1
|
Weng IC, Chen HL, Lin WH, Liu FT. Sialylation of cell surface glycoconjugates modulates cytosolic galectin-mediated responses upon organelle damage : Minireview. Glycoconj J 2023; 40:295-303. [PMID: 37052731 DOI: 10.1007/s10719-023-10112-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
Sialylation is an important terminal modification of glycoconjugates that mediate diverse functions in physiology and disease. In this review we focus on how altered cell surface sialylation status is sensed by cytosolic galectins when the integrity of intracellular vesicles or organelles is compromised to expose luminal glycans to the cytosolic milieu, and how this impacts galectin-mediated cellular responses. In addition, we discuss the roles of mammalian sialidases on the cell surface, in the organelle lumen and cytosol, and raise the possibility that intracellular glycan processing may be critical in controlling various galectin-mediated responses when cells encounter stress.
Collapse
Affiliation(s)
- I-Chun Weng
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Hung-Lin Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wei-Han Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Bianchi F, van den Bogaart G. Vacuolar escape of foodborne bacterial pathogens. J Cell Sci 2020; 134:134/5/jcs247221. [PMID: 32873733 DOI: 10.1242/jcs.247221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The intracellular pathogens Listeria monocytogenes, Salmonella enterica, Shigella spp. and Staphylococcus aureus are major causes of foodborne illnesses. Following the ingestion of contaminated food or beverages, pathogens can invade epithelial cells, immune cells and other cell types. Pathogens survive and proliferate intracellularly via two main strategies. First, the pathogens can remain in membrane-bound vacuoles and tailor organellar trafficking to evade host-cell defenses and gain access to nutrients. Second, pathogens can rupture the vacuolar membrane and proliferate within the nutrient-rich cytosol of the host cell. Although this virulence strategy of vacuolar escape is well known for L. monocytogenes and Shigella spp., it has recently become clear that S. aureus and Salmonella spp. also gain access to the cytosol, and that this is important for their survival and growth. In this Review, we discuss the molecular mechanisms of how these intracellular pathogens rupture the vacuolar membrane by secreting a combination of proteins that lyse the membranes or that remodel the lipids of the vacuolar membrane, such as phospholipases. In addition, we also propose that oxidation of the vacuolar membrane also contributes to cytosolic pathogen escape. Understanding these escape mechanisms could aid in the identification of new therapeutic approaches to combat foodborne pathogens.
Collapse
Affiliation(s)
- Frans Bianchi
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands .,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 9625GA Nijmegen, The Netherlands
| |
Collapse
|
3
|
Mandacaru SC, Queiroz RML, Alborghetti MR, de Oliveira LS, de Lima CMR, Bastos IMD, Santana JM, Roepstorff P, Ricart CAO, Charneau S. Exoproteome profiling of Trypanosoma cruzi during amastigogenesis early stages. PLoS One 2019; 14:e0225386. [PMID: 31756194 PMCID: PMC6874342 DOI: 10.1371/journal.pone.0225386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi, affecting around 8 million people worldwide. After host cell invasion, the infective trypomastigote form remains 2–4 hours inside acidic phagolysosomes to differentiate into replicative amastigote form. In vitro acidic-pH-induced axenic amastigogenesis was used here to study this step of the parasite life cycle. After three hours of trypomastigote incubation in amastigogenesis promoting acidic medium (pH 5.0) or control physiological pH (7.4) medium samples were subjected to three rounds of centrifugation followed by ultrafiltration of the supernatants. The resulting exoproteome samples were trypsin digested and analysed by nano flow liquid chromatography coupled to tandem mass spectrometry. Computational protein identification searches yielded 271 and 483 protein groups in the exoproteome at pH 7.4 and pH 5.0, respectively, with 180 common proteins between both conditions. The total amount and diversity of proteins released by parasites almost doubled upon acidic incubation compared to control. Overall, 76.5% of proteins were predicted to be secreted by classical or non-classical pathways and 35.1% of these proteins have predicted transmembrane domains. Classical secretory pathway analysis showed an increased number of mucins and mucin-associated surface proteins after acidic incubation. However, the number of released trans-sialidases and surface GP63 peptidases was higher at pH 7.4. Trans-sialidases and mucins are anchored to the membrane and exhibit an enzyme-substrate relationship. In general, mucins are glycoproteins with immunomodulatory functions in Chagas disease, present mainly in the epimastigote and trypomastigote surfaces and could be enzymatically cleaved and released in the phagolysosome during amastigogenesis. Moreover, evidence for flagella discard during amastigogenesis are addressed. This study provides the first comparative analysis of the exoproteome during amastigogenesis, and the presented data evidence the dynamism of its profile in response to acidic pH-induced differentiation.
Collapse
Affiliation(s)
- Samuel C. Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Rayner M. L. Queiroz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marcos R. Alborghetti
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Lucas S. de Oliveira
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Consuelo M. R. de Lima
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Izabela M. D. Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Jaime M. Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Carlos André O. Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- * E-mail:
| |
Collapse
|
4
|
de Paula Silva F, da Costa CMB, Pereira LM, Lessa DFS, Pitol DL, Issa JPM, do Prado Júnior JC, Abrahão AAC. Effects of ghrelin supplementation on the acute phase of Chagas disease in rats. Parasit Vectors 2019; 12:532. [PMID: 31706334 PMCID: PMC6842500 DOI: 10.1186/s13071-019-3787-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Trypanosoma cruzi is the causative agent of Chagas disease, which is endemic to subtropical and tropical Americas. The disease treatment remains partially ineffective, involving therapies directed to the parasite as well as palliative strategies for the clinical manifestations. Therefore, novel candidates for disease control are necessary. Additionally, strategies based on parasite inhibition via specific targets and application of compounds which improve the immune response against the disease is welcomed. Ghrelin is a peptide hormone pointed as a substance with important cardioprotective, vasodilatory, anti-apoptotic, anti-oxidative and immune modulatory functions. The aims of this study were to evaluate the immunomodulatory effects of ghrelin in male Wistar rats infected with the Y strain of T. cruzi. Methods In order to delineate an immune response against T. cruzi mediated by ghrelin, we evaluated the following parameters: quantification of blood and cardiac parasites; analysis of cell markers (CD3+, CD8+, NK, NKT, CD45RA+, macrophage and RT1B+); nitric oxide (NO) production; lymphoproliferation assays; splenocyte apoptosis; and INF-γ, IL-12 and IL-6 quantification in sera. Results The animals infected with T. cruzi and supplemented with ghrelin demonstrated an upregulated pattern in macrophage and NO production, whereas an anti-inflammatory response was observed in T cells and cytokines. The low response against T. cruzi mediated by T cells probably contributed to a higher colonization of the cardiac tissue, when compared to infected groups. On the other side, the peptide decreased the inflammatory infiltration in cardiac tissue infected with T. cruzi. Conclusions Ghrelin demonstrated a dual function in animals infected with T. cruzi. Further studies, especially related to the decrease of cardiac tissue inflammation, are needed in order to determine the advantages of ghrelin supplementation in Chagas disease, mostly for populations from endemic areas.
Collapse
Affiliation(s)
- Ferdinando de Paula Silva
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Cássia Mariana Bronzon da Costa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Luiz Miguel Pereira
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Diego Fernando Silva Lessa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Dimitrius Leonardo Pitol
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto USP, University of São Paulo, Ribeirão Preto, 14040-904, Brazil
| | - João Paulo Mardegan Issa
- Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto USP, University of São Paulo, Ribeirão Preto, 14040-904, Brazil
| | - José Clóvis do Prado Júnior
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, Brazil
| | - Ana Amélia Carraro Abrahão
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903, Brazil.
| |
Collapse
|
5
|
da Fonseca LM, da Costa KM, Chaves VDS, Freire-de-Lima CG, Morrot A, Mendonça-Previato L, Previato JO, Freire-de-Lima L. Theft and Reception of Host Cell's Sialic Acid: Dynamics of Trypanosoma Cruzi Trans-sialidases and Mucin-Like Molecules on Chagas' Disease Immunomodulation. Front Immunol 2019; 10:164. [PMID: 30787935 PMCID: PMC6372544 DOI: 10.3389/fimmu.2019.00164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/18/2019] [Indexed: 12/27/2022] Open
Abstract
The last decades have produced a plethora of evidence on the role of glycans, from cell adhesion to signaling pathways. Much of that information pertains to their role on the immune system and their importance on the surface of many human pathogens. A clear example of this is the flagellated protozoan Trypanosoma cruzi, which displays on its surface a great variety of glycoconjugates, including O-glycosylated mucin-like glycoproteins, as well as multiple glycan-binding proteins belonging to the trans-sialidase (TS) family. Among the latter, different and concurrently expressed molecules may present or not TS activity, and are accordingly known as active (aTS) and inactive (iTS) members. Over the last thirty years, it has been well described that T. cruzi is unable to synthesize sialic acid (SIA) on its own, making use of aTS to steal the host's SIA. Although iTS did not show enzymatic activity, it retains a substrate specificity similar to aTS (α-2,3 SIA-containing glycotopes), displaying lectinic properties. It is accepted that aTS members act as virulence factors in mammals coursing the acute phase of the T. cruzi infection. However, recent findings have demonstrated that iTS may also play a pathogenic role during T. cruzi infection, since it modulates events related to adhesion and invasion of the parasite into the host cells. Since both aTS and iTS proteins share structural substrate specificity, it might be plausible to speculate that iTS proteins are able to assuage and/or attenuate biological phenomena depending on the catalytic activity displayed by aTS members. Since SIA-containing glycotopes modulate the host immune system, it should not come as any surprise that changes in the sialylation of parasite's mucin-like molecules, as well as host cell glycoconjugates might disrupt critical physiological events, such as the building of effective immune responses. This review aims to discuss the importance of mucin-like glycoproteins and both aTS and iTS for T. cruzi biology, as well as to present a snapshot of how disturbances in both parasite and host cell sialoglycophenotypes may facilitate the persistence of T. cruzi in the infected mammalian host.
Collapse
Affiliation(s)
- Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victoria de Sousa Chaves
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Célio Geraldo Freire-de-Lima
- Laboratório de Imunomodulação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Pesquisa em Tuberculose, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunoparasitologia, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Carlevaro G, Lantos AB, Cánepa GE, de Los Milagros Cámara M, Somoza M, Buscaglia CA, Campetella O, Mucci J. Metabolic Labeling of Surface Neo-sialylglyconjugates Catalyzed by Trypanosoma cruzi trans-Sialidase. Methods Mol Biol 2019; 1955:135-146. [PMID: 30868524 DOI: 10.1007/978-1-4939-9148-8_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trypanosoma cruzi, the protozoan agent of Chagas disease, has evolved an innovative metabolic pathway by which protective sialic acid (SA) residues are scavenged from host sialylglycoconjugates and transferred onto parasite surface mucin-like molecules (or surface glycoconjugates from host target cells) by means of a unique trans-sialidase (TS) enzyme. TS-induced changes in the glycoprotein sialylation profile of both parasite and host cells are crucial for the establishment of a persistent T. cruzi infection and for the development of Chagas disease-associated pathogenesis. In this chapter, we describe a novel metabolic labeling method developed in our labs that enables straightforward identification and molecular characterization of SA acceptors of the TS-catalyzed reaction.
Collapse
Affiliation(s)
- Giannina Carlevaro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Andrés B Lantos
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Laboratorio Dr. Lantos, Buenos Aires, Argentina
| | - Gaspar E Cánepa
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - María de Los Milagros Cámara
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Instituto de Tecnología, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Martín Somoza
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan Mucci
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Flieger A, Frischknecht F, Häcker G, Hornef MW, Pradel G. Pathways of host cell exit by intracellular pathogens. MICROBIAL CELL 2018; 5:525-544. [PMID: 30533418 PMCID: PMC6282021 DOI: 10.15698/mic2018.12.659] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host cell exit is a critical step in the life-cycle of intracellular pathogens, intimately linked to barrier penetration, tissue dissemination, inflammation, and pathogen transmission. Like cell invasion and intracellular survival, host cell exit represents a well-regulated program that has evolved during host-pathogen co-evolution and that relies on the dynamic and intricate interplay between multiple host and microbial factors. Three distinct pathways of host cell exit have been identified that are employed by three different taxa of intracellular pathogens, bacteria, fungi and protozoa, namely (i) the initiation of programmed cell death, (ii) the active breaching of host cellderived membranes, and (iii) the induced membrane-dependent exit without host cell lysis. Strikingly, an increasing number of studies show that the majority of intracellular pathogens utilize more than one of these strategies, dependent on life-cycle stage, environmental factors and/or host cell type. This review summarizes the diverse exit strategies of intracellular-living bacterial, fungal and protozoan pathogens and discusses the convergently evolved commonalities as well as system-specific variations thereof. Key microbial molecules involved in host cell exit are highlighted and discussed as potential targets for future interventional approaches.
Collapse
Affiliation(s)
- Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | | | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology II, RWTH Aachen University, Germany
| |
Collapse
|
8
|
Ramírez-Toloza G, Ferreira A. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin. Front Microbiol 2017; 8:1667. [PMID: 28919885 PMCID: PMC5585158 DOI: 10.3389/fmicb.2017.01667] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022] Open
Abstract
American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote) and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68), T. cruzi complement regulatory protein (TcCRP), trypomastigote decay-accelerating factor (T-DAF), C2 receptor inhibitor trispanning (CRIT) and T. cruzi calreticulin (TcCRT). Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH) and plasma membrane-derived vesicles (PMVs). All these proteins inhibit different steps of the classical (CP), alternative (AP) or lectin pathways (LP). Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host-parasite interplay. Thus, we have proposed that TcCRT is a pleiotropic molecule, present not only in the parasite endoplasmic reticulum, but also on the trypomastigote surface, participating in key processes to establish T. cruzi infection, such as inhibition of the complement system and serving as an important virulence factor. Additionally, TcCRT interaction with key complement components, participates as an anti-angiogenic and anti-tumor molecule, inhibiting at least in important part, tumor growth in infected animals.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Laboratory of Parasitology, Department of Animal Preventive Medicine, Faculty of Veterinary Medicine and Livestock Sciences, University of ChileSantiago, Chile
| | - Arturo Ferreira
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| |
Collapse
|
9
|
Freire-de-Lima L, Gentile LB, da Fonseca LM, da Costa KM, Santos Lemos J, Jacques LR, Morrot A, Freire-de-Lima CG, Nunes MP, Takiya CM, Previato JO, Mendonça-Previato L. Role of Inactive and Active Trypanosoma cruzi Trans-sialidases on T Cell Homing and Secretion of Inflammatory Cytokines. Front Microbiol 2017; 8:1307. [PMID: 28744279 PMCID: PMC5504189 DOI: 10.3389/fmicb.2017.01307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/28/2017] [Indexed: 12/29/2022] Open
Abstract
Trans-sialidase from Trypanosoma cruzi (Tc-TS) belongs to a superfamily of proteins that may have enzymatic activity. While enzymatically active members (Tc-aTS) are able to transfer sialic acid from the host cell sialyl-glycoconjugates onto the parasite or to other molecules on the host cell surface, the inactive members (Tc-iTS) are characterized by their lectinic properties. Over the last 10 years, several papers demonstrated that, individually, Tc-aTS or Tc-iTS is able to modulate several biological events. Since the genes encoding Tc-iTS and Tc-aTS are present in the same copy number, and both proteins portray similar substrate-specificities as well, it would be plausible to speculate that such molecules may compete for the same sialyl-glycan structures and govern numerous immunobiological phenomena. However, their combined effect has never been evaluated in the course of an acute infection. In this study, we investigated the ability of both proteins to modulate the production of inflammatory signals, as well as the homing of T cells to the cardiac tissue of infected mice, events that usually occur during the acute phase of T. cruzi infection. The results showed that the intravenous administration of Tc-iTS, but not Tc-aTS protected the cardiac tissue from injury caused by reduced traffic of inflammatory cells. In addition, the ability of Tc-aTS to modulate the production of inflammatory cytokines was attenuated and/or compromised when Tc-iTS was co-injected in the same proportions. These results suggest that although both proteins present structural similarities and compete for the same sialyl-glycan epitopes, they might present distinct immunomodulatory properties on T cells following T. cruzi infection.
Collapse
Affiliation(s)
- Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Luciana B Gentile
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Leonardo M da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Kelli M da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Jessica Santos Lemos
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lucas Rodrigues Jacques
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, Fundação Oswaldo CruzRio de Janeiro, Brazil.,Instituto de Microbiologia, Centro de Ciência da Saúde - Sala D1-035, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Célio G Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Marise P Nunes
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil.,Instituto Oswaldo Cruz, Fundação Oswaldo CruzRio de Janeiro, Brazil
| | - Christina M Takiya
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Jose O Previato
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica, Centro de Ciência da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
10
|
Decote-Ricardo D, Nunes MP, Morrot A, Freire-de-Lima CG. Implication of Apoptosis for the Pathogenesis of Trypanosoma cruzi Infection. Front Immunol 2017; 8:518. [PMID: 28536576 PMCID: PMC5422484 DOI: 10.3389/fimmu.2017.00518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/18/2017] [Indexed: 12/24/2022] Open
Abstract
Apoptosis is induced during the course of immune response to different infectious agents, and the ultimate fate is the recognition and uptake of apoptotic bodies by neighboring cells or by professional phagocytes. Apoptotic cells expose specific ligands to a set of conserved receptors expressed on macrophage cellular surface, which are the main cells involved in the clearance of the dying cells. These scavenger receptors, besides triggering the production of anti-inflammatory factors, also block the production of inflammatory mediators by phagocytes. Experimental infection of mice with the parasite Trypanosoma cruzi shows many pathological changes that parallels the evolution of human infection. Leukocytes undergoing intense apoptotic death are observed during the immune response to T. cruzi in the mouse model of the disease. T. cruzi replicate intensely and secrete molecules with immunomodulatory activities that interfere with T cell-mediated immune responses and secretion of pro-inflammatory cytokine secretion. This mechanism of immune evasion allows the infection to be established in the vertebrate host. Under inflammatory conditions, efferocytosis of apoptotic bodies generates an immune-regulatory phenotype in phagocytes, which is conducive to intracellular pathogen replication. However, the relevance of cellular apoptosis in the pathology of Chagas’ disease requires further studies. Here, we review the evidence of leukocyte apoptosis in T. cruzi infection and its immunomodulatory mechanism for disease progression.
Collapse
Affiliation(s)
- Débora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Marise P Nunes
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celio G Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|