and acid (1% lactic acid, pH 3.4) stress. The exposure to oxidative stress resulted in 102 and 9 differentially expressed (DE) genes in the chromosomal transcriptomes of 6179 and R479a, respectively. In contrast, 2280 and 2151 DE genes were observed in the respective chromosomal transcriptomes of 6179 and R479a in response to lactic acid stress. During lactic acid stress, we observed upregulation of numerous genes known to be involved in the L. monocytogenes stress response, including multiple members of the σB regulon, many of which have not been functionally characterized. Among these genes, homologs of lmo2230 were highly upregulated in both strains. Most notably, the σB-dependent non-coding RNA Rli47 was by far the most highly expressed gene in both 6179 and R479a, accounting for an average of 28 and 38% of all mapped reads in the respective chromosomal transcriptomes. In response to oxidative stress, one DE gene was identified in the 6179 plasmid transcriptome, and no DE genes were observed in the transcriptome of the R479a plasmid. However, lactic acid exposure resulted in upregulation of the stress response gene clpL, among others, on the 6179 plasmid. In R479a, a number of uncharacterized plasmid genes were upregulated, indicating a potential role in stress response. Furthermore, an average of 65% of all mapped transcriptome reads for the R479a plasmid following acid stress were mapped to an intergenic region bearing similarity to riboswitches involved in transition metal resistance. The results of this study support the conclusion that members of the σB regulon, particularly lmo2230 and the non-coding RNA Rli47, play an integral role in the response of L. monocytogenes to acid stress. Furthermore, we report the first global transcriptome sequencing analysis of L. monocytogenes plasmid gene expression and identify a putative, plasmid-encoded riboswitch with potential involvement in response to acid exposure.
Collapse
Affiliation(s)
- Bienvenido W Cortes
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Annabel L Naditz
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Justin M Anast
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.,Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
9
|
Ferwerda B, Maury MM, Brouwer MC, Hafner L, van der Ende A, Bentley S, Lecuit M, van de Beek D. Residual Variation Intolerance Score Detects Loci Under Selection in Neuroinvasive Listeria monocytogenes. Front Microbiol 2019; 10:2702. [PMID: 31849867 PMCID: PMC6901971 DOI: 10.3389/fmicb.2019.02702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive bacterium that can be found in a broad range of environments, including soil, food, animals, and humans. L. monocytogenes can cause a foodborne disease manifesting as sepsis and meningo-encephalitis. To evaluate signals of selection within the core genome of neuroinvasive L. monocytogenes strains, we sequenced 122 L. monocytogenes strains from cerebrospinal fluid (CSF) of Dutch meningitis patients and performed a genome-wide analysis using Tajima’s D and ω (dN/dS). We also evaluated the residual variation intolerance score (RVIS), a computationally less demanding methodology, to identify loci under selection. Results show that the large genetic distance between the listerial lineages influences the Tajima’s D and ω (dN/dS) outcome. Within genetic lineages we detected signals of selection in 6 of 2327 loci (<1%), which were replicated in an external cohort of 105 listerial CSF isolates from France. Functions of identified loci under selection were within metabolism pathways (lmo2476, encoding aldose 1-epimerase), putative antimicrobial resistance mechanisms (lmo1855, encoding PBPD3), and virulence factors (lmo0549, internalin-like protein; lmo1482, encoding comEC). RVIS over the two genetic lineages showed signals of selection in internalin-like proteins loci potentially involved in pathogen-host interaction (lmo0549, lmo0610, and lmo1290). Our results show that RVIS can be used to detect bacterial loci under selection.
Collapse
Affiliation(s)
- Bart Ferwerda
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mylène M Maury
- Institut Pasteur, Biology of Infection Unit, Inserm U1117 and National Reference Centre - WHO Collaborating Centre for Listeria, Paris, France
| | - Mathijs C Brouwer
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lukas Hafner
- Institut Pasteur, Biology of Infection Unit, Inserm U1117 and National Reference Centre - WHO Collaborating Centre for Listeria, Paris, France
| | - Arie van der Ende
- Department of Medical Microbiology, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam UMC/RIVM, University of Amsterdam, Amsterdam, Netherlands
| | - Stephen Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Inserm U1117 and National Reference Centre - WHO Collaborating Centre for Listeria, Paris, France.,Paris Descartes University, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Paris, France
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Chakravarty S, Massé E. RNA-Dependent Regulation of Virulence in Pathogenic Bacteria. Front Cell Infect Microbiol 2019; 9:337. [PMID: 31649894 PMCID: PMC6794450 DOI: 10.3389/fcimb.2019.00337] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
During infection, bacterial pathogens successfully sense, respond and adapt to a myriad of harsh environments presented by the mammalian host. This exquisite level of adaptation requires a robust modulation of their physiological and metabolic features. Additionally, virulence determinants, which include host invasion, colonization and survival despite the host's immune responses and antimicrobial therapy, must be optimally orchestrated by the pathogen at all times during infection. This can only be achieved by tight coordination of gene expression. A large body of evidence implicate the prolific roles played by bacterial regulatory RNAs in mediating gene expression both at the transcriptional and post-transcriptional levels. This review describes mechanistic and regulatory aspects of bacterial regulatory RNAs and highlights how these molecules increase virulence efficiency in human pathogens. As illustrative examples, Staphylococcus aureus, Listeria monocytogenes, the uropathogenic strain of Escherichia coli, Helicobacter pylori, and Pseudomonas aeruginosa have been selected.
Collapse
Affiliation(s)
- Shubham Chakravarty
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
11
|
Genomics of Foodborne Microorganisms. Food Microbiol 2019. [DOI: 10.1128/9781555819972.ch35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Westermann AJ. Regulatory RNAs in Virulence and Host-Microbe Interactions. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0002-2017. [PMID: 30003867 PMCID: PMC11633609 DOI: 10.1128/microbiolspec.rwr-0002-2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial regulatory RNAs are key players in adaptation to changing environmental conditions and response to diverse cellular stresses. However, while regulatory RNAs of bacterial pathogens have been intensely studied under defined conditions in vitro, characterization of their role during the infection of eukaryotic host organisms is lagging behind. This review summarizes our current understanding of the contribution of the different classes of regulatory RNAs and RNA-binding proteins to bacterial virulence and illustrates their role in infection by reviewing the mechanisms of some prominent representatives of each class. Emerging technologies are described that bear great potential for global, unbiased studies of virulence-related RNAs in bacterial model and nonmodel pathogens in the future. The review concludes by deducing common principles of RNA-mediated gene expression control of virulence programs in different pathogens, and by defining important open questions for upcoming research in the field.
Collapse
Affiliation(s)
- Alexander J Westermann
- Institute of Molecular Infection Biology, University of Würzburg
- Helmholtz Institute for RNA-Based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
13
|
Li Z, Pérez-Osorio A, Wang Y, Eckmann K, Glover WA, Allard MW, Brown EW, Chen Y. Whole genome sequencing analyses of Listeria monocytogenes that persisted in a milkshake machine for a year and caused illnesses in Washington State. BMC Microbiol 2017; 17:134. [PMID: 28619007 PMCID: PMC5472956 DOI: 10.1186/s12866-017-1043-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/03/2017] [Indexed: 11/25/2022] Open
Abstract
Background In 2015, in addition to a United States multistate outbreak linked to contaminated ice cream, another outbreak linked to ice cream was reported in the Pacific Northwest of the United States. It was a hospital-acquired outbreak linked to milkshakes, made from contaminated ice cream mixes and milkshake maker, served to patients. Here we performed multiple analyses on isolates associated with this outbreak: pulsed-field gel electrophoresis (PFGE), whole genome single nucleotide polymorphism (SNP) analysis, species-specific core genome multilocus sequence typing (cgMLST), lineage-specific cgMLST and whole genome-specific MLST (wgsMLST)/outbreak-specific cgMLST. We also analyzed the prophages and virulence genes. Results The outbreak isolates belonged to sequence type 1038, clonal complex 101, genetic lineage II. There were no pre-mature stop codons in inlA. Isolates contained Listeria Pathogenicity Island 1 and multiple internalins. PFGE and multiple whole genome sequencing (WGS) analyses all clustered together food, environmental and clinical isolates when compared to outgroup from the same clonal complex, which supported the finding that L. monocytogenes likely persisted in the soft serve ice cream/milkshake maker from November 2014 to November 2015 and caused 3 illnesses, and that the outbreak strain was transmitted between two ice cream production facilities. The whole genome SNP analysis, one of the two species-specific cgMLST, the lineage II-specific cgMLST and the wgsMLST/outbreak-specific cgMLST showed that L. monocytogenes cells persistent in the milkshake maker for a year formed a unique clade inside the outbreak cluster. This clustering was consistent with the cleaning practice after the outbreak was initially recognized in late 2014 and early 2015. Putative prophages were conserved among prophage-containing isolates. The loss of a putative prophage in two isolates resulted in the loss of the AscI restriction site in the prophage, which contributed to their AscI-PFGE banding pattern differences from other isolates. Conclusions The high resolution of WGS analyses allowed the differentiation of epidemiologically unrelated isolates, as well as the elucidation of the microevolution and persistence of isolates within the scope of one outbreak. We applied a wgsMLST scheme which is essentially the outbreak-specific cgMLST. This scheme can be combined with lineage-specific cgMLST and species-specific cgMLST to maximize the resolution of WGS.
Collapse
Affiliation(s)
- Zhen Li
- Washington State Department of Health, Public Health Laboratories, Shoreline, Washington, USA
| | - Ailyn Pérez-Osorio
- Washington State Department of Health, Public Health Laboratories, Shoreline, Washington, USA
| | - Yu Wang
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Kaye Eckmann
- Washington State Department of Health, Public Health Laboratories, Shoreline, Washington, USA
| | - William A Glover
- Washington State Department of Health, Public Health Laboratories, Shoreline, Washington, USA
| | - Marc W Allard
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Eric W Brown
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Yi Chen
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA.
| |
Collapse
|
14
|
Rychli K, Wagner EM, Ciolacu L, Zaiser A, Tasara T, Wagner M, Schmitz-Esser S. Comparative genomics of human and non-human Listeria monocytogenes sequence type 121 strains. PLoS One 2017; 12:e0176857. [PMID: 28472116 PMCID: PMC5417603 DOI: 10.1371/journal.pone.0176857] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/18/2017] [Indexed: 01/01/2023] Open
Abstract
The food-borne pathogen Listeria (L.) monocytogenes is able to survive for months and even years in food production environments. Strains belonging to sequence type (ST)121 are particularly found to be abundant and to persist in food and food production environments. To elucidate genetic determinants characteristic for L. monocytogenes ST121, we sequenced the genomes of 14 ST121 strains and compared them with currently available L. monocytogenes ST121 genomes. In total, we analyzed 70 ST121 genomes deriving from 16 different countries, different years of isolation, and different origins—including food, animal and human ST121 isolates. All ST121 genomes show a high degree of conservation sharing at least 99.7% average nucleotide identity. The main differences between the strains were found in prophage content and prophage conservation. We also detected distinct highly conserved subtypes of prophages inserted at the same genomic locus. While some of the prophages showed more than 99.9% similarity between strains from different sources and years, other prophages showed a higher level of diversity. 81.4% of the strains harbored virtually identical plasmids. 97.1% of the ST121 strains contain a truncated internalin A (inlA) gene. Only one of the seven human ST121 isolates encodes a full-length inlA gene, illustrating the need of better understanding their survival and virulence mechanisms.
Collapse
Affiliation(s)
- Kathrin Rychli
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
| | - Eva M. Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
| | - Luminita Ciolacu
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
| | - Andreas Zaiser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
| | - Taurai Tasara
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
| | - Stephan Schmitz-Esser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Wien, Austria
- * E-mail:
| |
Collapse
|
15
|
Mraheil MA, Frantz R, Teubner L, Wendt H, Linne U, Wingerath J, Wirth T, Chakraborty T. Requirement of the RNA-binding protein SmpB during intracellular growth of Listeria monocytogenes. Int J Med Microbiol 2017; 307:166-173. [PMID: 28202229 DOI: 10.1016/j.ijmm.2017.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022] Open
Abstract
Bacterial trans-translation is the main quality control mechanism employed to relieve stalled ribosomes. Trans-translation is mediated by the small protein B (SmpB) and transfer-mRNA (tmRNA) ribonucleoprotein complex, which interacts with translational complexes stalled at the 3' end of non-stop mRNAs to release the stalled ribosomes thereby targeting the nascent polypeptides and truncated mRNAs for degradation. The trans-translation system exists with a few exceptions in all bacteria. In the present study, we assessed the contribution of SmpB to the growth and virulence of Listeria monocytogenes, a human intracellular food-borne pathogen that colonizes host tissues to cause severe invasive infections. A smpB knockout significantly decreased the intracellular growth rate of L. monocytogenes during infection of murine macrophages. In addition, the mutant strain was attenuated for virulence when examined with the Galleria mellonella larvae killing assay and the organ colonisation model of mice following infection. Proteomic analysis of whole cell extracts of ΔsmpB deletion mutant revealed elevated protein levels of several proteins involved in ribosome assembly and interaction with tRNA substrates. These included the elongation factor Tu [EF-Tu] which promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis as well as the CysK which is known to interact with bacterial toxins that cleave tRNA substrates. The data presented here shed light on the role of SmpB and trans-translation during intracellular growth of L. monocytogenes.
Collapse
Affiliation(s)
- Mobarak Abu Mraheil
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| | - Renate Frantz
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Lisa Teubner
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Heiko Wendt
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Uwe Linne
- Department of Chemistry, and LOEWE-Center for Synthetic Microbiology Core Facility for Mass Spectrometry, Philipps-University Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Jessica Wingerath
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Wirth
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, German Center for Infection Giessen-Marburg-Langen Site, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
16
|
Tozaki T, Kikuchi M, Kakoi H, Hirota KI, Mukai K, Aida H, Nakamura S, Nagata SI. Profiling of exercise-induced transcripts in the peripheral blood cells of Thoroughbred horses. J Equine Sci 2016; 27:157-164. [PMID: 27974875 PMCID: PMC5155134 DOI: 10.1294/jes.27.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/14/2016] [Indexed: 12/17/2022] Open
Abstract
Transcriptome analyses based on DNA microarray technology have been used to investigate gene expression profiles in horses. In this study, we aimed to identify
exercise-induced changes in the expression profiles of genes in the peripheral blood of Thoroughbred horses using DNA microarray technology (15,429 genes on
43,603 probes). Blood samples from the jugular vein were collected from six horses before and 1 min, 4 hr, and 24 hr after all-out running on a treadmill. After
the normalization of microarray data, a total of 26,830 probes were clustered into four groups and 11 subgroups showing similar expression changes based on
k-mean clustering. The expression level of inflammation-related genes, including interleukin-1 receptor type II (IL-1R2), matrix metallopeptidase 8 (MMP8),
protein S100-A8 (S100-A8), and serum amyloid A (SAA), increased at 4 hr after exercise, whereas that of c-Fos (FOS) increased at 1 min after exercise. These
results indicated that the inflammatory response increased in the peripheral blood cells after exercise. Our study also revealed the presence of genes that may
not be affected by all-out exercise. In conclusion, transcriptome analysis of peripheral blood cells could be used to monitor physiological changes induced by
various external stress factors, including exercise, in Thoroughbred racehorses.
Collapse
Affiliation(s)
- Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan
| | - Mio Kikuchi
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan
| | - Kei-Ichi Hirota
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan
| | - Kazutaka Mukai
- Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| | - Hiroko Aida
- Equine Research Institute, Japan Racing Association, Tochigi 329-0412, Japan
| | | | - Shun-Ichi Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan
| |
Collapse
|
17
|
Lebreton A, Stavru F, Brisse S, Cossart P. 1926-2016: 90 Years of listeriology. Microbes Infect 2016; 18:711-723. [PMID: 27876526 DOI: 10.1016/j.micinf.2016.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/26/2016] [Indexed: 01/28/2023]
Abstract
ISOPOL - for "International Symposium on Problems of Listeria and Listeriosis" - meetings gather every three years since 1957 participants from all over the world and allow exchange and update on a wide array of topics concerning Listeria and listeriosis, ranging from epidemiology, diagnostic and typing methods, to genomics, post-genomics, fundamental microbiology, cell biology and pathogenesis. The XIXth ISOPOL meeting took place in Paris from June 14th to 17th, 2016 at Institut Pasteur. We provide here a report of the talks that were given during the meeting, which represents an up-to-date overview of ongoing research on this important pathogen and biological model.
Collapse
Affiliation(s)
- Alice Lebreton
- École normale supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Équipe Infection et Devenir de l'ARN, 75005 Paris, France; INRA, IBENS, 75005 Paris, France
| | - Fabrizia Stavru
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, USC2020, 75015 Paris, France; CNRS, SNC5101, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Molecular Prevention and Therapy of Human Diseases, 75724 Paris, France; Institut Pasteur, Microbial Evolutionary Genomics, 75724 Paris, France; CNRS, UMR 3525, Paris, France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, USC2020, 75015 Paris, France.
| |
Collapse
|
18
|
Pinheiro J, Reis O, Vieira A, Moura IM, Zanolli Moreno L, Carvalho F, Pucciarelli MG, García-Del Portillo F, Sousa S, Cabanes D. Listeria monocytogenes encodes a functional ESX-1 secretion system whose expression is detrimental to in vivo infection. Virulence 2016; 8:993-1004. [PMID: 27723420 DOI: 10.1080/21505594.2016.1244589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Bacterial pathogenicity deeply depends on the ability to secrete virulence factors that bind specific targets on host cells and manipulate host responses. The Gram-positive bacterium Listeria monocytogenes is a human foodborne pathogen that remains a serious public health concern. To transport proteins across its cell envelope, this facultative intracellular pathogen engages a set of specialized secretion systems. Here we show that L. monocytogenes EGDe uses a specialized secretion system, named ESX-1, to secrete EsxA, a homolog of the virulence determinants ESAT-6 and EsxA of Mycobacterium tuberculosis and Staphylococcus aureus, respectively. Our data show that the L. monocytogenes ESX-1 secretion system and its substrates are dispensable for bacterial invasion and intracellular multiplication in eukaryotic cell lines. Surprisingly, we found that the EssC-dependent secretion of EsxA has a detrimental effect on L. monocytogenes in vivo infection.
Collapse
Affiliation(s)
- Jorge Pinheiro
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,c Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal
| | - Olga Reis
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,c Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal
| | - Ana Vieira
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| | - Ines M Moura
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| | - Luisa Zanolli Moreno
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,d Laboratório de Saúde Pública , Faculdade de Saúde Pública, Universidade de São Paulo , São Paulo , Brazil
| | - Filipe Carvalho
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,c Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal
| | - M Graciela Pucciarelli
- e Centro Nacional de Biotecnología-CSIC (CNB-CSIC) , Madrid , Spain.,f Departamento de Biología Molecular , Universidad Autónoma de Madrid, Centro de Biología Molecular "Severo Ochoa" (CBMSO-CSIC) , Madrid , Spain
| | | | - Sandra Sousa
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| | - Didier Cabanes
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| |
Collapse
|
19
|
Genome Sequence of Lassa Virus Isolated from the First Domestically Acquired Case in Germany. GENOME ANNOUNCEMENTS 2016; 4:4/5/e00938-16. [PMID: 27660771 PMCID: PMC5034122 DOI: 10.1128/genomea.00938-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lassa virus (LASV) is a zoonotic, hemorrhagic fever-causing virus endemic in West Africa, for which no approved vaccines or specific treatment options exist. Here, we report the genome sequence of LASV isolated from the first case of acquired Lassa fever disease outside of Africa.
Collapse
|
20
|
Abstract
The model opportunistic pathogen Listeria monocytogenes has been the object of extensive research, aiming at understanding its ability to colonize diverse environmental niches and animal hosts. Bacterial transcriptomes in various conditions reflect this efficient adaptability. We review here our current knowledge of the mechanisms allowing L. monocytogenes to respond to environmental changes and trigger pathogenicity, with a special focus on RNA-mediated control of gene expression. We highlight how these studies have brought novel concepts in prokaryotic gene regulation, such as the ‘excludon’ where the 5′-UTR of a messenger also acts as an antisense regulator of an operon transcribed in opposite orientation, or the notion that riboswitches can regulate non-coding RNAs to integrate complex metabolic stimuli into regulatory networks. Overall, the Listeria model exemplifies that fine RNA tuners act together with master regulatory proteins to orchestrate appropriate transcriptional programmes.
Collapse
Affiliation(s)
- Alice Lebreton
- a École Normale Supérieure , PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Équipe Infection et Devenir de l'ARN , Paris , France.,b INRA, IBENS , Paris , France
| | - Pascale Cossart
- c Institut Pasteur, Unité des Interactions Bactéries-Cellules , Paris , France.,d Inserm , Paris , France.,e INRA, USC2020 , Paris , France
| |
Collapse
|
21
|
Greppi A, Rantsiou K. Methodological advancements in foodborne pathogen determination: from presence to behavior. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|