1
|
Boro N, Alexandrino Fernandes P, Mukherjee AK. Computational analysis to comprehend the structure-function properties of fibrinolytic enzymes from Bacillus spp for their efficient integration into industrial applications. Heliyon 2024; 10:e33895. [PMID: 39055840 PMCID: PMC11269858 DOI: 10.1016/j.heliyon.2024.e33895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Background The fibrinolytic enzymes from Bacillus sp. are proposed as therapeutics in preventing thrombosis. Computational-based analyses of these enzymes' amino acid composition, basic physiological properties, presence of functional domain and motifs, and secondary and tertiary structure analyses can lead to developing a specific enzyme with improved catalytic activity and other properties that may increase their therapeutic potential. Methods The nucleotide sequences of fibrinolytic enzymes produced by the genus Bacillus and its corresponding protein sequences were retrieved from the NCBI database and aligned using the PRALINE programme. The varied physiochemical parameters and structural and functional analysis of the enzyme sequences were carried out with the ExPASy-ProtParam tool, MEME server, SOPMA, PDBsum tool, CYS-REC tool, SWISS-MODEL, SAVES servers, TMHMM program, GlobPlot, and peptide cutter software. The assessed in-silico data were compared with the published experimental results for validation. Results The alignment of sixty fibrinolytic serine protease enzymes (molecular mass 12-86 kDa) sequences showed 49 enzymes possess a conserved domain with a catalytic triad of Asp196, His242, and Ser569. The predicted instability and aliphatic indexes were 1.94-37.77, and 68.9-93.41, respectively, indicating high thermostability. The random coil means value suggested the predominance of this secondary structure in these proteases. A set of 50 amino acid residues representing motif 3 signifies the Peptidase S8/S53 domain that was invariably observed in 56 sequences. Additionally, 28 sequences have transmembrane helices, with two having the most disordered areas, and they pose 25 enzyme cleavage sites. A comparative analysis of the experimental work with the results of in-silico study put forward the characteristics of the enzyme sequences JF739176.1 and MF677779.1 to be considered when creating a potential mutant enzyme as these sequences are stable at high pH with thermostability and to exhibit αβ-fibrinogenase activity in both experimental and in-silico studies.
Collapse
Affiliation(s)
- Nitisha Boro
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade De Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
- Microbial Biotechnology and Protein Research Laboratory, Division of Life Sciences, Institute of Advanced Studies in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| |
Collapse
|
2
|
Rajendran DS, Venkataraman S, Jha SK, Chakrabarty D, Kumar VV. A review on bio-based polymer polylactic acid potential on sustainable food packaging. Food Sci Biotechnol 2024; 33:1759-1788. [PMID: 38752115 PMCID: PMC11091039 DOI: 10.1007/s10068-024-01543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 05/18/2024] Open
Abstract
Poly(lactic acid) (PLA) stands as a compelling alternative to conventional plastic-based packaging, signifying a notable shift toward sustainable material utilization. This comprehensive analysis illuminates the manifold applications of PLA composites within the realm of the food industry, emphasizing its pivotal role in food packaging and preservation. Noteworthy attributes of PLA composites with phenolic active compounds (phenolic acid and aldehyde, terpenes, carotenoid, and so on) include robust antimicrobial and antioxidant properties, significantly enhancing its capability to bolster adherence to stringent food safety standards. The incorporation of microbial and synthetic biopolymers, polysaccharides, oligosaccharides, oils, proteins and peptides to PLA in packaging solutions arises from its inherent non-toxicity and outstanding mechanical as well as thermal resilience. Functioning as a proficient film producer, PLA constructs an ideal preservation environment by merging optical and permeability traits. Esteemed as a pioneer in environmentally mindful packaging, PLA diminishes ecological footprints owing to its innate biodegradability. Primarily, the adoption of PLA extends the shelf life of products and encourages an eco-centric approach, marking a significant stride toward the food industry's embrace of sustainable packaging methodologies. Graphical abstract
Collapse
Affiliation(s)
- Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Satyendra Kumar Jha
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Disha Chakrabarty
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
3
|
Hao M, Shi C, Gong W, Liu J, Meng X, Liu F, Lu F, Zhang H. Heterologous expression and characterization of an M4 family extracellular metalloprotease for detergent application. J GEN APPL MICROBIOL 2024; 69:309-317. [PMID: 37880082 DOI: 10.2323/jgam.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Proteolytic enzymes stand out as the most widely employed category utilized in manufacturing industry. A new protease was separated from Planococcus sp.11815 strain and named as nprS-15615 in this research. The gene of this protease has not been reported, and its enzymatic properties have been studied for the first time. To enhance enzyme production, the Planococcus sp. protease gene was expressed in Bacillus licheniformis 2709. The expression level of nprS-15615 was observed under the control of regulatory elements PaprE. nprS-15615 protease activity reached 1186.24±32.87 U/mL after 48 hours of cultivation in shake flasks which was nearly four times the output of the original bacteria (291.38±25.73U/mL). The optimum temperature and pH of the recombinant protease were 30 ℃ and 8.0, respectively.The enzyme exhibited the highest capacity for hydrolyzing casein and demonstrated resilience towards a NaCl concentration of 10.0% (wt/v). Furthermore, in the presence of 0.5% surfactants, the recombinant protease activity can maintain above 75%, and with the existence of 0.5% liquid detergents, there was basically no loss of enzyme activity which indicated that nprS-15615 had good compatibility with surfactants and liquid detergents. In addition, npS-15615 performed well in the washing experiment, and the washing effect at 20 ℃ can be significantly improved by adding crude enzyme solution in the washing process.
Collapse
Affiliation(s)
- Man Hao
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Chaoshuo Shi
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Weifeng Gong
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Jia Liu
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Xiangxin Meng
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Fufeng Liu
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Fuping Lu
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Huitu Zhang
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| |
Collapse
|
4
|
Akhtar MA, Butt MQS, Afroz A, Rasul F, Irfan M, Sajjad M, Zeeshan N. Approach towards sustainable leather: Characterization and effective industrial application of proteases from Bacillus sps. for ecofriendly dehairing of leather hide. Int J Biol Macromol 2024; 266:131154. [PMID: 38547938 DOI: 10.1016/j.ijbiomac.2024.131154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Tanneries are one of the most polluted industries known for production of massive amount of solid and liquid wastes without proper management and disposal. In this project we demonstrated the ecofriendly single step dehairing of leather hides with minimum pollution load. In this study, Bacillus species (Bacillus paralicheniformis strain BL.HK, Bacillus cereus strain BS.P) capable of producing proteases was successfully isolated by employing the new optimized selective media named M9-PEA as confirmed by 16sRNA genes sequencing. Sequence of 1493 bp long 16S rRNA genes of Bacillus paralicheniformis strain BL.HK and Bacillus cereus strain BS. P was submitted to GenBank under the accession number OP612692.1, OP612721.1 respectively The Bacillus paralicheniformis strain BL.HK, Bacillus cereus strain BS.P produced extracellur proteases of 28 and 37 KDa as resolved by SDS-PAGE respectively. The enzymes showed temperature optima at 50 °C and 55 °C and pH optima at 8.5, 9.5 respectively. The Proteases of Bacillus paralicheniformis strain BL.HK, Bacillus cereus strain BS.P were employed for dehairing of animal hides. The process resulted in significant removal of interfibriller substances without damage to collagen layer after one hour treatment, which was confirmed by histology, scanning electron microscopy. The quantification of various skin constituents (collagen, uronic acid, hexosamines, and GAGs) and pollution load parameters revealed that enzymatic treatment are more reliable. The results of skin application trials at industrial level with complete elimination of chemicals remark the biotechnological potential of these proteases for ecofriendly dehairing of animal hides without affecting the quality of the leathers produced.
Collapse
Affiliation(s)
| | | | - Amber Afroz
- Department of Biochemistry and Biotechnology, University of Gujrat, 50700, Pakistan
| | - Faiz Rasul
- School of Environment and Energy, Peking University Shenzhen Graduate School. Shenzhen 518055, China
| | - Muhammad Irfan
- Department of Biochemistry and Biotechnology, University of Gujrat, 50700, Pakistan
| | - Muhammad Sajjad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, 50700, Pakistan.
| |
Collapse
|
5
|
Harsonowati W, Rahayuningsih S, Yuniarti E, Susilowati DN, Manohara D, Sipriyadi, Widyaningsih S, Akhdiya A, Suryadi Y, Tentrem T. Bacterial Metal-Scavengers Newly Isolated from Indonesian Gold Mine-Impacted Area: Bacillus altitudinis MIM12 as Novel Tools for Bio-Transformation of Mercury. MICROBIAL ECOLOGY 2023; 86:1646-1660. [PMID: 36930295 DOI: 10.1007/s00248-023-02203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Selikat river, located in the north part of Bengkulu Province, Indonesia, has critical environmental and ecological issues of contamination by mercury due to artisanal small-scale gold mining (ASGM) activities. The present study focused on the identification and bioremediation efficiency of the mercury-resistant bacteria (MRB) isolated from ASGM-impacted areas in Lebong Tambang village, Bengkulu Province, and analyzed their merA gene function in transforming Hg2+ to Hg0. Thirty-four MRB isolates were isolated, and four out of the 34 isolates exhibited not only the highest degree of resistance to Hg (up to 200 ppm) but also to cadmium (Cd), chromium (Cr), copper (Cu), and lead (Pb). Further analysis shows that all four selected isolates harbor a merA operon-encoded mercuric ion (Hg2+) reductase enzyme, with the Hg bioremediation efficiency varying from 71.60 to 91.30%. Additionally, the bioremediation efficiency for Cd, Cr, Cu, and Pb ranged from 54.36 to 98.37%. Among the 34, two isolates identified as Bacillus altitudinis possess effective and superior multi-metal degrading capacity up to 91.30% for Hg, 98.07% for Cu, and 54.36% for Cr. A pilot-scale study exhibited significant in situ bioremediation of Hg from gold mine tailings of 82.10 and 95.16% at 4- and 8-day intervals, respectively. Interestingly, translated nucleotide blast against bacteria and Bacilli merA sequence databases suggested that B. altitudinis harbor merA gene is the first case among Bacilli with the possibility exhibits a novel mechanism of bioremediation, considering our new finding. This study is the first to report the structural and functional Hg-resistant bacterial diversity of unexplored ASGM-impacted areas, emphasizing their biotechnological potential as novel tools for the biological transformation and adsorption of mercury and other toxic metals.
Collapse
Affiliation(s)
- Wiwiek Harsonowati
- Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor, 16915, Indonesia.
- Agrobiology and Bioresources Department, School of Agriculture, Utsunomiya University, 350 Mine-Machi, Utsunomiya, 321-8505, Tochigi, Japan.
| | - Sri Rahayuningsih
- Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor, 16915, Indonesia
| | - Erny Yuniarti
- Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor, 16915, Indonesia
| | - Dwi Ningsih Susilowati
- Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor, 16915, Indonesia
| | - Dyah Manohara
- Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor, 16915, Indonesia
| | - Sipriyadi
- Biology Department, Faculty of Mathematics and Natural Science, Universitas Bengkulu, Jalan W.R Supratman, Kandang Limun, Bengkulu, 38125, Indonesia
| | - Sri Widyaningsih
- Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor, 16915, Indonesia
| | - Alina Akhdiya
- Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor, 16915, Indonesia
| | - Yadi Suryadi
- Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor, 16915, Indonesia
| | - Titi Tentrem
- Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor, 16915, Indonesia
| |
Collapse
|
6
|
Yang Z, Huang Z, Wu Q, Tang X, Huang Z. Cold-Adapted Proteases: An Efficient and Energy-Saving Biocatalyst. Int J Mol Sci 2023; 24:ijms24108532. [PMID: 37239878 DOI: 10.3390/ijms24108532] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The modern biotechnology industry has a demand for macromolecules that can function in extreme environments. One example is cold-adapted proteases, possessing advantages such as maintaining high catalytic efficiency at low temperature and low energy input during production and inactivation. Meanwhile, cold-adapted proteases are characterised by sustainability, environmental protection, and energy conservation; therefore, they hold significant economic and ecological value regarding resource utilisation and the global biogeochemical cycle. Recently, the development and application of cold-adapted proteases have gained gaining increasing attention; however, their applications potential has not yet been fully developed, which has seriously restricted the promotion and application of cold-adapted proteases in the industry. This article introduces the source, related enzymology characteristics, cold resistance mechanism, and the structure-function relationship of cold-adapted proteases in detail. This is in addition to discussing related biotechnologies to improve stability, emphasise application potential in clinical medical research, and the constraints of the further developing of cold-adapted proteases. This article provides a reference for future research and the development of cold-adapted proteases.
Collapse
Affiliation(s)
- Zhengfeng Yang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650000, China
| | - Zhendi Huang
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
| | - Qian Wu
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650000, China
| | - Xianghua Tang
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650000, China
| | - Zunxi Huang
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650000, China
- School of Life Sciences, Yunnan Normal University, Kunming 650000, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650000, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650000, China
| |
Collapse
|
7
|
Das M, Ghosh M. Screening, characterization, and kinetic studies of a serine alkaline protease from kitchen wastewater bacteria P2S1An and evaluation of its application in nutraceutical production. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10848. [PMID: 36813755 DOI: 10.1002/wer.10848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/11/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
This present investigation aimed at characterizing the biochemical potential and kinetic study of the protease isolated from kitchen wastewater bacteria, P2S1An. The enzymatic activity was optimum when incubated for 96 h, at 30°C and pH 9.0. The enzymatic activity of the purified protease (PrA) was 10.47-folds that of crude protease (S1). PrA was about 35 kDa in molecular weight. The broad pH and thermal stability, chelators, surfactants and solvent tolerance, and favorable thermodynamics suggested the potentiality of the extracted protease PrA. Thermal activity and stability were enhanced in presence of 1-mM Ca2+ ion at high temperatures. The protease was a serine one as its activity was completely diminished in presence of 1-mM PMSF. The Vmax , Km , and Kcat /Km suggested stability and catalytic efficiency of the protease. PrA hydrolyzes fish protein with 26.61 ± 0.16% of peptide bond cleavage after 240 min, comparable to Alcalase 2.4L (27.13 ± 0.31%). PRACTITIONER POINTS: A serine alkaline protease PrA was extracted from kitchen wastewater bacteria Bacillus tropicus Y14. Protease PrA showed significant activity and stability in a wide temperature and pH range. Protease showed great stability towards additives like metal ions, solvents, surfactants, polyols, and inhibitors. Kinetic study showed that the protease PrA had a prominent affinity and catalytic efficiency for the substrates. PrA hydrolysed fish proteins into short bioactive peptides which signify its potential in the formation of functional food ingredients.
Collapse
Affiliation(s)
- Madhushrita Das
- Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal, India
| | - Mahua Ghosh
- Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
8
|
Calvo-Flores FG, Martin-Martinez FJ. Biorefineries: Achievements and challenges for a bio-based economy. Front Chem 2022; 10:973417. [PMID: 36438874 PMCID: PMC9686847 DOI: 10.3389/fchem.2022.973417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/05/2022] [Indexed: 12/07/2023] Open
Abstract
Climate change, socioeconomical pressures, and new policy and legislation are driving a decarbonization process across industries, with a critical shift from a fossil-based economy toward a biomass-based one. This new paradigm implies not only a gradual phasing out of fossil fuels as a source of energy but also a move away from crude oil as a source of platform chemicals, polymers, drugs, solvents and many other critical materials, and consumer goods that are ubiquitous in our everyday life. If we are to achieve the United Nations' Sustainable Development Goals, crude oil must be substituted by renewable sources, and in this evolution, biorefineries arise as the critical alternative to traditional refineries for producing fuels, chemical building blocks, and materials out of non-edible biomass and biomass waste. State-of-the-art biorefineries already produce cost-competitive chemicals and materials, but other products remain challenging from the economic point of view, or their scaled-up production processes are still not sufficiently developed. In particular, lignin's depolymerization is a required milestone for the success of integrated biorefineries, and better catalysts and processes must be improved to prepare bio-based aromatic simple molecules. This review summarizes current challenges in biorefinery systems, while it suggests possible directions and goals for sustainable development in the years to come.
Collapse
Affiliation(s)
- Francisco G. Calvo-Flores
- Grupo de Modelizacion y Diseño Molecular, Departamento de Quimica Organica, Universidad de Granada, Granada, Spain
| | - Francisco J. Martin-Martinez
- Department of Chemistry, Swansea University, Swansea, United Kingdom
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
9
|
Vidal P, Martínez-Martínez M, Fernandez-Lopez L, Roda S, Méndez-García C, Golyshina OV, Guallar V, Peláez AI, Ferrer M. Metagenomic Mining for Esterases in the Microbial Community of Los Rueldos Acid Mine Drainage Formation. Front Microbiol 2022; 13:868839. [PMID: 35663881 PMCID: PMC9162777 DOI: 10.3389/fmicb.2022.868839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 01/17/2023] Open
Abstract
Acid mine drainage (AMD) systems are extremely acidic and are metal-rich formations inhabited by relatively low-complexity communities of acidophiles whose enzymes remain mostly uncharacterized. Indeed, enzymes from only a few AMD sites have been studied. The low number of available cultured representatives and genome sequences of acidophiles inhabiting AMDs makes it difficult to assess the potential of these environments for enzyme bioprospecting. In this study, using naïve and in silico metagenomic approaches, we retrieved 16 esterases from the α/β-hydrolase fold superfamily with the closest match from uncultured acidophilic Acidobacteria, Actinobacteria (Acidithrix, Acidimicrobium, and Ferrimicrobium), Acidiphilium, and other Proteobacteria inhabiting the Los Rueldos site, which is a unique AMD formation in northwestern Spain with a pH of ∼2. Within this set, only two polypeptides showed high homology (99.4%), while for the rest, the pairwise identities ranged between 4 and 44.9%, suggesting that the diversity of active polypeptides was dominated not by a particular type of protein or highly similar clusters of proteins, but by diverse non-redundant sequences. The enzymes exhibited amino acid sequence identities ranging from 39 to 99% relative to homologous proteins in public databases, including those from other AMDs, thus indicating the potential novelty of proteins associated with a specialized acidophilic community. Ten of the 16 hydrolases were successfully expressed in Escherichia coli. The pH for optimal activity ranged from 7.0 to 9.0, with the enzymes retaining 33–68% of their activities at pH 5.5, which was consistent with the relative frequencies of acid residues (from 54 to 67%). The enzymes were the most active at 30–65°C, retaining 20–61% of their activity under the thermal conditions characterizing Los Rueldos (13.8 ± 0.6°C). The analysis of the substrate specificity revealed the capacity of six hydrolases to efficiently degrade (up to 1,652 ± 75 U/g at pH 8.0 and 30°C) acrylic- and terephthalic-like [including bis(2-hydroxyethyl)-terephthalate, BHET] esters, and these enzymes could potentially be of use for developing plastic degradation strategies yet to be explored. Our assessment uncovers the novelty and potential biotechnological interest of enzymes present in the microbial populations that inhibit the Los Rueldos AMD system.
Collapse
Affiliation(s)
- Paula Vidal
- Institute of Catalysis, Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mónica Martínez-Martínez
- Institute of Catalysis, Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Laura Fernandez-Lopez
- Institute of Catalysis, Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sergi Roda
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, Spain
| | - Celia Méndez-García
- Área de Microbiología, Departamento Biología Funcional e Instituto de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Olga V. Golyshina
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Víctor Guallar
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Ana I. Peláez
- Área de Microbiología, Departamento Biología Funcional e Instituto de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Manuel Ferrer
- Institute of Catalysis, Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- *Correspondence: Manuel Ferrer,
| |
Collapse
|
10
|
Raina D, Kumar V, Saran S. A critical review on exploitation of agro-industrial biomass as substrates for the therapeutic microbial enzymes production and implemented protein purification techniques. CHEMOSPHERE 2022; 294:133712. [PMID: 35081402 DOI: 10.1016/j.chemosphere.2022.133712] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Annually, a huge amount of waste is generated by the industries that use agricultural biomass. Researchers have looked into employing this cheap and renewable agro-biomass as a substrate for enzyme production via fermentation processes to meet the ever-increasing worldwide need. Although there are a number of sources for enzyme extraction, microbial sources have dominated industrial sectors due to their easy availability and rapid growth. Microbial enzymes are currently used in a variety of industries, including pharmaceuticals, food, biofuels, textiles, paper, detergents, and so on, and using these nutritious feedstocks not only reduces production costs but also helps to reduce environmental concerns. The present review focuses on the therapeutic microbial enzymes produced using different agro-industrial biomass as raw materials, with down-streaming techniques for obtaining a final pure product. Additionally, the article also discussed biomass pretreatment processes, including physical, chemical and biological. The type of pretreatment method to be used is mostly governed by the intended use of the major molecular components of biomass (cellulose, hemicelluloses and lignin). Finally, purification challenges are included. All of this information will be useful in the industrial synthesis of high-purity targeted enzymes if the crucial aspects that have been discussed are taken into account.
Collapse
Affiliation(s)
- Diksha Raina
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Kumar
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Saurabh Saran
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Molecular characterization of lipase from a psychrotrophic bacterium Pseudomonas sp. CRBC14. Curr Genet 2021; 68:243-251. [PMID: 34837516 DOI: 10.1007/s00294-021-01224-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022]
Abstract
Lipases from Pseudomonas species are particularly useful due to their broader biocatalytic applications and temperature activity. In this study, we amplified the gene encoding wild-type cold-active lipase from the genome of psychrotrophic bacterium isolated from the Himalayan glacier. The isolated CRBC14 strain was identified as Pseudomonas sp. based on the 16S rRNA gene sequence. Lipase activity was determined by observing the hydrolysis zone on nutrient agar containing tributyrin (1%, v/v). The sequence analysis of cold-active lipase revealed a protein of 611 amino acids with a calculated molecular mass of 63.71 kDa. The three-dimensional structure of this lipase was generated through template-supported modeling. Distinct techniques stamped the model quality, following which the binding free energies of tributyrin and oleic acid in the complex state with this enzymatic protein were predicted through molecular mechanics generalized born surface area (MMGBSA). A relative comparison of binding free energy values of these substrates indicated tributyrin's comparatively higher binding propensity towards the lipase. Using molecular docking, we evaluated the binding activity of cold-active lipase against tributyrin and oleic acid. Our docking analysis revealed that the lipase had a higher affinity for tributyrin than oleic acid, as evidenced by our measurement of the hydrolysis zone on two media plates. This study will help to understand the bacterial diversity of unexplored Himalayan glaciers and the possible application of their cold-adapted enzymes.
Collapse
|
12
|
Abstract
Proteases are ubiquitous enzymes, having significant physiological roles in both synthesis and degradation. The use of microbial proteases in food fermentation is an age-old process, which is today being successfully employed in other industries with the advent of ‘omics’ era and innovations in genetic and protein engineering approaches. Proteases have found application in industries besides food, like leather, textiles, detergent, waste management, agriculture, animal husbandry, cosmetics, and pharmaceutics. With the rising demands and applications, researchers are exploring various approaches to discover, redesign, or artificially synthesize enzymes with better applicability in the industrial processes. These enzymes offer a sustainable and environmentally safer option, besides possessing economic and commercial value. Various bacterial and fungal proteases are already holding a commercially pivotal role in the industry. The current review summarizes the characteristics and types of proteases, microbial source, their current and prospective applications in various industries, and future challenges. Promoting these biocatalysts will prove significant in betterment of the modern world.
Collapse
|
13
|
Jayakumar D, Sachith SK, Nathan VK, Rishad KSM. Statistical optimization of thermostable alkaline protease from Bacillus cereus KM 05 using response surface methodology. Biotechnol Lett 2021; 43:2053-2065. [PMID: 34432180 DOI: 10.1007/s10529-021-03172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Proteases have gained great attention due to their enormous applications in food, tannery, detergent, photography and many other industries. Proteases rank third position in the production of enzymes. This paper targets to isolate a bacterium with high alkaline protease activity and optimization of its production conditions using Response Surface Methodology (RSM). RESULTS A bacterium isolated from soil contaminated with detergent exhibited clearance zone on skim milk agar medium with a protease activity of 22 U/ml. The bacterial strain was identified as Bacillus cereus KM05 and optimization of its production conditions were performed using statistical methods. Further optimization with Box Behnken design resulted in an increase in protease activity by 1.5-fold (28.6 U/ml). The protease enzyme was thermotolerant up to 70 °C with stability towards alkaline pH (pH 9). The enzyme was not affected by most of the metal ions and solvents. Moreover, the protease was also compatible with six commercial detergents tested. Densitometric analysis of the destained fabric materials following the detergent-enzyme treatment, revealed a stain removal efficiency of 97%. CONCLUSION The alkaline protease enzyme obtained was stable at different conditions with stain removal efficacy. Hence, the present alkaline protease could be used for detergent formulations.
Collapse
Affiliation(s)
- Devi Jayakumar
- Postgraduate and Research Department of Zoology, Maharaja's College, Ernakulam, Kochi, Kerala, India
| | - Sunish Kadayil Sachith
- Postgraduate and Research Department of Zoology, Maharaja's College, Ernakulam, Kochi, Kerala, India
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thirumalaisamudram, Thanjavur, Tamilnadu, India
| | | |
Collapse
|
14
|
Liu W, Chen Y, Zhou X, Liu J, Zhu J, Wang S, Liu C, Sun D. The Cyclic AMP Receptor Protein, Crp, Is Required for the Decolorization of Acid Yellow 36 in Shewanella putrefaciens CN32. Front Microbiol 2020; 11:596372. [PMID: 33362744 PMCID: PMC7755654 DOI: 10.3389/fmicb.2020.596372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/15/2020] [Indexed: 01/20/2023] Open
Abstract
Shewanella shows good application potentials in the decolorization and detoxification of azo dye wastewater. However, the molecular mechanism of decolorization is still lacking. In this study, it was found that Shewanella putrefaciens CN32 exhibited good decolorization ability to various azo dyes, and a global regulatory protein cAMP receptor protein (Crp) was identified to be required for the decolorization of acid yellow 36 (AY) by constructing a transposon mutant library. Then, the molecular mechanism of AY decolorization regulated by Crp was further investigated. RT-qPCR and electrophoretic mobility shift assay (EMSA) results showed that Crp was able to directly bind to the promoter region of the cymA gene and promote its expression. Riboflavin acting as an electron shuttle could accelerate the AY decolorization efficiency of S. putrefaciens CN32 wild-type (WT) but did not show a promoting effect to Δcrp mutant and ΔcymA mutant, further confirming that Crp promotes the decolorization through regulating electron transport chains. Moreover, the mutant with cymA overexpression could slightly enhance the AY decolorization efficiency compared with the WT strain. In addition, it was found that MtrA, MtrB, and MtrC partially contribute to the electron transfer from CymA to dye molecules, and other main electron transport chains need to be identified in future experiments. This study revealed the molecular mechanism of a global regulator Crp regulating the decolorization of azo dye, which is helpful in understanding the relationship between the decolorization and other metabolic processes in S. putrefaciens CN32.
Collapse
Affiliation(s)
- Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ying Chen
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xuge Zhou
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Cong Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
15
|
Lam MQ, Chen SJ, Goh KM, Abd Manan F, Yahya A, Shamsir MS, Chong CS. Genome sequence of an uncharted halophilic bacterium Robertkochia marina with deciphering its phosphate-solubilizing ability. Braz J Microbiol 2020; 52:251-256. [PMID: 33141351 DOI: 10.1007/s42770-020-00401-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022] Open
Abstract
The wide use of whole-genome sequencing approach in the modern genomic era has opened a great opportunity to reveal the prospective applications of halophilic bacteria. Robertkochia marina CC-AMO-30DT is one of the halophilic bacteria that was previously taxonomically identified without any inspection on its biotechnological potential from a genomic aspect. In this study, we present the whole-genome sequence of R. marina and demonstrated the ability of this bacterium in solubilizing phosphate by producing phosphatase. The genome of R. marina has 3.57 Mbp and contains 3107 predicted genes, from which 3044 are protein coding, 52 are non-coding RNAs, and 11 are pseudogenes. Several phosphatases such as alkaline phosphatases and pyrophosphatases were mined from the genome. Further genomic study (phylogenetics, sequence analysis, and functional mechanism) and experimental data suggested that the alkaline phosphatase produced by R. marina could potentially be utilized in promoting plant growth, particularly for plants on saline-based agricultural land.
Collapse
Affiliation(s)
- Ming Quan Lam
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Sye Jinn Chen
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Kian Mau Goh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Adibah Yahya
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, 84600, Muar, Johor, Malaysia
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
16
|
Improving the catalytic thermostability of Bacillus altitudinis W3 ω-transaminase by proline substitutions. 3 Biotech 2020; 10:323. [PMID: 32656056 DOI: 10.1007/s13205-020-02321-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/24/2020] [Indexed: 01/10/2023] Open
Abstract
As a green biocatalyst, transaminase with high thermostability can be better employed to synthesize many pharmaceutical intermediates in industry. To improve the thermostability of (R)-selective amine transaminase from Bacillus altitudinis W3, related mutation sites were determined by multiple amino acid sequence alignment between wild-type ω-transaminase and four potential thermophilic ω-transaminases, followed by replacement of the related amino acid residues with proline by site-directed mutagenesis. Three stabilized mutants (D192P, T237P, and D192P/T237P) showing the highest stability were obtained and used for further analysis. Comparison with the wild-type enzyme revealed that the double mutant D192P/T237P exhibited the largest shift in thermostability, with a 2.5-fold improvement of t 1/2 at 40 °C, and a 6.3 °C increase in T 50 15, and a 5 °C higher optimal catalytic temperature. Additionally, this mutant exhibited an increase in catalytic efficiency (k cat/K m) relative to the wild-type enzyme. Modeling analysis indicated that the improved thermostability of the mutants could be associated with newly formed hydrophobic interactions and hydrogen bonds. This study shown that proline substitutions guided by sequence alignment to improve the thermostability of (R)-selective amine transaminase was effective and this method can also be used to engineering other enzymes.
Collapse
|
17
|
Pathak AP, Rathod MG, Mahabole MP, Khairnar RS. Enhanced catalytic activity of Bacillus aryabhattai P1 protease by modulation with nanoactivator. Heliyon 2020; 6:e04053. [PMID: 32529068 PMCID: PMC7276444 DOI: 10.1016/j.heliyon.2020.e04053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/26/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
In the developing area of modern nanobiotechnology, the research is being focused on enhancement of catalytic performance in terms of efficiency and stability of enzymes to fulfill the industrial demand. In the context of this interdisciplinary era, we isolated and identified alkaline protease producer Bacillus aryabhattai P1 by polyphasic approach and then followed one variable at a time approach to optimize protease production from P1. The modified components of fermentation medium (g/L) were wheat bran 10, soybean flour 10, yeast extract 5, NaCl 10, KH2PO4 1, K2HPO4 1 and MgSO4·7H2O 0.2 (pH 9). The optimum alkaline protease production from P1 was recorded 75 ± 3 U/mg at 35 °C and pH 9 after 96 h of fermentation period. Molecular weight of partially purified P1 alkaline protease was 26 KDa as revealed by SDS-PAGE. Calcium based nanoceramic material was prepared by wet chemical precipitation method and doped in native P1 protease for catalytic activity enhancement. Catalytic activity of modified P1 protease was attained by nanoactivator mediated modulation was more by 5.58 fold at pH 10 and 30 °C temperature. The nanoceramic material named as nanoactivator, with grain size of 40–60 nm was suitable to redesign the active site of P1 protease. Such types of modified proteases can be used in different nanobiotechnological applications.
Collapse
Affiliation(s)
- Anupama P Pathak
- School of Life Sciences (DST-FIST Phase-I & UGC-SAP DRS-II Sponsored School), Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India
| | - Mukundraj G Rathod
- Department of Biotechnology & Bioinformatics (U.G. & P.G.), Yeshwant College of Information Technology (BT & BI) Parbhani (affiliated to S.R.T.M. University, Nanded), Maharashtra, India
| | - Megha P Mahabole
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India
| | - Rajendra S Khairnar
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India
| |
Collapse
|
18
|
Osire T, Yang T, Xu M, Zhang X, Li X, Niyomukiza S, Rao Z. Lys-Arg mutation improved the thermostability of Bacillus cereus neutral protease through increased residue interactions. World J Microbiol Biotechnol 2019; 35:173. [PMID: 31673794 DOI: 10.1007/s11274-019-2751-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/18/2019] [Indexed: 11/26/2022]
Abstract
Neutral proteases have broad application as additives in modern laundry detergents and therefore, thermostability is an integral parameter for effective production of protein crystals. To improve thermostability, the contribution of individual residues of Bacillus cereus neutral protease was examined by site-directed mutagenesis. The Lys11Arg and Lys211Arg mutants clearly possessed improved thermostabilities (Tm were 63 and 61 °C respectively) compared to the wild-type (Tm was 60 °C). MD simulations further revealed that the mutants had low RMSD and RMSF values compared to wild-type BCN indicating increased stability of the protein structure. Lys11Arg mutant particularly possessed the lowest RMSD values due to increased residue interactions, which resulted in enhanced thermostability. The mutants also displayed strong stability to most inhibitors, organic solvents and surfactants after incubation for 1 h. This study demonstrated Lys-Arg mutation enhanced thermostability of BCN and thus provides insight for engineering stabilizing mutations with improved thermostability for related proteins.
Collapse
Affiliation(s)
- Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China.
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Xu Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Samuel Niyomukiza
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
19
|
Shukla P. Synthetic Biology Perspectives of Microbial Enzymes and Their Innovative Applications. Indian J Microbiol 2019; 59:401-409. [PMID: 31762501 DOI: 10.1007/s12088-019-00819-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022] Open
Abstract
Microbial enzymes are high in demand and there is focus on their efficient, cost effective and eco-friendly production. The relevant microbial enzymes for respective industries needs to be identified but the conventional technologies don't have much edge over it. So, there is more attention towards high throughput methods for production of efficient enzymes. The enzymes produced by microbes need to be modified to bear the extreme conditions of the industries in order to get prolific outcomes and here the synthetic biology tools may be augmented to modify such microbes and enzymes. These tools are applied to synthesize novel and efficient enzymes. Use of computational tools for enzyme modification has provided new avenues for faster and specific modification of enzymes in a shorter time period. This review focuses on few important enzymes and their modification through synthetic biology tools including genetic modification, nanotechnology, post translational modification.
Collapse
Affiliation(s)
- Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
20
|
Mechri S, Bouacem K, Zaraî Jaouadi N, Rekik H, Ben Elhoul M, Omrane Benmrad M, Hacene H, Bejar S, Bouanane-Darenfed A, Jaouadi B. Identification of a novel protease from the thermophilic Anoxybacillus kamchatkensis M1V and its application as laundry detergent additive. Extremophiles 2019; 23:687-706. [PMID: 31407121 DOI: 10.1007/s00792-019-01123-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022]
Abstract
A thermostable extracellular alkaline protease (called SAPA) was produced (4600 U/mL) by Anoxybacillus kamchatkensis M1V, purified to homogeneity, and biochemically characterized. SAPA is a monomer with a molecular mass of 28 kDa estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Native-PAGE, casein-zymography, and size exclusion using high performance liquid chromatography (HPLC). The sequence of its NH2-terminal amino-acid residues showed high homology with those of Bacillus proteases. The SAPA irreversible inhibition by diiodopropyl fluorophosphates (DFP) and phenylmethanesulfonyl fluoride (PMSF) confirmed its belonging to the serine proteases family. Optimal activity of SAPA was at pH 11 and 70 °C. The sapA gene was cloned and expressed in the extracellular fraction of E. coli. The highest sequence identity value (95%) of SAPA was obtained with peptidase S8 from Bacillus subtilis WT 168, but with 16 amino-acids of difference. The biochemical characteristics of the purified recombinant extracellular enzyme (called rSAPA) were analogous to those of native SAPA. Interestingly, rSAPA exhibit a degree of hydrolysis that were 1.24 and 2.6 than SAPB from Bacillus pumilus CBS and subtilisin A from Bacillus licheniformis, respectively. Furthermore, rSAPA showed a high detergent compatibility and an outstanding stain removal capacity compared to commercial enzymes: savinase™ 16L, type EX and alcalase™ Ultra 2.5 L.
Collapse
Affiliation(s)
- Sondes Mechri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Khelifa Bouacem
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.,Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), El Alia, P.O. Box 32, 16111, Bab Ezzouar, Algiers, Algeria
| | - Nadia Zaraî Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.,Biotech ECOZYM Start-Up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Hatem Rekik
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.,Biotech ECOZYM Start-Up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Mouna Ben Elhoul
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.,Biotech ECOZYM Start-Up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Maroua Omrane Benmrad
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Hocine Hacene
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), El Alia, P.O. Box 32, 16111, Bab Ezzouar, Algiers, Algeria
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.,Biotech ECOZYM Start-Up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Amel Bouanane-Darenfed
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), El Alia, P.O. Box 32, 16111, Bab Ezzouar, Algiers, Algeria
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia. .,Biotech ECOZYM Start-Up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
21
|
Singh J, Kumar P, Saharan V, Kapoor RK. Simultaneous laccase production and transformation of bisphenol-A and triclosan using Trametes versicolor. 3 Biotech 2019; 9:129. [PMID: 30863708 DOI: 10.1007/s13205-019-1648-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
New age micro-pollutants, bisphenol-A (BPA) and triclosan (TCA), known for their carcinogenic effects in living organisms can effectively be removed from water using laccase from Trametes versicolor. Laccase was produced from T. versicolor JSRK13 in both submerged and solid-state fermentation (SmF and SSF) conditions. In SmF, T. versicolor JSRK13 gave the maximum production of laccase on the 10th day with an activity of 22 U mL- 1, whereas, in SSF 185 U g- 1 of the enzyme was produced on the 17th day. Maximum production of laccase was observed with Parthenium as substrate. Parthenium, with a particle size of 3-5 mm having 60% moisture was found to be a suitable substrate for laccase production and simultaneous transformation (LPST) of BPA in a synergistic manner. A one-step concentration using 85% ammonium sulphate followed by dialysis was sufficient to give 6.7-fold purification of laccase from the crude culture filtrate. Transformation of BPA was achieved in both SmF and SSF conditions along with the production of laccase, whereas TCA was degraded with free enzyme only. Above 90% of BPA (55-5 mg L- 1) was degraded using the LPST strategy with HBT acting as a mediator in the reaction. LPST strategy did not work for TCA as it completely inhibits the growth of T. versicolor JSRK13. TCA was degraded up to 75% (1.5-0.375 mg L- 1) by the free enzyme. Our study of simultaneous laccase production and transformation proved to be efficacious in case of BPA. The results indicate that industrial and sewage wastewater containing BPA can potentially be treated with T. versicolor JSRK13 laccase. The described strategy can further be used to develop a bioprocess which can work both on solid and liquid wastes containing BPA.
Collapse
Affiliation(s)
- Jagdeep Singh
- 1Enzyme Biotechnology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Punit Kumar
- 2Department of Biotechnology, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, India
| | - Vicky Saharan
- 1Enzyme Biotechnology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Rajeev Kumar Kapoor
- 1Enzyme Biotechnology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
22
|
He J, Tang F, Chen D, Yu B, Luo Y, Zheng P, Mao X, Yu J, Yu F. Design, expression and functional characterization of a thermostable xylanase from Trichoderma reesei. PLoS One 2019; 14:e0210548. [PMID: 30650138 PMCID: PMC6334952 DOI: 10.1371/journal.pone.0210548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/27/2018] [Indexed: 11/19/2022] Open
Abstract
Xylanases isolated from microorganisms such as the Trichoderma reesei have attracted considerable research interest because of their potential in various industrial applications. However, naturally isolated xylanases cannot withstand harsh conditions such as high temperature and basic pH. In this study, we performed structural analysis of the major T. reesei xylanase (Xyn2), and novel flexible regions of the enzyme were identified based on B-factor, a molecular dynamics (MD) parameter. To improve thermostability of the Xyn2, disulfide bonds were introduced into the unstable flexible region by using site-directed mutagenesis and two recombinant xylanases, XM1 (Xyn2Cys12-52) and XM2 (Xyn2Cys59-149) were successfully expressed in Pichia pastoris. Secreted recombinant Xyn2 was estimated by SDS-PAGE to be 24 kDa. Interestingly, the half-lives of XM1 and XM2 at 60°C were 2.5- and 1.8- fold higher, respectively than those of native Xyn2. The XM1 also exhibited improved pH stability and maintained more than 60% activity over pH values ranging from 2.0 to 10.0. However, the specific activity and catalytic efficiency of XM1 was decreased as compared to those of XM2 and native Xyn2. Our results will assist not only in elucidating of the interactions between protein structure and function, but also in rational target selection for improving the thermostability of enzymes.
Collapse
Affiliation(s)
- Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
- * E-mail:
| | - Feng Tang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Feng Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
23
|
Rekik H, Zaraî Jaouadi N, Gargouri F, Bejar W, Frikha F, Jmal N, Bejar S, Jaouadi B. Production, purification and biochemical characterization of a novel detergent-stable serine alkaline protease from Bacillus safensis strain RH12. Int J Biol Macromol 2019; 121:1227-1239. [DOI: 10.1016/j.ijbiomac.2018.10.139] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
|
24
|
Sinha R, Shukla P. Antimicrobial Peptides: Recent Insights on Biotechnological Interventions and Future Perspectives. Protein Pept Lett 2019; 26:79-87. [PMID: 30370841 PMCID: PMC6416458 DOI: 10.2174/0929866525666181026160852] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022]
Abstract
With the unprecedented rise of drug-resistant pathogens, particularly antibiotic-resistant bacteria, and no new antibiotics in the pipeline over the last three decades, the issue of antimicrobial resistance has emerged as a critical public health threat. Antimicrobial Peptides (AMP) have garnered interest as a viable solution to this grave issue and are being explored for their potential antimicrobial applications. Given their low bioavailability in nature, tailoring new AMPs or strategizing approaches for increasing the yield of AMPs, therefore, becomes pertinent. The present review focuses on biotechnological interventions directed towards enhanced AMP synthesis and revisits existing genetic engineering and synthetic biology strategies for production of AMPs. This review further underscores the importance and potential applications of advanced gene editing technologies for the synthesis of novel AMPs in future.
Collapse
Affiliation(s)
| | - Pratyoosh Shukla
- Address correspondence to this author at the Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology,
Maharshi Dayanand University, Rohtak-124001, Haryana, India; E-mail:
| |
Collapse
|
25
|
Oxidative enzymes activity and hydrogen peroxide production in white-rot fungi and soil-borne micromycetes co-cultures. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1413-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
26
|
Guo Y, Chang H, Wang Q, Shao C, Xu J. Hydrolytic denitrification and decynidation of acrylonitrile in wastewater with Arthrobacter nitroguajacolicus ZJUTB06-99. AMB Express 2018; 8:191. [PMID: 30511127 PMCID: PMC6277404 DOI: 10.1186/s13568-018-0719-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/21/2018] [Indexed: 01/31/2023] Open
Abstract
Acrylonitrile (C3H3N) widely used in chemical raw materials has biological toxicity with -CN bond, so it is the key to removal of cyanide from acrylonitrile wastewater. In our previous research and investigation, a strain was identified as Arthrobacter nitroguajacolicus named ZJUTB06-99 and was proved to be capable of degrading acrylonitrile. In this paper, the strain ZJUTB06-99 was domesticated with acrylonitrile-containing medium and its decyanidation and denitrification in simulated acrylonitrile wastewater were studied. The intermediate product of acrylonitrile in degradation process was identified through gas chromatography-mass spectrometer, as well as the biodegradation pathway of acrylonitrile in wastewater was deduced tentatively. The kinetics equation of biodegradation of acrylonitrile was lnC = - 0.1784t + 5.3349, with the degradation half-life of acrylonitrile in wastewater by 3.885 h. The results of this study showed that the optimum levels of temperature, pH and bacteria concentration to attain the maximum biodegradation were obtained as 30 °C, 6 and 100 g/L, respectively. The disadvantages of the biodegradation with this strain and its possible enhanced method to degrade acrylonitrile in wastewater were also discussed.
Collapse
|
27
|
Uhoraningoga A, Kinsella GK, Henehan GT, Ryan BJ. The Goldilocks Approach: A Review of Employing Design of Experiments in Prokaryotic Recombinant Protein Production. Bioengineering (Basel) 2018; 5:E89. [PMID: 30347746 PMCID: PMC6316313 DOI: 10.3390/bioengineering5040089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 02/06/2023] Open
Abstract
The production of high yields of soluble recombinant protein is one of the main objectives of protein biotechnology. Several factors, such as expression system, vector, host, media composition and induction conditions can influence recombinant protein yield. Identifying the most important factors for optimum protein expression may involve significant investment of time and considerable cost. To address this problem, statistical models such as Design of Experiments (DoE) have been used to optimise recombinant protein production. This review examines the application of DoE in the production of recombinant proteins in prokaryotic expression systems with specific emphasis on media composition and culture conditions. The review examines the most commonly used DoE screening and optimisation designs. It provides examples of DoE applied to optimisation of media and culture conditions.
Collapse
Affiliation(s)
| | | | - Gary T Henehan
- Dublin Institute of Technology, Dublin D01 HV58, Ireland.
| | - Barry J Ryan
- Dublin Institute of Technology, Dublin D01 HV58, Ireland.
| |
Collapse
|
28
|
Jimenez-Rosales A, Flores-Merino MV. Tailoring Proteins to Re-Evolve Nature: A Short Review. Mol Biotechnol 2018; 60:946-974. [DOI: 10.1007/s12033-018-0122-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Dangi AK, Sharma B, Hill RT, Shukla P. Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol 2018; 39:79-98. [DOI: 10.1080/07388551.2018.1500997] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Arun Kumar Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Russell T. Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
30
|
Huang J, Ou Y, Zhang D, Zhang G, Pan Y. Optimization of the culture condition of Bacillus mucilaginous using Agaricus bisporus industrial wastewater by Plackett-Burman combined with Box-Behnken response surface method. AMB Express 2018; 8:141. [PMID: 30171356 PMCID: PMC6119174 DOI: 10.1186/s13568-018-0671-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/23/2018] [Indexed: 12/29/2022] Open
Abstract
In the present study, conditions for Bacillus mucilaginous fermentation using Agaricus bisporus wastewater as culture medium were optimized. We analyzed the total number of living B. mucilaginous in the fermentation broth using multispectral imaging flow cytometry. Single-factor experiments were carried out, where a Plackett–Burman design was used to screen out three factors from the original six factors of processing wastewater solubility, initial pH, inoculum size, liquid volume, culture temperature, and rotation speed that affected the total number of viable B. mucilaginous. The Box–Behnken response surface method was used to optimize interactions between the three main factors and predict optimal fermentation conditions. Factors significantly affecting the total number of viable B. mucilaginous, including shaking speed, culturing temperature, and initial pH, were investigated. The optimum conditions for B. mucilaginous fermentation in A. bisporus wastewater were a rotational speed of 195 rpm, culture temperature of 29 °C, initial pH of 6.5, solubility of 0.5%, 8% inoculation volume, and 90 mL liquid volume in a 250 mL flask, culture time of 48 h. Under these conditions, the concentration of total viable bacteria reached 2.16 ± 0.02 × 108 Obj/mL, which meets the national standard. A. bisporus wastewater can be used for the cultivation of B. mucilaginous.
Collapse
|
31
|
Shamim K, Sharma J, Mutnale M, Dubey SK, Mujawar S. Characterization of a metagenomic serine metalloprotease and molecular docking studies. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
32
|
Enzymatic synthesis of fructooligosaccharides from sucrose by endo-inulinase-catalyzed transfructosylation reaction in biphasic systems. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Purwaeni E, Darojatin I, Riani C, Retnoningrum DS. Bacterial Fibrinolytic Enzyme Coding Sequences from Indonesian Traditional Fermented Foods Isolated Using Metagenomic Approach and Their Expression in Escherichia Coli. FOOD BIOTECHNOL 2018. [DOI: 10.1080/08905436.2017.1413986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Eni Purwaeni
- Laboratory of Pharmaceutical Biotechnology, School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Ilma Darojatin
- Laboratory of Pharmaceutical Biotechnology, School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Catur Riani
- Laboratory of Pharmaceutical Biotechnology, School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, Indonesia
| | - Debbie Soefie Retnoningrum
- Laboratory of Pharmaceutical Biotechnology, School of Pharmacy, Bandung Institute of Technology, Bandung, West Java, Indonesia
| |
Collapse
|
34
|
Cost effective characterization process and molecular dynamic simulation of detergent compatible alkaline protease from Bacillus pumilus strain MP27. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Bioengineering of Nitrilases Towards Its Use as Green Catalyst: Applications and Perspectives. Indian J Microbiol 2017; 57:131-138. [PMID: 28611489 DOI: 10.1007/s12088-017-0645-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022] Open
Abstract
Nitrilases are commercial biocatalysts used for the synthesis of plastics, paints, fibers in the chemical industries, pharmaceutical drugs and herbicides for agricultural uses. Nitrilase hydrolyses the nitriles and dinitriles to their corresponding carboxylic acids and ammonia. They have a broad range of substrate specificities as well as enantio-, regio- and chemo-selective properties which make them useful for biotransformation of nitriles to important compounds because of which they are considered as 'Green Catalysts'. Nitriles are widespread in nature and synthesized as a consequence of anthropogenic and biological activities. These are also present in certain plant species and are known to cause environmental pollution. Biotransformation using native organisms as catalysts tends to be insufficient since the enzyme of interest has very low amount in the total cellular protein, rate of reaction is slow along with the instability of enzymes. Therefore, to overcome these limitations, bioengineering offers an alternative approach to alter the properties of enzymes to enhance the applicability and stability. The present review highlights the aspects of producing the recombinant microorganisms and overexpressing the enzyme of interest for the enhanced stability at high temperatures, immobilization techniques, extremes of pH, organic solvents and hydrolysing dintriles to chiral compounds which may enhance the possibilities for creating specific enzymes for biotransformation.
Collapse
|
36
|
Imam J, Mandal NP, Variar M, Shukla P. Allele Mining and Selective Patterns of Pi9 Gene in a Set of Rice Landraces from India. FRONTIERS IN PLANT SCIENCE 2016; 7:1846. [PMID: 28018384 PMCID: PMC5156731 DOI: 10.3389/fpls.2016.01846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/22/2016] [Indexed: 05/31/2023]
Abstract
Allelic variants of the broad-spectrum blast resistance gene, Pi9 (nucleotide binding site-leucine-rich repeat region) have been analyzed in Indian rice landraces. They were selected from the list of 338 rice landraces phenotyped in the rice blast nursery at central Rainfed Upland Rice Research Station, Hazaribag. Six of them were further selected on the basis of their resistance and susceptible pattern for virulence analysis and selective pattern study of Pi9 gene. The sequence analysis and phylogenetic study illustrated that such sequences are vastly homologous and clustered into two groups. All the blast resistance Pi9 alleles were grouped into one cluster, whereas Pi9 alleles of susceptible landraces formed another cluster even though these landraces have a low level of DNA polymorphisms. A total number of 136 polymorphic sites comprising of transitions, transversions, and insertion and deletions (InDels) were identified in the 2.9 kb sequence of Pi9 alleles. Lower variation in the form of mutations (77) (Transition + Transversion), and InDels (59) were observed in the Pi9 alleles isolated from rice landraces studied. The results showed that the Pi9 alleles of the selected rice landraces were less variable, suggesting that the rice landraces would have been exposed to less number of pathotypes across the country. The positive Tajima's D (0.33580), P > 0.10 (not significant) was observed among the seven rice landraces, which suggests the balancing selection of Pi9 alleles. The value of synonymous substitution (-0.43337) was less than the non-synonymous substitution (0.78808). The greater non-synonymous substitution than the synonymous means that the coding region, mainly the leucine-rich repeat domain was under diversified selection. In this study, the Pi9 gene has been subjected to balancing selection with low nucleotide diversity which is different from the earlier reports, this may be because of the closeness of the rice landraces, cultivated in the same region, and under low pathotype pressure.
Collapse
Affiliation(s)
- Jahangir Imam
- Biotechnology Laboratory, Central Rainfed Upland Rice Research StationHazaribagh, India
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| | - Nimai P. Mandal
- Biotechnology Laboratory, Central Rainfed Upland Rice Research StationHazaribagh, India
| | - Mukund Variar
- Biotechnology Laboratory, Central Rainfed Upland Rice Research StationHazaribagh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| |
Collapse
|
37
|
Tiwari R, Kumar K, Singh S, Nain L, Shukla P. Molecular Detection and Environment-Specific Diversity of Glycosyl Hydrolase Family 1 β-Glucosidase in Different Habitats. Front Microbiol 2016; 7:1597. [PMID: 27790196 PMCID: PMC5062022 DOI: 10.3389/fmicb.2016.01597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/26/2016] [Indexed: 12/23/2022] Open
Abstract
β-glucosidase is a crucial element of the microbial cellulose multienzyme complex since it is responsible for the regulation of the entire cellulose hydrolysis process. Therefore, the aim of the present work was to explore the diversity and distribution of glycosyl hydrolase family 1 β-glucosidase genes in three different environmental niches including, Himalayan soil, cow dung and compost by metagenomic approach. Preliminary evaluation through metabolic profiling using BIOLOG based utilization patterns of carbon, nitrogen, phosphorus and sulfur revealed the environment and substrate specific nature of the indigenous microbial population. Furthermore, clonal library selection, screening and sequence analysis revealed that most of the GH1 β-glucosidase proteins had low identities with the available database. Analysis of the distribution of GH1 β-glucosidase gene fragments and β-glucosidase producing microbial community revealed the environment specific nature. The OTUs obtained from Himalayan soil and compost metagenomic libraries were grouped into 19 different genera comprising 6 groups. The cow dung sample displayed the least diversity of GH1 β-glucosidase sequences, with only 14 genera, distributed among three groups- Bacteroidetes, Firmicutes, and Actinobacteria. The metagenomic study coupled with metabolic profiling of GH1 β-glucosidase illustrated the existence of intricate relationship between the geochemical environmental factors and inherent microbial community.
Collapse
Affiliation(s)
- Rameshwar Tiwari
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India; Division of Microbiology, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Kanika Kumar
- ICAR-National Research Centre on Plant Biotechnology, LBS Centre, Indian Agricultural Research Institute New Delhi, India
| | - Surender Singh
- Division of Microbiology, ICAR-Indian Agricultural Research Institute New Delhi, India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agricultural Research Institute New Delhi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University Rohtak, India
| |
Collapse
|
38
|
Kumar V, Baweja M, Singh PK, Shukla P. Recent Developments in Systems Biology and Metabolic Engineering of Plant-Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:1421. [PMID: 27725824 PMCID: PMC5035732 DOI: 10.3389/fpls.2016.01421] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/06/2016] [Indexed: 05/07/2023]
Abstract
Microorganisms play a crucial role in the sustainability of the various ecosystems. The characterization of various interactions between microorganisms and other biotic factors is a necessary footstep to understand the association and functions of microbial communities. Among the different microbial interactions in an ecosystem, plant-microbe interaction plays an important role to balance the ecosystem. The present review explores plant-microbe interactions using gene editing and system biology tools toward the comprehension in improvement of plant traits. Further, system biology tools like FBA (flux balance analysis), OptKnock, and constraint-based modeling helps in understanding such interactions as a whole. In addition, various gene editing tools have been summarized and a strategy has been hypothesized for the development of disease free plants. Furthermore, we have tried to summarize the predictions through data retrieved from various types of sources such as high throughput sequencing data (e.g., single nucleotide polymorphism detection, RNA-seq, proteomics) and metabolic models have been reconstructed from such sequences for species communities. It is well known fact that systems biology approaches and modeling of biological networks will enable us to learn the insight of such network and will also help further in understanding these interactions.
Collapse
Affiliation(s)
| | | | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| |
Collapse
|