1
|
Qi Q, Ghaly TM, Rajabal V, Russell DH, Gillings MR, Tetu SG. Vegetable phylloplane microbiomes harbour class 1 integrons in novel bacterial hosts and drive the spread of chlorite resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176348. [PMID: 39304140 DOI: 10.1016/j.scitotenv.2024.176348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bacterial hosts in vegetable phylloplanes carry mobile genetic elements, such as plasmids and transposons that are associated with integrons. These mobile genetic elements and their cargo genes can enter human microbiomes via consumption of fresh agricultural produce, including uncooked vegetables. This presents a risk of acquiring antimicrobial resistance genes from uncooked vegetables. To better understand horizontal gene transfer of class 1 integrons in these compartments, we applied epicPCR, a single-cell fusion-PCR surveillance technique, to link the class 1 integron integrase (intI1) gene with phylogenetic markers of their bacterial hosts. Ready-to-eat salads carried class 1 integrons from the phyla Bacteroidota and Pseudomonadota, including four novel genera that were previously not known to be associated with intI1. We whole-genome sequenced Pseudomonas and Erwinia hosts of pre-clinical class 1 integrons that are embedded in Tn402-like transposons. The proximal gene cassette in these integrons was identified as a chlorite dismutase gene cassette, which we showed experimentally to confer chlorite resistance. Chlorine-derived compounds such as acidified sodium chlorite and chloride dioxide are used to disinfectant raw vegetables in food processing facilities, suggesting selection for chlorite resistance in phylloplane integrons. The spread of integrons conferring chlorite resistance has the potential to exacerbate integron-mediated antimicrobial resistance (AMR) via co-selection of chlorite resistance and AMR, thus highlighting the importance of monitoring chlorite residues in agricultural produce. These results demonstrate the strength of combining epicPCR and culture-based isolation approaches for identifying hosts and dissecting the molecular ecology of class 1 integrons.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, Macquarie University, New South Wales, Australia; Manchester Institute of Biotechnology, The University of Manchester, Greater Manchester, United Kingdom.
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia
| | - Dylan H Russell
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia.
| |
Collapse
|
2
|
Zheng Y, Yu Q, Han L, Chen X. Molecular Characterization of Resistance and Virulence Factors of Trueperella pyogenes Isolated from Clinical Bovine Mastitis Cases in China. Infect Drug Resist 2024; 17:1979-1986. [PMID: 38800580 PMCID: PMC11122176 DOI: 10.2147/idr.s433578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose The present study was designed to investigate the resistance determinants and virulence factors of 45 Trueperella pyogenes isolates from clinical bovine mastitis in Hexi Corridor of Gansu, China. Methods Minimum inhibitory concentrations (MICs) was tested by E-test method. Gene of antimicrobial resistance, virulence integrase and integron gene cassettes were determined by PCR and DNA sequencing. Results The T. pyogenes isolates exhibited high resistance to streptomycin (88.9%) and tetracycline (64.4%), followed by erythromycin (15.6%) and gentamicin (13.3%). Resistance to streptomycin was most commonly encoded by aadA9 (88.9%); and to tetracycline, by tetW (64.4%). Importantly, all streptomycin-resistant isolates carried aadA9 alone or in combination with aadA1, aadA11 and strA-strB. Similarly, all tetracycline-resistant isolates harbored tetW alone or in combination with tetA33. Meanwhile, ermX was detected in 13.3% isolates, only one erythromycin-resistant isolate was not identified for this gene. Moreover, all T. pyogenes isolates carried class 1 integrons, and 17.8% of them contained gene cassettes, including arrays aadA1-aadB (4.4%), aad A24-dfrA1-ORF1 (2.2%) and aadA1 (2.2%). Furthermore, all tested isolates harbored virulent genes plo and fimA, followed by fimC (88.9%), fimE (86.6%) nanP (75.6%), nanH (40.0%), cbpA (35.6%) and fimG (6.7%). Conclusion To our knowledge, this is the first report of integron gene cassettes of T. pyogenes isolates from bovine mastitis cases in China. These findings are useful for developing the prevention and the virulence factors of T. pyogenes could be promising candidates for vaccine antigens for bovine mastitis caused by T. pyogenes in China.
Collapse
Affiliation(s)
- Ya Zheng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, 730070, People’s Republic of China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, 730070, People’s Republic of China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, 730070, People’s Republic of China
| | - Xinyi Chen
- School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| |
Collapse
|
3
|
Xedzro C, Shimamoto T, Yu L, Zuo H, Sugawara Y, Sugai M, Shimamoto T. Emergence of colistin-resistant Enterobacter cloacae and Raoultella ornithinolytica carrying the phosphoethanolamine transferase gene, mcr-9, derived from vegetables in Japan. Microbiol Spectr 2023; 11:e0106323. [PMID: 37909761 PMCID: PMC10714742 DOI: 10.1128/spectrum.01063-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/17/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Plasmid-mediated mobile colistin-resistance genes have been recognized as a global threat because they jeopardize the efficacy of colistin in therapeutic practice. Here, we described the genetic features of two mcr-9.1-carrying Gram-negative bacteria with a colistin-resistant phenotype derived from vegetables in Japan. The colistin-resistant mcr-9.1, which has never been detected in vegetables, was located on a large plasmid in Enterobacter cloacae CST17-2 and Raoultella ornithinolytica CST129-1, suggesting a high chance of horizontal gene transfer. To the best of our knowledge, this is the first report of mcr-9 in R. ornithinolytica. This study indicates that fresh vegetables might be a potential source for the transmission of mcr-9 genes encoding resistance to frontline (colistin) and clinically relevant antimicrobials. The study also provides additional consideration for colistin use and the relevance of routine surveillance in epidemiological perspective to curb the continuous spread of mcr alleles.
Collapse
Affiliation(s)
- Christian Xedzro
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Toshi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Japan
| | - Hui Zuo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Japan
| | - Tadashi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
4
|
Fadare FT, Fadare TO, Okoh AI. Prevalence, molecular characterization of integrons and its associated gene cassettes in Klebsiella pneumoniae and K. oxytoca recovered from diverse environmental matrices. Sci Rep 2023; 13:14373. [PMID: 37658232 PMCID: PMC10474106 DOI: 10.1038/s41598-023-41591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
The high prevalence of infections arising from Klebsiella species is related to their ability to acquire and disseminate exogenous genes associated with mobile genetic elements such as integrons. We assessed the prevalence, diversity, and associated gene cassettes (GCs) of integrons in Klebsiella species. The isolates recovered from wastewater and hospital effluents, rivers, and animal droppings were identified using the conventional Polymerase Chain Reaction (PCR) with primers targeting the gryA, pehX, and 16S-23S genes. The antimicrobial resistance profile and the Extended-Spectrum and Metallo β-lactamases production were carried out using standard microbiological techniques. PCR, DNA sequencing analyses, and Restriction Fragment Length Polymorphism were used to characterize the integrons and their associated GCs. Furthermore, the genotypic relationships between the different isolated K. pneumoniae were determined using Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR. About 98% (51/52) of the confirmed isolates harboured an integrase gene, with 80% intI1, while the remaining 20% concurrently harboured intI1 and intI2, with no intI3 observed. About 78% (40/51) of the bacterial strains were positive for a promoter, the P2R2, investigated, while 80% (41/51) harboured at least one of the qacEΔ1 and sul1. Three different GCs arrangements identified were aac(6')-Ib, aadA1-dfrA1, and dfrA1-sat2. At a similarity index of 60%, the ERIC-PCR fingerprints generated were categorized into nine clusters. Our study is the first to reveal the features of integrons in Klebsiella spp. recovered from environmental sources in the Eastern Cape Province, South Africa. We conclude that the organisms' sources are repositories of integrons harbouring various gene cassettes, which can be readily mobilized to other microorganisms in similar or varied niches.
Collapse
Affiliation(s)
- Folake Temitope Fadare
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.
| | - Taiwo Olawole Fadare
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
5
|
Talat A, Miranda C, Poeta P, Khan AU. Farm to table: colistin resistance hitchhiking through food. Arch Microbiol 2023; 205:167. [PMID: 37014461 DOI: 10.1007/s00203-023-03476-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Colistin is a high priority, last-resort antibiotic recklessly used in livestock and poultry farms. It is used as an antibiotic for treating multi-drug resistant Gram-negative bacterial infections as well as a growth promoter in poultry and animal farms. The sub-therapeutic doses of colistin exert a selection pressure on bacteria leading to the emergence of colistin resistance in the environment. Colistin resistance gene, mcr are mostly plasmid-mediated, amplifying the horizontal gene transfer. Food products such as chicken, meat, pork etc. disseminate colistin resistance to humans through zoonotic transfer. The antimicrobial residues used in livestock and poultry often leaches to soil and water through faeces. This review highlights the recent status of colistin use in food-producing animals, its association with colistin resistance adversely affecting public health. The underlying mechanism of colistin resistance has been explored. The prohibition of over-the-counter colistin sales and as growth promoters for animals and broilers has exhibited effective stewardship of colistin resistance in several countries.
Collapse
Affiliation(s)
- Absar Talat
- Medical and Molecular Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Carla Miranda
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
- Toxicology Research Unit (TOXRUN), IUCS, CESPU, CRL, Gandra, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-Os-Montes and Alto Douro (UTAD)UTAD, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Asad U Khan
- Medical and Molecular Microbiology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
6
|
Richter L, Du Plessis EM, Duvenage S, Korsten L. Prevalence of extended-spectrum β-lactamase producing Enterobacterales in Africa's water-plant-food interface: A meta-analysis (2010–2022). FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1106082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
BackgroundMultidrug-resistant extended-spectrum β-lactamase (ESBL)-producing Enterobacterales is regarded as a critical health issue, yet, surveillance in the water-plant-food interface remains low, especially in Africa.ObjectivesThe objective of the study was to elucidate the distribution and prevalence of antimicrobial resistance in clinically significant members of the Enterobacterales order isolated from the water-plant-food interface in Africa.MethodsA literature search was conducted using six online databases according to the PRISMA guidelines. All available published studies involving phenotypic and genotypic characterization of ESBL-producing Enterobacterales from water, fresh produce or soil in Africa were considered eligible. Identification and characterization methods used as well as a network analysis according to the isolation source and publication year were summarized. Analysis of Escherichia coli, Salmonella spp. and Klebsiella pneumoniae included the calculation of the multiple antibiotic resistance (MAR) index according to isolation sources and statistical analysis was performed using RStudio.ResultsOverall, 51 studies were included for further investigation. Twelve African countries were represented, with environmental AMR surveillance studies predominantly conducted in South Africa. In 76.47% of the studies, occurrence of antimicrobial resistant bacteria was investigated in irrigation water samples, while 50.98% of the studies included fresh produce samples. Analysis of bacterial phenotypic antimicrobial resistance profiles were reported in 94.12% of the studies, with the disk diffusion method predominantly used. When investigating the MAR indexes of the characterized Escherichia coli, Klebsiella pneumoniae and Salmonella spp., from different sources (water, fresh produce or soil), no significant differences were seen across the countries. The only genetic determinant identified using PCR detection in all the studies was the blaCTX − M resistance gene. Only four studies used whole genome sequence analysis for molecular isolate characterization.DiscussionGlobally, AMR surveillance programmes recognize ESBL- and carbapenemase-producing Enterobacterales as vectors of great importance in AMR gene dissemination. However, in low- and middle-income countries, such as those in Africa, challenges to implementing effective and sustainable AMR surveillance programmes remain. This review emphasizes the need for improved surveillance, standardized methods and documentation of resistance gene dissemination across the farm-to-fork continuum in Africa.
Collapse
|
7
|
An R, Qi Y, Zhang XX, Ma L. Xenogenetic evolutionary of integrons promotes the environmental pollution of antibiotic resistance genes - Challenges, progress and prospects. WATER RESEARCH 2023; 231:119629. [PMID: 36689882 DOI: 10.1016/j.watres.2023.119629] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/18/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Environmental pollution of antibiotic resistance genes (ARGs) has been a great public concern. Integrons, as mobile genetic elements, with versatile gene acquisition systems facilitate the horizontal gene transfer (HGT) and pollution disseminations of ARGs. However, little is understood about the characteristics of ARGs mediated by integrons, which hampers our monitoring and control of the mobile antimicrobial resistance risks. To address these issues, we reviewed 3,322 publications concerning detection methods and pipeline, ARG diversity and evolutionary progress, environmental and geographical distribution, bacterial hosts, gene cassettes arrangements, and based on which to identify ARGs with high risk levels mediated by integrons. Diverse ARGs of 516 subtypes attributed to 12 types were capable of being carried by integrons, with 62 core ARG subtypes prevalent in pollution source, natural and human-related environments. Hosts of ARG-carrying integrons reached 271 bacterial species, most frequently carried by opportunistic pathogens Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. Moreover, the observed emergence of ARGs together with their multiple arrangements indicated the accumulation of ARGs mediated by integrons, and thus pose increasing HGT risks under modern selective agents. With the concerns of public health, we urgently call for a better monitoring and control of these high-risk ARGs. Our identified Risk Rank I ARGs (aacA7, blaOXA10, catB3, catB8, dfrA5) with high mobility, reviewed key trends and noteworthy advancements, and proposed future directions could be reference and guidance for standard formulation.
Collapse
Affiliation(s)
- Ran An
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yuting Qi
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liping Ma
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
8
|
Xiao C, Li X, Huang L, Cao H, Han L, Ni Y, Xia H, Yang Z. Prevalence and molecular characteristics of polymyxin-resistant Enterobacterales in a Chinese tertiary teaching hospital. Front Cell Infect Microbiol 2023; 13:1118122. [PMID: 37143741 PMCID: PMC10151768 DOI: 10.3389/fcimb.2023.1118122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Polymyxin-resistant Enterobacterales poses a significant threat to public health globally, but its prevalence and genomic diversity within a sole hospital is less well known. In this study, the prevalence of polymyxin-resistant Enterobacterales in a Chinese teaching hospital was investigated with deciphering of their genetic determinants of drug resistance. Methods Polymyxin-resistant Enterobacterales isolates identified by matrix-assisted laser desorption were collected in Ruijin Hospital from May to December in 2021. Both the VITEK 2 Compact and broth dilution methods were used to determine polymyxin B (PMB) susceptibility. Polymyxin-resistant isolates were further characterized by molecular typing using PCR, multi-locus sequence typing, and sequencing of the whole genome. Results Of the 1,216 isolates collected, 32 (2.6%) across 12 wards were polymyxin-resistant (minimum inhibitory concentration (MIC) range, PMB 4-256 mg/ml, and colistin 4 ≥ 16 mg/ ml). A total of 28 (87.5%) of the polymyxin-resistant isolates had reduced susceptibility to imipenem and meropenem (MIC ≥ 16 mg/ml). Of the 32 patients, 15 patients received PMB treatment and 20 survived before discharge. The phylogenetic tree of these isolates showed they belonged to different clones and had multiple origins. The polymyxin-resistant Klebsiella pneumoniae isolates belonged to ST-11 (85.72%), ST-15 (10.71%), and ST-65 (3.57%), and the polymyxin-resistant Escherichia coli belonged to four different sequence types, namely, ST-69 (25.00%), ST-38 (25.00%), ST-648 (25.00%), and ST-1193 (25.00%). In addition, six mgrB specific mutations (snp_ALT c.323T>C and amino acid change p.Val8Ala) were identified in 15.6% (5/32) of the isolates. mcr-1, a plasmid-mediated polymyxin-resistant gene, was found in three isolates, and non-synonymous mutations including T157P, A246T, G53V, and I44L were also observed. Discussion In our study, a low prevalence of polymyxin-resistant Enterobacterales was observed, but these isolates were also identified as multidrug resistant. Therefore, efficient infection control measures should be implemented to prevent the further spread of resistance to last-line polymyxin therapy.
Collapse
Affiliation(s)
- Chenlu Xiao
- Department of Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuming Li
- Department of Scientific Affairs, Hugobiotech Co., Ltd., Beijing, China
| | - Lianjiang Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Huiluo Cao
- Department of Microbiology, The University of Hongkong, Hong Kong, Hong Kong SAR, China
| | - Lizhong Han
- Department of Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Microbiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxing Ni
- Department of Infection Control, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Xia
- Department of Scientific Affairs, Hugobiotech Co., Ltd., Beijing, China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhitao Yang,
| |
Collapse
|
9
|
Witaningrum AM, Wibisono FJ, Permatasari DA, Effendi MH, Ugbo EN. Multidrug resistance-encoding gene in Citrobacter freundii isolated from healthy laying chicken in Blitar District, Indonesia. INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.161-166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background and Aim: The increasing prevalence of resistance (MDR) of Enterobacteriaceae in Indonesia has caused concern regarding human health. Citrobacter freundii reportedly targets the gastrointestinal tract of animals and is a common cause of foodborne diseases associated with diarrhea, peritonitis, meningitis, brain abscess, bacteremia, and urinary tract infection. This study aimed to estimate the prevalence of MDR and the presence of Class 1 integron-encoding genes in C. freundii isolates obtained from cloacal swabs of healthy laying chickens in Blitar district, Indonesia.
Materials and Methods: One hundred and sixty-five cloacal swab samples were collected from 33 farms in Blitar over a period of 4 months. Standard microbiological techniques such as bacterial culture in MacConkey agar, Simmons citrate agar, and triple sugar iron agar and biochemical tests such as the indole test were performed to identify the isolates. The antibiotic sensitivity patterns of C. freundii isolates were determined by the disk diffusion method, and MDR-encoding genes (Class 1 integron) were detected by polymerase chain reaction (PCR).
Results: Out of 165 cloacal swab samples, 7 (4.24%) were positive for C. freundii. Citrobacter freundii was highly resistant to erythromycin (71.43%) and moderately to streptomycin, tetracycline, and trimethoprim-sulfamethoxazole (all 42.86%); however, it showed low resistance to ampicillin (28.57%). All isolates were found to exhibit MDR. Only 1 (14.29%) of the seven C. freundii isolates harbored a Class 1 integron gene. This study revealed that Class 1 integron-encoding genes have a low prevalence in C. freundii isolated from healthy laying chickens in Blitar, Indonesia.
Conclusion: Poultry animals can play a role in the transmission of resistance genes to humans due to the MDR of Enterobacteriaceae, including C. freundii in the intestines.
Collapse
Affiliation(s)
- Adiana Mutamsari Witaningrum
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Kampus C Mulyorejo, Surabaya 60115, Indonesia
| | - Freshinta Jellia Wibisono
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Wijaya Kusuma Surabaya, Jl. DukuhKupang XXV No.54, Surabaya 60225, Indonesia
| | - Dian Ayu Permatasari
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Kampus C Mulyorejo, Surabaya 60115, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Kampus C Mulyorejo, Surabaya 60115, Indonesia
| | - Emmanuel Nnabuike Ugbo
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| |
Collapse
|
10
|
Zhao CX, Su XX, Xu MR, An XL, Su JQ. Uncovering the diversity and contents of gene cassettes in class 1 integrons from the endophytes of raw vegetables. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114282. [PMID: 36371907 DOI: 10.1016/j.ecoenv.2022.114282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/22/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Rapid spread of antibiotic resistance genes (ARGs) in pathogens is threatening human health. Integrons allow bacteria to integrate and express foreign genes, facilitating horizontal transfer of ARGs in environments. Consumption of raw vegetables represents a pathway for human exposure to environmental ARGs. However, few studies have focused on integron-associated ARGs in the endophytes of raw vegetables. Here, based on the approach of qPCR and clone library, we quantified the abundance of integrase genes and analyzed the diversity and contents of resistance gene cassettes in class 1 integrons from the endophytes of six common raw vegetables. The results revealed that integrase genes for class 1 integron were most prevalent compared with class 2 and class 3 integron integrase genes (1-2 order magnitude, P < 0.05). The cucumber endophytes harbored a higher absolute abundance of integrase genes than other vegetables, while the highest bacterial abundance was detected in cabbage and cucumber endophytes. Thirty-two unique resistance gene cassettes were detected, the majority of which were associated with the genes encoding resistance to beta-lactam and aminoglycoside. Antibiotic resistance gene cassettes accounted for 52.5 % of the functionally annotated gene cassettes, and blaTEM-157 and aadA2 were the most frequently detected resistance cassettes. Additionally, carrot endophytes harbored the highest proportion of antibiotic resistance gene cassettes in the class 1 integrons. Collectively, these results provide an in-depth view of acquired resistance genes by integrons in the raw vegetable endophytes and highlight the potential health risk of the transmission of ARGs via the food chain.
Collapse
Affiliation(s)
- Cai-Xia Zhao
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Xuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, 400715 Chongqing, China
| | - Mei-Rong Xu
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Li An
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Qiang Su
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Ferreira M, Leão C, Clemente L, Albuquerque T, Amaro A. Antibiotic Susceptibility Profiles and Resistance Mechanisms to β-Lactams and Polymyxins of Escherichia coli from Broilers Raised under Intensive and Extensive Production Systems. Microorganisms 2022; 10:microorganisms10102044. [PMID: 36296320 PMCID: PMC9608943 DOI: 10.3390/microorganisms10102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
The intensive and extensive broiler production systems imply different veterinary interventions, including the use of antimicrobials. This study aimed to compare the antimicrobial susceptibility profiles of Escherichia coli isolated from both systems, characterize resistance mechanisms to β-lactams and polymyxins, and identify genetic elements such as integrons. E. coli isolates recovered from broiler cecal samples were assayed for antimicrobial susceptibility through the broth microdilution technique. The molecular characterization of acquired resistance mechanisms to β-lactams and colistin and the detection of integrons was performed by a multiplex PCR. For most antibiotics tested, the prevalence of reduced susceptibility is higher in commensal and extended-spectrum β-lactamases (ESBL)/AmpC producers from broilers raised in the intensive system, compared with those raised under extensive conditions. SHV-12 was the most common ESBL enzyme found in both production systems. Other ESBL variants such as CTX-M-1, CTX-M-55, CTX-M-14, CTX-M-32, CTX-M-9, TEM-52, and plasmid-encoded AmpC enzyme CMY-2 were also present. MCR-1 was identified in a colistin-resistant isolate from broilers raised under the intensive system. This study highlights the differences in E. coli antibiotic susceptibility from both production types and emphasizes that a great deal of work remains to decrease consumption and antimicrobial resistance levels.
Collapse
Affiliation(s)
- Mariana Ferreira
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal
- University of Évora, 7004-516 Évora, Portugal
| | - Célia Leão
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal
- MED—Mediterranean Institute for Agriculture, Environment and Development, 7006-554 Évora, Portugal
| | - Lurdes Clemente
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Science, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Teresa Albuquerque
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal
| | - Ana Amaro
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
12
|
Occurrence, Phenotypic and Molecular Characteristics of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Healthy Turkeys in Northern Egypt. Antibiotics (Basel) 2022; 11:antibiotics11081075. [PMID: 36009944 PMCID: PMC9404839 DOI: 10.3390/antibiotics11081075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022] Open
Abstract
Poultry is one of the most important reservoirs for zoonotic multidrug-resistant pathogens. The indiscriminate use of antimicrobials in poultry production is a leading factor for development and dissemination of antimicrobial resistance. This study aimed to describe the prevalence and antimicrobial resistance of E. coli isolated from healthy turkey flocks of different ages in Nile delta region, Egypt. In the current investigation, 250 cloacal swabs were collected from 12 turkey farms in five governorates in the northern Egypt. Collected samples were cultivated on BrillianceTM ESBL agar media supplemented with cefotaxime (100 mg/L). The E. coli isolates were identified using MALDI-TOF-MS and confirmed by a conventional PCR assay targeting 16S rRNA-DNA. The phenotypic antibiogram against 14 antimicrobial agents was determined using the broth micro-dilution method. DNA-microarray-based assay was applied for genotyping and determination of both, virulence and resistance-associated gene markers. Multiplex real-time PCR was additionally applied for all isolates for detection of the actual most relevant Carbapenemase genes. The phenotypic identification of colistin resistance was carried out using E-test. A total of 26 E. coli isolates were recovered from the cloacal samples. All isolates were defined as multidrug-resistant. Interestingly, two different E. coli strains were isolated from one sample. Both strains had different phenotypic and genotypic profiles. All isolates were phenotypically susceptible to imipenem, while resistant to penicillin, rifampicin, streptomycin, and erythromycin. None of the examined carbapenem resistance genes was detected among isolates. At least one beta-lactamase gene was identified in most of isolates, where blaTEM was the most commonly identified determinant (80.8%), in addition to blaCTX-M9 (23.1%), blaSHV (19.2%) and blaOXA-10 (15.4%). Genes associated with chloramphenicol resistance were floR (65.4%) and cmlA1 (46.2%). Tetracycline- and quinolone-resistance-associated genes tetA and qnrS were detected in (57.7%) and (50.0%) of isolates, respectively. The aminoglycoside resistance associated genes aadA1 (65.4%), aadA2 (53.8%), aphA (50.0%), strA (69.2%), and strB (65.4%), were detected among isolates. Macrolide resistance associated genes mph and mrx were also detected in (53.8%) and (34.6%). Moreover, colistin resistance associated gene mcr-9 was identified in one isolate (3.8%). The class 1 integron integrase intI1 (84.6%), transposase for the transposon tnpISEcp1 (34.6%) and OqxB -integral membrane and component of RND-type multidrug efflux pump oqxB (7.7%) were identified among the isolates. The existing high incidence of ESBL/colistin-producing E. coli identified in healthy turkeys is a major concern that demands prompt control; otherwise, such strains and their resistance determinants could be transmitted to other bacteria and, eventually, to people via the food chain.
Collapse
|
13
|
Khuntayaporn P, Thirapanmethee K, Chomnawang MT. An Update of Mobile Colistin Resistance in Non-Fermentative Gram-Negative Bacilli. Front Cell Infect Microbiol 2022; 12:882236. [PMID: 35782127 PMCID: PMC9248837 DOI: 10.3389/fcimb.2022.882236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Colistin, the last resort for multidrug and extensively drug-resistant bacterial infection treatment, was reintroduced after being avoided in clinical settings from the 1970s to the 1990s because of its high toxicity. Colistin is considered a crucial treatment option for Acinetobacter baumannii and Pseudomonas aeruginosa, which are listed as critical priority pathogens for new antibiotics by the World Health Organization. The resistance mechanisms of colistin are considered to be chromosomally encoded, and no horizontal transfer has been reported. Nevertheless, in November 2015, a transmissible resistance mechanism of colistin, called mobile colistin resistance (MCR), was discovered. Up to ten families with MCR and more than 100 variants of Gram-negative bacteria have been reported worldwide. Even though few have been reported from Acinetobacter spp. and Pseudomonas spp., it is important to closely monitor the epidemiology of mcr genes in these pathogens. Therefore, this review focuses on the most recent update on colistin resistance and the epidemiology of mcr genes among non-fermentative Gram-negative bacilli, especially Acinetobacter spp. and P. aeruginosa.
Collapse
Affiliation(s)
- Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- *Correspondence: Piyatip Khuntayaporn,
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Xiao C, Zhu Y, Yang Z, Shi D, Ni Y, Hua L, Li J. Prevalence and Molecular Characteristics of Polymyxin-Resistant Pseudomonas aeruginosa in a Chinese Tertiary Teaching Hospital. Antibiotics (Basel) 2022; 11:antibiotics11060799. [PMID: 35740205 PMCID: PMC9219935 DOI: 10.3390/antibiotics11060799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022] Open
Abstract
Polymyxin-resistant Pseudomonas aeruginosa is a major threat to public health globally. We investigated the prevalence of polymyxin-resistant P. aeruginosa in a Chinese teaching hospital and determined the genetic and drug-resistant phenotypes of the resistant isolates. P. aeruginosa isolates identified by MALDI-TOF MS were collected across a 3-month period in Ruijin Hospital. Antimicrobial susceptibility was determined by a Vitek-2 Compact system with broth dilution used to determine polymyxin B (PMB) susceptibility. Polymyxin-resistant isolates were further characterized by molecular typing using PCR, multi-locus sequence typing (MLST) and whole-genome sequencing. Phylogenetic relationships were analyzed using single nucleotide polymorphism (SNP) from the whole-genome sequencing. Of 362 P. aeruginosa isolates collected, 8 (2.2%) isolates from separate patients across six wards were polymyxin-resistant (MIC range, PMB 4–16 μg/mL and colistin 4–≥16 μg/mL). Four patients received PMB treatments (intravenous, aerosolized and/or topical) and all patients survived to discharge. All polymyxin-resistant isolates were genetically related and were assigned to five different clades (Isolate 150 and Isolate 211 being the same ST823 type). Genetic variations V51I, Y345H, G68S and R155H in pmrB and L71R in pmrA were identified, which might confer polymyxin resistance in these isolates. Six of the polymyxin-resistant isolates showed reduced susceptibility to imipenem and meropenem (MIC range ≥ 16 μg/mL), while two of the eight isolates were resistant to ceftazidime. We revealed a low prevalence of polymyxin-resistant P. aeruginosa in a Chinese teaching hospital with most polymyxin-resistant isolates being multidrug-resistant. Therefore, effective infection control measures are urgently needed to prevent further spread of resistance to the last-line polymyxins.
Collapse
Affiliation(s)
- Chenlu Xiao
- Department of Laboratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Department of Clinical Microbiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Zhu
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia;
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Dake Shi
- Department of Infection Control, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (D.S.); (Y.N.)
| | - Yuxing Ni
- Department of Infection Control, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (D.S.); (Y.N.)
| | - Li Hua
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence: (L.H.); (J.L.)
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne 3800, Australia;
- Correspondence: (L.H.); (J.L.)
| |
Collapse
|
15
|
Bourdonnais E, Colcanap D, Le Bris C, Brauge T, Midelet G. Occurrence of Indicator Genes of Antimicrobial Resistance Contamination in the English Channel and North Sea Sectors and Interactions With Environmental Variables. Front Microbiol 2022; 13:883081. [PMID: 35651498 PMCID: PMC9150721 DOI: 10.3389/fmicb.2022.883081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The marine environment is a potential natural reservoir of antimicrobial resistance genes (ARGs), subject to anthropogenic effluents (wastewater, industrial, and domestic), and known as a final receiving system. The aim of this study was to investigate the abundance and geographical distribution of the three blaTEM , sul1, and intI1 genes, proposed as indicators of contamination to assess the state of antimicrobial resistance in environmental settings, added to the tetA gene and the microbial population (tuf gene) in the English Channel and North Sea areas. Bacterial DNA was extracted from 36 seawater samples. The abundance of these genes was determined by quantitative PCR (qPCR) and was analyzed in association with environmental variables and geographical locations to determine potential correlations. The blaTEM and tetA genes were quantified in 0% and 2.8% of samples, respectively. The sul1 and intI1 genes were detected in 42% and 31% of samples, respectively, with an apparent co-occurrence in 19% of the samples confirmed by a correlation analysis. The absolute abundance of these genes was correlated with the microbial population, with results similar to the relative abundance. We showed that the sul1 and intI1 genes were positively correlated with dissolved oxygen and turbidity, while the microbial population was correlated with pH, temperature and salinity in addition to dissolved oxygen and turbidity. The three tetA, sul1, and intI1 genes were quantified in the same sample with high abundances, and this sample was collected in the West Netherlands coast (WN) area. For the first time, we have shown the impact of anthropogenic inputs (rivers, man-made offshore structures, and maritime activities) and environmental variables on the occurrence of three indicators of environmental contamination by antimicrobial resistance in the North Sea and English Channel seawaters.
Collapse
Affiliation(s)
- Erwan Bourdonnais
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France.,Univ. du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. de Picardie Jules Verne, Univ. de Liège, Junia, Boulogne-sur-Mer, France
| | - Darina Colcanap
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| | - Cédric Le Bris
- Univ. du Littoral Côte d'Opale, UMR 1158 BioEcoAgro, Institut Charles Viollette, Unité Sous Contrat ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. de Picardie Jules Verne, Univ. de Liège, Junia, Boulogne-sur-Mer, France
| | - Thomas Brauge
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| | - Graziella Midelet
- ANSES, Laboratoire de Sécurité des Aliments, Unité Bactériologie et Parasitologie des Produits de la Pêche et de l'Aquaculture, Boulogne-sur-Mer, France
| |
Collapse
|
16
|
Vegetables and Fruit as a Reservoir of β-Lactam and Colistin-Resistant Gram-Negative Bacteria: A Review. Microorganisms 2021; 9:microorganisms9122534. [PMID: 34946136 PMCID: PMC8708060 DOI: 10.3390/microorganisms9122534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Antibacterial resistance is one of the 2019 World Health Organization’s top ten threats to public health worldwide. Hence, the emergence of β-lactam and colistin resistance among Gram-negative bacteria has become a serious concern. The reservoirs for such bacteria are increasing not only in hospital settings but in several other sources, including vegetables and fruit. In recent years, fresh produce gained important attention due to its consumption in healthy diets combined with a low energy density. However, since fresh produce is often consumed raw, it may also be a source of foodborne disease and a reservoir for antibiotic resistant Gram-negative bacteria including those producing extended-spectrum β-lactamase, cephalosporinase and carbapenemase enzymes, as well as those harboring the plasmid-mediated colistin resistance (mcr) gene. This review aims to provide an overview of the currently available scientific literature on the presence of extended-spectrum β-lactamases, cephalosporinase, carbapenemase and mcr genes in Gram-negative bacteria in vegetables and fruit with a focus on the possible contamination pathways in fresh produce.
Collapse
|
17
|
Celejewski-Marciniak P, Wolinowska R, Wróblewska M. Molecular Characterization of Class 1, 2 and 3 Integrons in Serratia spp. Clinical Isolates in Poland - Isolation of a New Plasmid and Identification of a Gene for a Novel Fusion Protein. Infect Drug Resist 2021; 14:4601-4610. [PMID: 34764657 PMCID: PMC8575446 DOI: 10.2147/idr.s325943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Gram-negative rods of the genus Serratia play an increasing role as etiological agents of healthcare-associated infections (HAI) in humans. These bacteria are characterized by natural and acquired resistance to several groups of antibacterial agents. The aim of the study was to characterize class 1, 2 and 3 integrons in the clinical isolates of Serratia spp. in Poland. Methods The study comprised 112 clinical strains of Serratia, isolated from patients hospitalized in Poland in 2010-2012. Identification of strains was confirmed using MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) system. Detection of class 1, 2 and 3 integrase DNA sequence was performed by multiplex-PCR. Amplicons obtained in the PCR reactions were purified and then sequenced bidirectionally. Results Among the analyzed strains, Serratia marcescens was a predominant species (103/112, 92.0%). All three classes of integrase DNA sequence were detected in the analyzed strains of Serratia spp. DNA sequence of class 3 integron, besides integrase gene, revealed three gene cassettes (dfrB3, bla GES-7,bla OXA/aac(6')-Ib-cr). BLAST analysis of DNA sequence revealed that class 3 integron was carried on 9448 bp plasmid which was named pPCMI3 - whole sequence of its DNA was submitted to GenBank NCBI (National Center for Biotechnology Information) - NCBI MH569711. Conclusion In this study, we identified a new plasmid pPCMI3 harboring class 3 integron. This is the first report of a gene oxa/aac(6')-Ib-cr coding for a novel fusion protein, which consists of OXA β-lactamase and acetyltransferase aac(6')-Ib-cr. In the analyzed strains, class 1 and 2 integrons were also detected. Among the strains with class 1 integron, nine contained cassette array 5'CS-aadA2-ORF-dfrA12-3'CS, and two - cassette array 5'CS-aacC1-ORF-ORF-aadA1-3'CS, which were not previously reported in Serratia spp.
Collapse
Affiliation(s)
| | - Renata Wolinowska
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marta Wróblewska
- Department of Dental Microbiology, Medical University of Warsaw, Warsaw, Poland.,Department of Microbiology, Central Clinical Hospital, University Clinical Centre, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
18
|
Richter L, du Plessis EM, Duvenage S, Allam M, Ismail A, Korsten L. Whole Genome Sequencing of Extended-Spectrum- and AmpC- β-Lactamase-Positive Enterobacterales Isolated From Spinach Production in Gauteng Province, South Africa. Front Microbiol 2021; 12:734649. [PMID: 34659162 PMCID: PMC8517129 DOI: 10.3389/fmicb.2021.734649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
The increasing occurrence of multidrug-resistant (MDR) extended-spectrum β-lactamase- (ESBL) and/or AmpC β-lactamase- (AmpC) producing Enterobacterales in irrigation water and associated irrigated fresh produce represents risks related to the environment, food safety, and public health. In South Africa, information about the presence of ESBL/AmpC-producing Enterobacterales from non-clinical sources is limited, particularly in the water-plant-food interface. This study aimed to characterize 19 selected MDR ESBL/AmpC-producing Escherichia coli (n=3), Klebsiella pneumoniae (n=5), Serratia fonticola (n=10), and Salmonella enterica (n=1) isolates from spinach and associated irrigation water samples from two commercial spinach production systems within South Africa, using whole genome sequencing (WGS). Antibiotic resistance genes potentially encoding resistance to eight different classes were present, with bla CTX-M-15 being the dominant ESBL encoding gene and bla ACT-types being the dominant AmpC encoding gene detected. A greater number of resistance genes across more antibiotic classes were seen in all the K. pneumoniae strains, compared to the other genera tested. From one farm, bla CTX-M-15-positive K. pneumoniae strains of the same sequence type 985 (ST 985) were present in spinach at harvest and retail samples after processing, suggesting successful persistence of these MDR strains. In addition, ESBL-producing K. pneumoniae ST15, an emerging high-risk clone causing nosocomical outbreaks worldwide, was isolated from irrigation water. Known resistance plasmid replicon types of Enterobacterales including IncFIB, IncFIA, IncFII, IncB/O, and IncHI1B were observed in all strains following analysis with PlasmidFinder. However, bla CTX-M-15 was the only β-lactamase resistance gene associated with plasmids (IncFII and IncFIB) in K. pneumoniae (n=4) strains. In one E. coli and five K. pneumoniae strains, integron In191 was observed. Relevant similarities to human pathogens were predicted with PathogenFinder for all 19 strains, with a confidence of 0.635-0.721 in S. fonticola, 0.852-0.931 in E. coli, 0.796-0.899 in K. pneumoniae, and 0.939 in the S. enterica strain. The presence of MDR ESBL/AmpC-producing E. coli, K. pneumoniae, S. fonticola, and S. enterica with similarities to human pathogens in the agricultural production systems reflects environmental and food contamination mediated by anthropogenic activities, contributing to the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Loandi Richter
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Erika M. du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Stacey Duvenage
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
- Department of Science and Innovation, National Research Foundation Centre of Excellence in Food Security, Pretoria, South Africa
| |
Collapse
|
19
|
Rincón VMV, Neelam DK. An overview on endophytic bacterial diversity habitat in vegetables and fruits. Folia Microbiol (Praha) 2021; 66:715-725. [PMID: 34259998 DOI: 10.1007/s12223-021-00896-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023]
Abstract
Nowadays, scientific research revolution is going on in many areas, and the human health is one of them. However, in the earlier studies, it was observed that most of the people health in the world affects by consumptions of contaminated food which is dangerous for human health and country economy. Recent studies showed that the fresh vegetables and fruits are the major habitat for endophytic bacterial communities. Salmonella and Escherichia coli both are the very common bacteria founds in fresh vegetables and fruits. Generally, many people eat vegetables and fruits without cooking (in the form of salad). The continued assumption of such food increases the health risk factor for foodborne diseases. So, from the last decades, many researchers working to understand about the relationship of endophytic microbes with plants either isolated bacteria are pathogenic or nonpathogenic. Moreover, most of the endophytes were identified by using 16S rRNA sequencing method. Hence, this review elaborates on the differences and similarities between nonpathogenic and pathogenic endophytes in terms of host plant response, colonization strategy, and genome content. Furthermore, it is emphasized on the environmental effects and biotic interactions within plant microbiota that influence pathogenesis and the pathogenesis.
Collapse
Affiliation(s)
| | - Deepesh Kumar Neelam
- Department of Microbiology, Faculty of Science, JECRC University, Ramchandrapura Industrial Area, Vidhani, Sitapura Extension, Jaipur, Rajasthan, 303905, India.
| |
Collapse
|
20
|
Characterization of Integrons and Quinolone Resistance in Clinical Escherichia coli Isolates in Mansoura City, Egypt. Int J Microbiol 2021; 2021:6468942. [PMID: 34527054 PMCID: PMC8437661 DOI: 10.1155/2021/6468942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli is a common pathogen in both humans and animals. Quinolones are used to treat infections caused by Gram-negative bacteria, but resistance genes emerged. Only scarce studies investigated the association between plasmid-mediated quinolone resistance (PMQR) genes and integrons in clinical isolates of E. coli. The current study investigated the prevalence of quinolone resistance and integrons among 134 clinical E. coli isolates. Eighty (59.70%) isolates were quinolone-resistant, and 60/134 (44.77%) isolates were integron positive with the predominance of class I integrons (98.33%). There was a significant association between quinolone resistance and the presence of integrons (P < 0.0001). Isolates from Urology and Nephrology Center and Gastroenterology Hospital were significantly quinolone-resistant and integron positive (P ≤ 0.0005). Detection of PMQR genes on plasmids of integron-positive isolates showed that the active efflux pump genes oqxAB and qepA had the highest prevalence (72.22%), followed by the aminoglycoside acetyltransferase gene (aac(6′)-Ib-cr, 66.67%) and the quinolone resistance genes (qnr, 61.11%). Amplification and sequencing of integrons' variable regions illustrated that no quinolone resistance genes were detected, and the most predominant gene cassettes were for trimethoprim and aminoglycoside resistance including dfrA17, dfrB4, and dfrA17-aadA5. In conclusion, this study reported the high prevalence of PMQR genes and integrons among clinical E. coli isolates. Although PMQR genes are not cassette-born, they were associated with integrons' presence, which contributes to the widespread of quinolone resistance in Egypt.
Collapse
|
21
|
Gogry FA, Siddiqui MT, Sultan I, Haq QMR. Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Front Med (Lausanne) 2021; 8:677720. [PMID: 34476235 PMCID: PMC8406936 DOI: 10.3389/fmed.2021.677720] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Colistin regained global interest as a consequence of the rising prevalence of multidrug-resistant Gram-negative Enterobacteriaceae. In parallel, colistin-resistant bacteria emerged in response to the unregulated use of this antibiotic. However, some Gram-negative species are intrinsically resistant to colistin activity, such as Neisseria meningitides, Burkholderia species, and Proteus mirabilis. Most identified colistin resistance usually involves modulation of lipid A that decreases or removes early charge-based interaction with colistin through up-regulation of multistep capsular polysaccharide expression. The membrane modifications occur by the addition of cationic phosphoethanolamine (pEtN) or 4-amino-l-arabinose on lipid A that results in decrease in the negative charge on the bacterial surface. Therefore, electrostatic interaction between polycationic colistin and lipopolysaccharide (LPS) is halted. It has been reported that these modifications on the bacterial surface occur due to overexpression of chromosomally mediated two-component system genes (PmrAB and PhoPQ) and mutation in lipid A biosynthesis genes that result in loss of the ability to produce lipid A and consequently LPS chain, thereafter recently identified variants of plasmid-borne genes (mcr-1 to mcr-10). It was hypothesized that mcr genes derived from intrinsically resistant environmental bacteria that carried chromosomal pmrC gene, a part of the pmrCAB operon, code three proteins viz. pEtN response regulator PmrA, sensor kinase protein PmrAB, and phosphotransferase PmrC. These plasmid-borne mcr genes become a serious concern as they assist in the dissemination of colistin resistance to other pathogenic bacteria. This review presents the progress of multiple strategies of colistin resistance mechanisms in bacteria, mainly focusing on surface changes of the outer membrane LPS structure and other resistance genetic determinants. New handier and versatile methods have been discussed for rapid detection of colistin resistance determinants and the latest approaches to revert colistin resistance that include the use of new drugs, drug combinations and inhibitors. Indeed, more investigations are required to identify the exact role of different colistin resistance determinants that will aid in developing new less toxic and potent drugs to treat bacterial infections. Therefore, colistin resistance should be considered a severe medical issue requiring multisectoral research with proper surveillance and suitable monitoring systems to report the dissemination rate of these resistant genes.
Collapse
Affiliation(s)
| | | | - Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
22
|
Molina-Mora JA, Chinchilla-Montero D, García-Batán R, García F. Genomic context of the two integrons of ST-111 Pseudomonas aeruginosa AG1: A VIM-2-carrying old-acquaintance and a novel IMP-18-carrying integron. INFECTION GENETICS AND EVOLUTION 2021; 89:104740. [PMID: 33516973 DOI: 10.1016/j.meegid.2021.104740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/28/2020] [Accepted: 01/23/2021] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa is an opportunist and versatile organism responsible for infections mainly in immunocompromised hosts. This pathogen has high intrinsic resistance to most antimicrobials. P. aeruginosa AG1 (PaeAG1) is a Costa Rican high-risk ST-111 strain with resistance to multiple antibiotics, including carbapenems, due to the activity of VIM-2 and IMP-18 metallo-β-lactamases (MBLs). These genes are harbored in two class 1 integrons located inone out of the 57 PaeAG1 genomic islands. However, the genomic context associated to these determinants in PaeAG1 and other P. aeruginosa strains is unclear. Thus, we first assessed the transcriptional activity of VIM-2 and IMP-18 genes when exposed to imipenem (a carbapenem) by RT-qPCR. To select related genomes to PaeAG1, we implemented a pan-genome analysis to define and up-date the phylogenetic relationship among complete P. aeruginosa genomes. We also studied the PaeAG1 genomic islands content in the related strains and finally we described the architecture and possible evolutionary steps of the genomic regions around the VIM-2- and IMP-18-carrying integrons. Expression of VIM-2 and IMP-18 genes was demonstrated to be induced after imipenem exposure. In a subsequent comparative genomics analysis with 211 strains, the P. aeruginosa pan-genome revealed that complete genome sequences are able to separate clones by MLST profile, including a clear ST-111 cluster with PaeAG1. The PaeAG1 genomic islands were found to define a diverse presence/absence pattern among related genomes. Finally, landscape reconstruction of genomic regions showed that VIM-2-carrying integron (In59-like) is an old-acquaintance element harbored in the same known region found in other two ST-111 strains. Also, PaeAG1 has an exclusive genomic region containing a novel IMP-18-carrying integron (registered as In1666), with an arrangement never reported before. Altogether, we provide new insights about the genomic determinants associated with the resistance to carbapenems in this high-risk P. aeruginosa using comparative genomics.
Collapse
Affiliation(s)
| | | | - Raquel García-Batán
- Research Center in Tropical Diseases (CIET), University of Costa Rica, Costa Rica.
| | - Fernando García
- Research Center in Tropical Diseases (CIET), University of Costa Rica, Costa Rica.
| |
Collapse
|
23
|
Phenotypic and genotypic detection of antibiotic-resistant bacteria in fresh fruit juices from a public hospital in Rio de Janeiro. Arch Microbiol 2021; 203:1471-1475. [PMID: 33398401 DOI: 10.1007/s00203-020-02139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Gram-negative bacteria are worrisome because they are becoming resistant to many antibiotic available options, mainly in hospital environment. Several studies have noted the presence of bacteria producing extended-spectrum beta-lactamase, with the presence of antibiotic-resistance genes in fresh vegetables and fruits. This study aimed to detect the presence of phenotypic and genotypic resistance in eight samples of fresh fruit juices served to patients admitted to a hospital in Rio de Janeiro. The growth of microorganisms on MacConkey and XLD agar was carried out to obtain a "pool" of Gram-negative bacteria. The disk diffusion test and the polymerase chain reaction were performed to detect the phenotypic and genotypic resistance of Gram-negative bacteria to the tested antibiotics. The multidrug resistance was detected in all samples and the shv, tem, ctx, tetA, tetB and oxa- 48 genes were found in the samples, including the presence of class 2 and 3 integrons. We can conclude that the selection methodology allows the detection of a greater number of genes and this found warns about the risk of making these foods available to patients in hospitals.
Collapse
|
24
|
Cho GS, Stein M, Fiedler G, Igbinosa EO, Koll LP, Brinks E, Rathje J, Neve H, Franz CMAP. Polyphasic study of antibiotic-resistant enterobacteria isolated from fresh produce in Germany and description of Enterobacter vonholyi sp. nov. isolated from marjoram and Enterobacter dykesii sp. nov. isolated from mung bean sprout. Syst Appl Microbiol 2020; 44:126174. [PMID: 33370657 DOI: 10.1016/j.syapm.2020.126174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/29/2022]
Abstract
Forty-two antibiotic-resistant enterobacteria strains were isolated from fresh produce obtained from the northern German retail market. A polyphasic characterization based on both phenotypic and genotypic methods was used to identify predominant strains as Citrobacter (C.) gillenii, C. portucalensis, Enterobacter (En.) ludwigii, Escherichia (E.) coli and Klebsiella (K.) pneumoniae. 38.1% of the enterobacteria strains were resistant to tetracycline, while 23.8% and 9.5% of strains were resistant to streptomycin and chloramphenicol, respectively. A high percentage of Klebsiella (100%), Enterobacter (57.1%) and Citrobacter (42.9%) strains were also resistant to ampicillin, with some strains showing multiple resistances. For unequivocal species identification, the genomes of thirty strains were sequenced. Multilocus sequence analysis, average nucleotide identity and digital DNA-DNA hybridization showed that Enterobacter strains E1 and E13 were clearly clustered apart from Enterobacter species type strains below the species delineation cutoff values. Thus, strains E1T (=DSM 111347T, LMG 31875T) represents a novel species proposed as Enterobacter dykesii sp. nov., while strain E13T (=DSM 110788T, LMG 31764T) represent a novel species proposed as Enterobacter vonholyi sp. nov. Strains often possessed different serine β-lactamase genes, tet(A) and tet(D) tetracycline resistance genes and other acquired antibiotic resistance genes. Typical plasmid replicon types were determined. This study thus accurately identified the enterobacteria from fresh produce as species belonging to the genera Citrobacter, Enterobacter, Escherichia and Klebsiella, but also showed that these can carry potentially transferable antibiotic resistance genes and may thus contribute to the spread of these via the food route.
Collapse
Affiliation(s)
- Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Maria Stein
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Gregor Fiedler
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Etinosa O Igbinosa
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany; Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Linnéa Philine Koll
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Erik Brinks
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Jana Rathje
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut Kiel, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany.
| |
Collapse
|
25
|
Zhang S, Abbas M, Rehman MU, Huang Y, Zhou R, Gong S, Yang H, Chen S, Wang M, Cheng A. Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: A risk to human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115260. [PMID: 32717638 DOI: 10.1016/j.envpol.2020.115260] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
With the induction of various emerging environmental contaminants such as antibiotic resistance genes (ARGs), environment is considered as a key indicator for the spread of antimicrobial resistance (AMR). As such, the ARGs mediated environmental pollution raises a significant public health concern worldwide. Among various genetic mechanisms that are involved in the dissemination of ARGs, integrons play a vital role in the dissemination of ARGs. Integrons are mobile genetic elements that can capture and spread ARGs among environmental settings via transmissible plasmids and transposons. Most of the ARGs are found in Gram-negative bacteria and are primarily studied for their potential role in antibiotic resistance in clinical settings. As one of the most common microorganisms, Escherichia coli (E. coli) is widely studied as an indicator carrying drug-resistant genes, so this article aims to provide an in-depth study on the spread of ARGs via integrons associated with E. coli outside clinical settings and highlight their potential role as environmental contaminants. It also focuses on multiple but related aspects that do facilitate environmental pollution, i.e. ARGs from animal sources, water treatment plants situated at or near animal farms, agriculture fields, wild birds and animals. We believe that this updated study with summarized text, will facilitate the readers to understand the primary mechanisms as well as a variety of factors involved in the transmission and spread of ARGs among animals, humans, and the environment.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Muhammad Abbas
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China; Livestock and Dairy Development Department Lahore, Punjab, 54000, Pakistan
| | - Mujeeb Ur Rehman
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yahui Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Rui Zhou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Siyue Gong
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Hong Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Shuling Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
26
|
Molecular Screening of β-glucuronidase and Class 1 Integron of Escherichia coli from Ready-to-Eat Foods in Tiruchirappalli, Tamil Nadu. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ready-to-eat food products procured from different roadside shops in Tiruchirappalli, Tamil Nadu were screened for Escherichia coli. A total of 500 samples from 250 vegetable and 250 meat products were collected from different hotels, restaurants and street food vendors in Tiruchirappalli, Tamilnadu. Out of 500 ready-to-eat food samples, 162 (32.4%) E. coli strains were isolated. The ready-to-eat meat products had higher bacterial count than the vegetable food samples collected due to unhygienic handling, improper storage, inadequate temperature to maintain processed meat and improper cooking. Biochemically identified E. coli colonies were screened for housekeeping gene uidA and 139 (85.8%) E. coli isolates were confirmed to possess β-glucuronidase activity. In addition, antibiotic susceptibility assay was performed using 12 antibiotics. From 139 E. coli strains, 96 (69.1%) isolates showed multidrug resistance. Among them, 16.7% showed 100% resistance to all the antibiotics tested. Whereas, multidrug resistant E. coli isolates showed increased resistance (75.9%) to streptomycin followed by 70-50% level of resistance to ceftriaxone, ampicillin, cefixime, ciprofloxacin, tetracycline, gentamicin, doxycycline, co-trimoxazole, norfloxacin, ofloxacin and chloramphenicol. Furthermore, drug resistant E. coli isolates 56 (58.3%) were detected with the presence of intI1. The source of contamination was found to be water and human handling. Drinking water supply from corporation might have been contaminated with fecal waste source is being discharged into Cauvery river which might disseminate horizontal gene transfer.
Collapse
|
27
|
Piotrowska M, Dziewit L, Ostrowski R, Chmielowska C, Popowska M. Molecular Characterization and Comparative Genomics of IncQ-3 Plasmids Conferring Resistance to Various Antibiotics Isolated from a Wastewater Treatment Plant in Warsaw (Poland). Antibiotics (Basel) 2020; 9:antibiotics9090613. [PMID: 32957637 PMCID: PMC7557826 DOI: 10.3390/antibiotics9090613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
As small, mobilizable replicons with a broad host range, IncQ plasmids are widely distributed among clinical and environmental bacteria. They carry antibiotic resistance genes, and it has been shown that they confer resistance to β-lactams, fluoroquinolones, aminoglycosides, trimethoprim, sulphonamides, and tetracycline. The previously proposed classification system divides the plasmid group into four subgroups, i.e., IncQ-1, IncQ-2, IncQ-3, and IncQ-4. The last two subgroups have been poorly described so far. The aim of this study was to analyze five newly identified IncQ-3 plasmids isolated from a wastewater treatment plant in Poland and to compare them with all known plasmids belonging to the IncQ-3 subgroup whose sequences were retrieved from the NCBI database. The complete nucleotide sequences of the novel plasmids were annotated and bioinformatic analyses were performed, including identification of core genes and auxiliary genetic load. Furthermore, functional experiments testing plasmid mobility were carried out. Phylogenetic analysis based on three core genes (repA, mobA/repB, and mobC) revealed the presence of three main clusters of IncQ-3 replicons. Apart from having a highly conserved core, the analyzed IncQ-3 plasmids were vectors of antibiotic resistance genes, including (I) the qnrS2 gene that encodes fluoroquinolone resistance and (II) β-lactam, trimethoprim, and aminoglycoside resistance genes within integron cassettes.
Collapse
Affiliation(s)
- Marta Piotrowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Rafał Ostrowski
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Cora Chmielowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| |
Collapse
|
28
|
Richter L, du Plessis EM, Duvenage S, Korsten L. Occurrence, Phenotypic and Molecular Characterization of Extended-Spectrum- and AmpC- β-Lactamase Producing Enterobacteriaceae Isolated From Selected Commercial Spinach Supply Chains in South Africa. Front Microbiol 2020; 11:638. [PMID: 32351477 PMCID: PMC7176360 DOI: 10.3389/fmicb.2020.00638] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
The increasing occurrence of multidrug-resistant (MDR) extended-spectrum β-lactamase- (ESBL) and/or AmpC β-lactamase-producing Enterobacteriaceae in health care systems, the environment and fresh produce is a serious concern globally. Production practices, processing and subsequent consumption of contaminated raw fruit and vegetables represent a possible human transmission route. The purpose of this study was to determine the presence of ESBL/AmpC-producing Enterobacteriaceae in complete spinach supply chains and to characterize the isolated strains phenotypically (antimicrobial resistance profiles) and genotypically (ESBL/AmpC genetic determinants, detection of class 1, 2, and 3 integrons). Water, soil, fresh produce, and contact surface samples (n = 288) from two commercial spinach production systems were screened for ESBL/AmpC-producing Enterobacteriaceae. In total, 14.58% (42/288) of the samples were found to be contaminated after selective enrichment, plating onto chromogenic media and matrix-assisted laser desorption ionization time-of-flight mass spectrometry identity confirmation of presumptive ESBL/AmpC isolates. This included 15.28% (11/72) water and 12.12% (16/132) harvested- and processed spinach, while 25% (15/60) retail spinach samples were found to be contaminated with an increase in isolate abundance and diversity in both scenarios. Dominant species identified included Serratia fonticola (45.86%), Escherichia coli (20.83%), and Klebsiella pneumoniae (18.75%). In total, 48 (81.36%) isolates were phenotypically confirmed as ESBL/AmpC-producing Enterobacteriaceae of which 98% showed a MDR phenotype. Genotypic characterization (PCR of ESBL/AmpC resistance genes and integrons) further revealed the domination of the CTX-M Group 1 ESBL type, followed by TEM and SHV; whilst the CIT-type was the only plasmid-mediated AmpC genetic determinant detected. Integrons were detected in 79.17% (n = 38) of the confirmed ESBL/AmpC-producing isolates, of which we highlight the high prevalence of class 3 integrons, detected in 72.92% (n = 35) of the isolates, mostly in S. fonticola. Class 2 integrons were not detected in this study. This is the first report on the prevalence of ESBL/AmpC-producing Enterobacteriaceae isolated throughout commercial spinach production systems harboring class 1 and/or class 3 integrons in Gauteng Province, South Africa. The results add to the global knowledge base regarding the prevalence and characteristics of ESBL/AmpC-producing Enterobacteriaceae in fresh vegetables and the agricultural environment required for future risk analysis.
Collapse
Affiliation(s)
- Loandi Richter
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Erika M du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Stacey Duvenage
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa.,Department of Science and Technology-National Research Foundation Centre of Excellence in Food Security, Bellville, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa.,Department of Science and Technology-National Research Foundation Centre of Excellence in Food Security, Bellville, South Africa
| |
Collapse
|
29
|
Karimi Dehkordi M, Halaji M, Nouri S. Prevalence of class 1 integron in Escherichia coli isolated from animal sources in Iran: a systematic review and meta-analysis. Trop Med Health 2020; 48:16. [PMID: 32280298 PMCID: PMC7137206 DOI: 10.1186/s41182-020-00202-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/11/2020] [Indexed: 01/28/2023] Open
Abstract
Background Among the genetic elements, integrons may contribute to the widespread incidence and spreading of antibiotic resistance among Escherichia coli isolates. Accordingly, this review aims to investigate the prevalence of class 1 integron in E. coli isolated from animal sources in Iran. Methods This systematic literature search was performed from January 1, 2000 to the end of May 1, 2019. Then, publications that met our inclusion criteria were selected for data extraction and analysis. Also, the quality of included studies was independently assessed by two researchers based on the Joanna Briggs Institute. Meta-analysis was performed by the Comprehensive Meta-Analysis (CMA) software using the random effects model, Cochran’s Q, and I2 tests. Publication bias was estimated by funnel plot and Egger’s linear regression test. Results Based on inclusion criteria, five studies were included to meta-analysis. From those studies, the pooled prevalence of integrons was 33% (95% CI, 23.8–43.7%) ranging from 23.8 to 52.4%. There was a significant heterogeneity among the 5 studies (χ2 = 11.73; p < 0.019; I2 = 65.91%). Additionally, Begg’s and Egger’s tests were performed to quantitatively evaluate the publication biases. According to the results of Begg’s test (z = 1.22, p = 0.22) and Egger’s test (t = 3.03, p = 0.056), a significant publication bias was not observed. Conclusions Our finding revealed the relatively high prevalence of class 1 integrons among E. coli isolates. Moreover, there was a significant heterogeneity among studies and subgroup analysis also showed that there was no difference about prevalence of class 1 integrons among different sample source.
Collapse
Affiliation(s)
- Maryam Karimi Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehrdad Halaji
- 2Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samereh Nouri
- 3Department of Microbiology, Clinical Laboratory of Al Zahra Medical Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
30
|
Plasmid-Mediated Colistin Resistance ( mcr-1) in Escherichia coli from Non-Imported Fresh Vegetables for Human Consumption in Portugal. Microorganisms 2020; 8:microorganisms8030429. [PMID: 32197505 PMCID: PMC7143947 DOI: 10.3390/microorganisms8030429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, we report the presence of the plasmid-mediated colistin resistance (PMCR)-encoding gene mcr-1 in an Escherichia coli isolate, INSali25, recovered from lettuce produced and marketed in Portugal. Colistin MIC from the vegetable E. coli isolate-determined by microdilution broth method according to EUCAST guidelines-revealed a non-wild-type phenotype of colistin (MIC 16 mg/L). To understand the genetic background of E. coli INSali25, we performed whole genome sequencing. Plasmid sequencing was also performed after plasmid DNA extraction from the transconjugant TcINSali25 (mcr-1). Directed bioinformatics analysis identified the mcr-1 gene in a 39,998 bp length contig, with an upstream region including the antibiotic resistance gene blaTEM-1 in a partial transposon Tn2, truncated by the insertion sequence IS26 and showing >99% identity with previously described mcr-1-harboring IncHI2 plasmids. Further in silico analysis showed the presence of additional genes conferring resistance to β-lactams (blaTEM-1), aminoglycosides (aadA1, aph(4)-Ia, aph(6)-Id, aac(3)-Iv), macrolides (mdf(A)-type), phenicol (floR-type), tetracycline (tetA), and sulphonamides (sul2). INSali25 isolate belonged to the ST1716 lineage and showed the fimH54 and fumC27 alleles. Lettuce is a vegetable that is commonly consumed fresh and not subjected to any cooking process, which may amplify human food safety risks. Moreover, the occurrence of plasmid-mediated colistin resistance in a sample that was not imported and was acquired in a large retail store reinforces the widespread distribution of mcr-1.
Collapse
|
31
|
Occurrence and Characteristics of Mobile Colistin Resistance ( mcr) Gene-Containing Isolates from the Environment: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031028. [PMID: 32041167 PMCID: PMC7036836 DOI: 10.3390/ijerph17031028] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023]
Abstract
The emergence and spread of mobile colistin (COL) resistance (mcr) genes jeopardize the efficacy of COL, a last resort antibiotic for treating deadly infections. COL has been used in livestock for decades globally. Bacteria have mobilized mcr genes (mcr-1 to mcr-9). Mcr-gene-containing bacteria (MGCB) have disseminated by horizontal/lateral transfer into diverse ecosystems, including aquatic, soil, botanical, wildlife, animal environment, and public places. The mcr-1, mcr-2, mcr-3, mcr-5, mcr-7, and mcr-8 have been detected in isolates from and/or directly in environmental samples. These genes are harboured by Escherichia coli, Enterobacter, Klebsiella, Proteus, Salmonella, Citrobacter, Pseudomonas, Acinetobacter, Kluyvera, Aeromonas, Providencia, and Raulotella isolates. Different conjugative and non-conjugative plasmids form the backbones for mcr in these isolates, but mcr have also been integrated into the chromosome of some strains. Insertion sequences (IS) (especially ISApl1) located upstream or downstream of mcr, class 1–3 integrons, and transposons are other drivers of mcr in the environment. Genes encoding multi-/extensive-drug resistance and virulence are often co-located with mcr on plasmids in environmental isolates. Transmission of mcr to/among environmental strains is clonally unrestricted. Contact with the mcr-containing reservoirs, consumption of contaminated animal-/plant-based foods or water, international animal-/plant-based food trades and travel, are routes for transmission of MGCB.
Collapse
|
32
|
Reid CJ, Blau K, Jechalke S, Smalla K, Djordjevic SP. Whole Genome Sequencing of Escherichia coli From Store-Bought Produce. Front Microbiol 2020; 10:3050. [PMID: 32063888 PMCID: PMC7000624 DOI: 10.3389/fmicb.2019.03050] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
The role of agriculture in the transfer of drug resistant pathogens to humans is widely debated and poorly understood. Escherichia coli is a valuable indicator organism for contamination and carriage of antimicrobial resistance (AMR) in foods. Whilst whole genome sequences for E. coli from animals and associated meats are common, sequences from produce are scarce. Produce may acquire drug resistant E. coli from animal manure fertilizers, contaminated irrigation water and wildlife, particularly birds. Whole genome sequencing was used to characterize 120 tetracycline (TET) resistant E. coli from store-bought, ready-to-eat cilantro, arugula and mixed salad from two German cities. E. coli were recovered on the day of purchase and after 7 days of refrigeration. Cilantro was far more frequently contaminated with TET-resistant E. coli providing 102 (85%) sequenced strains. Phylogroup B1 dominated the collection (n = 84, 70%) with multi-locus sequence types B1-ST6186 (n = 37, 31%), C-ST165 (n = 17, 14%), B1-ST58 (n = 14, 12%), B1-ST641 (n = 8, 7%), and C-ST88 (n = 5, 4%) frequently identified. Notably, seven strains of diverse sequence type (ST) carried genetic indicators of ColV virulence plasmid carriage. A number of previously identified and novel integrons associated with insertion elements including IS26 were also identified. Storage may affect the lineages of E. coli isolated, however further studies are needed. Our study indicates produce predominantly carry E. coli with a commensal phylogroup and a variety of AMR and virulence-associated traits. Genomic surveillance of bacteria that contaminate produce should be a matter of public health importance in order to develop a holistic understanding of the environmental dimensions of AMR.
Collapse
Affiliation(s)
- Cameron J. Reid
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Khald Blau
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Sven Jechalke
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- Institute for Phytopathology, Justus Liebig University Giessen, Giessen, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Steven P. Djordjevic
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
33
|
Stefaniuk EM, Tyski S. Colistin Resistance in Enterobacterales Strains - A Current View. Pol J Microbiol 2019; 68:417-427. [PMID: 31880886 PMCID: PMC7260631 DOI: 10.33073/pjm-2019-055] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Colistin is a member of cationic polypeptide antibiotics known as polymyxins. It is widely used in animal husbandry, plant cultivation, animal and human medicine and is increasingly used as one of the last available treatment options for patients with severe infections with carbapenem-resistant Gram-negative bacilli. Due to the increased use of colistin in treating infections caused by multidrug-resistant (MDR) bacteria, the resistance to this antibiotic ought to be monitored. Bacterial resistance to colistin may be encoded on transposable genetic elements (e.g. plasmids with the mcr genes). Thus far, nine variants of the mcr gene, mcr-1 – mcr-9, have been identified. Chromosomal resistance to colistin is associated with the modification of lipopolysaccharide (LPS). Various methods, from classical microbiology to molecular biology methods, are used to detect the colistin-resistant bacterial strains and to identify resistance mechanisms. The broth dilution method is recommended for susceptibility testing of bacteria to colistin.
Collapse
Affiliation(s)
- Elżbieta M Stefaniuk
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland ; Department of Pharmaceutical and Microbiology, Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
34
|
The Resistome, Mobilome, Virulome and Phylogenomics of Multidrug-Resistant Escherichia coli Clinical Isolates from Pretoria, South Africa. Sci Rep 2019; 9:16457. [PMID: 31712587 PMCID: PMC6848087 DOI: 10.1038/s41598-019-52859-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Antibiotic-resistant Escherichia coli is a common occurrence in food, clinical, community and environmental settings worldwide. The resistome, mobilome, virulome and phylogenomics of 20 multidrug resistant (MDR) clinical E. coli isolates collected in 2013 from Pretoria, South Africa, were characterised. The isolates were all extended-spectrum β-lactamase producers, harbouring CTX-M (n = 16; 80%), TEM-1B (n = 10; 50%) and OXA (n = 12, 60%) β-lactamases alongside genes mediating resistance to fluoroquinolones, aminoglycosides, tetracyclines etc. Most resistance determinants were found on contigs containing IncF plasmid replicons and bracketed by composite transposons (Tn3), diverse ISs and class 1 integrons (In13, In54, In369, and In467). Gene cassettes such as blaOXA,dfrA5-psp-aadA2-cmlA1a-aadA1-qac and estX3-psp-aadA2-cmlA1a-aadA1a-qac were encompassed by Tn3 and ISs; several isolates had same or highly similar genomic antibiotic resistance islands. ST131 (n = 10), ST617 (n = 2) and singletons of ST10, ST73, ST95, ST410, ST648, ST665, ST744 and ST998 clones were phylogenetically related to clinical (human and animal) strains from Egypt, Kenya, Niger, Nigeria, Tanzania, and UK. A rich repertoire of virulence genes, including iss, gad and iha were identified. MDR E. coli harbouring chromosomal and plasmid-borne resistance genes in same and multiple clones exist in South Africa, which is very worrying for clinical epidemiology and infectious diseases management.
Collapse
|
35
|
Liu BT, Song FJ. Emergence of two Escherichia coli strains co-harboring mcr-1 and bla NDM in fresh vegetables from China. Infect Drug Resist 2019; 12:2627-2635. [PMID: 31692544 PMCID: PMC6711560 DOI: 10.2147/idr.s211746] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/30/2019] [Indexed: 01/01/2023] Open
Abstract
Background The concurrence of mcr and carbapenemase genes among Enterobacteriaceae has been a great clinical concern. In our study, we aimed to investigate the prevalence of mcr-positive carbapenem-resistant Enterobacteriaceae (CRE) in fresh vegetables and shed light on the possibility of transmission of mcr-positive CRE via fresh vegetables. Methods In this study, 712 fresh vegetable samples from 10 provinces in China were collected between May 2017 and Dec 2018 and were screened for mcr and carbapenemase genes. Antibiotic susceptibilities for isolates co-harboring carbapenemase genes and mcr were determined by an agar dilution or a broth microdilution method. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) analysis were also performed. Transferability of the carbapenemase/mcr-bearing plasmids was determined by conjugation, replicon typing and S1-PFGE-Southern blotting. The sequences of these plasmids were analyzed by using whole-genome sequencing with Illumina Hiseq platform. Results Two E. coli isolates concomitantly carrying mcr-1 and blaNDM-5/9 from leaf rape and spinach, respectively, were found and both isolates showed multidrug resistance. Notably, mcr-1-positive 690 harboring blaNDM-5 and 701 carrying blaNDM-9 belonged to ST156 and ST2847, respectively, similar to the prevalent MLST types of E. coli co-carrying mcr-1 and blaNDM from avian in our previous study. mcr-1 was on ~33-kb IncX4 plasmid or ~60-kb IncI2 plasmid, while blaNDM-5/9 was on ~46-kb IncX3 plasmid or ~120-kb untypable plasmid. The plasmids were highly similar to those from animals and clinical patients reported in various countries. Conclusion:E. coli isolates concomitantly carrying mcr-1 and blaNDM-5/9 in fresh vegetables may serve as a direct source of pathogens in humans, and such discovery in fresh vegetables emphasizes the importance of prompt surveillance and intervention in limiting the spread of E. coli co-carrying blaNDM and mcr-1. To our knowledge, this is the first report of Enterobacteriaceae co-carrying blaNDM and mcr-1 in fresh vegetables.
Collapse
Affiliation(s)
- Bao-Tao Liu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Feng-Jing Song
- Institute of Plant Protection, Qingdao Academy of Agricultural Sciences, Qingdao, People's Republic of China
| |
Collapse
|
36
|
Hölzel CS, Tetens JL, Schwaiger K. Unraveling the Role of Vegetables in Spreading Antimicrobial-Resistant Bacteria: A Need for Quantitative Risk Assessment. Foodborne Pathog Dis 2019; 15:671-688. [PMID: 30444697 PMCID: PMC6247988 DOI: 10.1089/fpd.2018.2501] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In recent years, vegetables gain consumer attraction due to their reputation of being healthy in combination with low energy density. However, since fresh produce is often eaten raw, it may also be a source for foodborne illness. The presence of antibiotic-resistant bacteria might pose a particular risk to the consumer. Therefore, this review aims to present the current state of knowledge concerning the exposure of humans to antibiotic-resistant bacteria via food of plant origin for quantitative risk assessment purposes. The review provides a critical overview of available information on hazard identification and characterization, exposure assessment, and risk prevention with special respect to potential sources of contamination and infection chains. Several comprehensive studies are accessible regarding major antimicrobial-resistant foodborne pathogens (e.g., Salmonella spp., Listeria spp., Bacillus cereus, Campylobacter spp., Escherichia coli) and other bacteria (e.g., further Enterobacteriaceae, Pseudomonas spp., Gram-positive cocci). These studies revealed vegetables to be a potential—although rare—vector for extended-spectrum beta-lactamase-producing Enterobacteriaceae, mcr1-positive E. coli, colistin- and carbapenem-resistant Pseudomonas aeruginosa, linezolid-resistant enterococci and staphylococci, and vancomycin-resistant enterococci. Even if this provides first clues for assessing the risk related to vegetable-borne antimicrobial-resistant bacteria, the literature research reveals important knowledge gaps affecting almost every part of risk assessment and management. Especially, the need for (comparable) quantitative data as well as data on possible contamination sources other than irrigation water, organic fertilizer, and soil becomes obvious. Most crucially, dose–response studies would be needed to convert a theoretical “risk” (e.g., related to antimicrobial-resistant commensals and opportunistic pathogens) into a quantitative risk estimate.
Collapse
Affiliation(s)
- Christina Susanne Hölzel
- 1 Animal Hygiene and Animal Health Management, Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel (CAU) , Kiel, Germany
| | - Julia Louisa Tetens
- 1 Animal Hygiene and Animal Health Management, Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel (CAU) , Kiel, Germany
| | - Karin Schwaiger
- 2 Department of Veterinary Sciences, Institute of Food Safety, Ludwig-Maximilians-University Munich (LMU) , Munich, Germany
| |
Collapse
|
37
|
Kim DW, Thawng CN, Lee K, Wellington EMH, Cha CJ. A novel sulfonamide resistance mechanism by two-component flavin-dependent monooxygenase system in sulfonamide-degrading actinobacteria. ENVIRONMENT INTERNATIONAL 2019; 127:206-215. [PMID: 30928844 DOI: 10.1016/j.envint.2019.03.046] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 05/19/2023]
Abstract
Sulfonamide-degrading bacteria have been discovered in various environments, suggesting the presence of novel resistance mechanisms via drug inactivation. In this study, Microbacterium sp. CJ77 capable of utilizing various sulfonamides as a sole carbon source was isolated from a composting facility. Genome and proteome analyses revealed that a gene cluster containing a flavin-dependent monooxygenase and a flavin reductase was highly up-regulated in response to sulfonamides. Biochemical analysis showed that the two-component monooxygenase system was key enzymes for the initial cleavage of sulfonamides. Co-expression of the two-component system in Escherichia coli conferred decreased susceptibility to sulfamethoxazole, indicating that the genes encoding drug-inactivating enzymes are potential resistance determinants. Comparative genomic analysis revealed that the gene cluster containing sulfonamide monooxygenase (renamed as sulX) and flavin reductase (sulR) was highly conserved in a genomic island shared among sulfonamide-degrading actinobacteria, all of which also contained sul1-carrying class 1 integrons. These results suggest that the sulfonamide metabolism may have evolved in sulfonamide-resistant bacteria which had already acquired the class 1 integron under sulfonamide selection pressures. Furthermore, the presence of multiple insertion sequence elements and putative composite transposon structures containing the sulX gene cluster indicated potential mobilization. This is the first study to report that sulX responsible for both sulfonamide degradation and resistance is prevalent in sulfonamide-degrading actinobacteria and its genetic signatures indicate horizontal gene transfer of the novel resistance gene.
Collapse
Affiliation(s)
- Dae-Wi Kim
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong 17456, Republic of Korea
| | - Cung Nawl Thawng
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong 17456, Republic of Korea
| | - Kihyun Lee
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong 17456, Republic of Korea
| | | | - Chang-Jun Cha
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong 17456, Republic of Korea.
| |
Collapse
|
38
|
Guron GKP, Arango-Argoty G, Zhang L, Pruden A, Ponder MA. Effects of Dairy Manure-Based Amendments and Soil Texture on Lettuce- and Radish-Associated Microbiota and Resistomes. mSphere 2019; 4:e00239-19. [PMID: 31068435 PMCID: PMC6506619 DOI: 10.1128/msphere.00239-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/14/2019] [Indexed: 11/20/2022] Open
Abstract
Dairy cattle are routinely treated with antibiotics, and the resulting manure or composted manure is commonly used as a soil amendment for crop production, raising questions regarding the potential for antibiotic resistance to propagate from "farm to fork." The objective of this study was to compare the microbiota and "resistomes" (i.e., carriage of antibiotic resistance genes [ARGs]) associated with lettuce leaf and radish taproot surfaces grown in different soils amended with dairy manure, compost, or chemical fertilizer only (control). Manure was collected from antibiotic-free dairy cattle (DC) or antibiotic-treated dairy cattle (DA), with a portion composted for parallel comparison. Amendments were applied to loamy sand or silty clay loam, and lettuce and radishes were cultivated to maturity in a greenhouse. Metagenomes were profiled via shotgun Illumina sequencing. Radishes carried a distinct ARG composition compared to that of lettuce, with greater relative abundance of total ARGs. Taxonomic species richness was also greater for radishes by 1.5-fold. The resistomes of lettuce grown with DC compost were distinct from those grown with DA compost, DC manure, or fertilizer only. Further, compost applied to loamy sand resulted in twofold-greater relative abundance of total ARGs on lettuce than when applied to silty clay loam. The resistomes of radishes grown with biological amendments were distinct from the corresponding fertilizer controls, but effects of composting or antibiotic use were not measureable. Cultivation in loamy sand resulted in higher species richness for both lettuce and radishes than when grown in silty clay loam by 2.2-fold and 1.2-fold, respectively, when amended with compost.IMPORTANCE A controlled, integrated, and replicated greenhouse study, along with comprehensive metagenomic analysis, revealed that multiple preharvest factors, including antibiotic use during manure collection, composting, biological soil amendment, and soil type, influence vegetable-borne resistomes. Here, radishes, a root vegetable, carried a greater load of ARGs and species richness than lettuce, a leafy vegetable. However, the lettuce resistome was more noticeably influenced by upstream antibiotic use and composting. Network analysis indicated that cooccurring ARGs and mobile genetic elements were almost exclusively associated with conditions receiving raw manure amendments, suggesting that composting could alleviate the mobility of manure-derived resistance traits. Effects of preharvest factors on associated microbiota and resistomes of vegetables eaten raw are worthy of further examination in terms of potential influence on human microbiomes and spread of antibiotic resistance. This research takes a step toward identifying on-farm management practices that can help mitigate the spread of agricultural sources of antibiotic resistance.
Collapse
Affiliation(s)
- Giselle K P Guron
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, USA
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Monica A Ponder
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
39
|
López-Ochoa AJ, Sánchez-Alonso P, Vázquez-Cruz C, Horta-Valerdi G, Negrete-Abascal E, Vaca-Pacheco S, Mejía R, Pérez-Márquez M. Molecular and genetic characterization of the pOV plasmid from Pasteurella multocida and construction of an integration vector for Gallibacterium anatis. Plasmid 2019; 103:45-52. [PMID: 31022414 DOI: 10.1016/j.plasmid.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND The pOV plasmid isolated from the Pasteurella multocida strain PMOV is a new plasmid, and its molecular characterization is important for determining its gene content and its replicative properties in Pasteurellaceae family bacteria. METHODS Antimicrobial resistance mediated by the pOV plasmid was tested in bacteria. Purified pOV plasmid DNA was used to transform E. coli DH5α and Gallibacterium anatis 12656-12, including the pBluescript II KS(-) plasmid DNA as a control for genetic transformation. The pOV plasmid was digested with EcoRI for cloning fragments into the pBluescript II KS(-) vector to obtain constructs and to determine the full DNA sequence of pOV. RESULTS The pOV plasmid is 13.5 kb in size; confers sulfonamide, streptomycin and ampicillin resistance to P. multocida PMOV; and can transform E. coli DH5α and G. anatis 12656-12. The pOV plasmid was digested for the preparation of chimeric constructs and used to transform E. coli DH5α, conferring resistance to streptomycin (plasmid pSEP3), ampicillin (pSEP4) and sulfonamide (pSEP5) on the bacteria; however, similar to pBluescript II KS(-), the chimeric plasmids did not transform G. anatis 12656-12. A 1.4 kb fragment of the streptomycin cassette from pSEP3 was amplified by PCR and used to construct pSEP7, which in turn was used to interrupt a chromosomal DNA locus of G. anatis by double homologous recombination, introducing strA-strB into the G. anatis chromosome. CONCLUSION The pOV plasmid is a wide-range, low-copy-number plasmid that is able to replicate in some gamma-proteobacteria. Part of this plasmid was integrated into the G. anatis 12656-12 chromosome. This construct may prove to be a useful tool for genetic studies of G. anatis.
Collapse
Affiliation(s)
- Ana Jaqueline López-Ochoa
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México
| | - Patricia Sánchez-Alonso
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México
| | - Candelario Vázquez-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México.
| | - Guillermo Horta-Valerdi
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México
| | - Erasmo Negrete-Abascal
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala UNAM, Tlalnepantla, Edo de México 54090, México
| | - Sergio Vaca-Pacheco
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala UNAM, Tlalnepantla, Edo de México 54090, México
| | - Ricardo Mejía
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala UNAM, Tlalnepantla, Edo de México 54090, México
| | | |
Collapse
|
40
|
Liu BT, Li X, Zhang Q, Shan H, Zou M, Song FJ. Colistin-Resistant mcr-Positive Enterobacteriaceae in Fresh Vegetables, an Increasing Infectious Threat in China. Int J Antimicrob Agents 2019; 54:89-94. [PMID: 31034936 DOI: 10.1016/j.ijantimicag.2019.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022]
Abstract
The presence of mobilized colistin resistance (mcr) genes is a global concern. However, data concerning mcr in fresh vegetables, a reservoir for antibiotic resistance genes, are still rare. In this study, mcr genes were analysed in 528 vegetable samples from 53 supermarkets or farmer's markets in 23 cities of 9 provinces in China, and the mcr-positive Enterobacteriaceae were characterized. Nineteen (3.6%) samples carried one or more mcr-positive isolates, and the highest three detection rates were found in carrot, pak choi and green pepper. Twenty-four mcr-1-positive isolates (23 Escherichia coli and one Enterobacter cloacae) were obtained, and E. coli isolates showed high genetic diversity. Different multilocus sequence type (MLST) isolates were also observed within the same sample. All 24 isolates showed multidrug resistance, and 14 carried blaCTX-M genes. Most isolates harbored similarly conjugative IncX4-type (∼33 kb) or IncI2-type (∼60 kb) mcr-1-bearing plasmids. The sequenced prevalent IncX4 plasmid and IncI2 plasmid from tomato were similar to the relevant plasmids from animals and clinical isolates in various countries. mcr-1-bearing IncHI2/ST3 plasmid highly similar to that carrying 14 resistance genes from E. coli of chicken was also observed. In conclusion, a high prevalence of mcr-1 in fresh vegetables was found in China, and the dissemination of mcr-1 was mediated by similar IncX4 or IncI2 plasmids. The plasmids from vegetables showed high similarity to plasmids from clinical isolates, indicating MCR-1-producers in ready-to-eat vegetables may pose a huge threat to public health and measures need to be taken to ensure food safety.
Collapse
Affiliation(s)
- Bao-Tao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.
| | - Xuyong Li
- College of Agricultural, Liaocheng University, Liaocheng, China
| | - Qidi Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.
| | - Feng-Jing Song
- Qingdao Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
41
|
Peirano G, Matsumura Y, Adams MD, Bradford P, Motyl M, Chen L, Kreiswirth BN, Pitout JDD. Genomic Epidemiology of Global Carbapenemase-Producing Enterobacter spp., 2008-2014. Emerg Infect Dis 2019; 24:1010-1019. [PMID: 29774858 PMCID: PMC6004858 DOI: 10.3201/eid2406.171648] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We performed whole-genome sequencing on 170 clinical carbapenemase-producing Enterobacter spp. isolates collected globally during 2008-2014. The most common carbapenemase was VIM, followed by New Delhi metallo-β-lactamase (NDM), Klebsiella pneumoniae carbapenemase, oxacillin 48, and IMP. The isolates were of predominantly 2 species (E. xiangfangensis and E. hormaechei subsp. steigerwaltii) and 4 global clones (sequence type [ST] 114, ST93, ST90, and ST78) with different clades within ST114 and ST90. Particular genetic structures surrounding carbapenemase genes were circulating locally in various institutions within the same or between different STs in Greece, Guatemala, Italy, Spain, Serbia, and Vietnam. We found a common NDM genetic structure (NDM-GE-U.S.), previously described on pNDM-U.S. from Klebsiella pneumoniae ATCC BAA-214, in 14 different clones obtained from 6 countries spanning 4 continents. Our study highlights the importance of surveillance programs using whole-genome sequencing in providing insight into the molecular epidemiology of carbapenemase-producing Enterobacter spp.
Collapse
|
42
|
Metagenomic Characterization of Bacterial Communities on Ready-to-Eat Vegetables and Effects of Household Washing on their Diversity and Composition. Pathogens 2019; 8:pathogens8010037. [PMID: 30893890 PMCID: PMC6471099 DOI: 10.3390/pathogens8010037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
Ready-to-eat (RTE) leafy salad vegetables are considered foods that can be consumed immediately at the point of sale without further treatment. The aim of the study was to investigate the bacterial community composition of RTE salads at the point of consumption and the changes in bacterial diversity and composition associated with different household washing treatments. The bacterial microbiomes of rocket and spinach leaves were examined by means of 16S rRNA gene high-throughput sequencing. Overall, 886 Operational Taxonomic Units (OTUs) were detected in the salads’ leaves. Proteobacteria was the most diverse high-level taxonomic group followed by Bacteroidetes and Firmicutes. Although they were processed at the same production facilities, rocket showed different bacterial community composition than spinach salads, mainly attributed to the different contributions of Proteobacteria and Bacteroidetes to the total OTU number. The tested household decontamination treatments proved inefficient in changing the bacterial community composition in both RTE salads. Furthermore, storage duration of the salads at refrigeration temperatures affected the microbiome, by decreasing the bacterial richness and promoting the dominance of psychrotropic bacteria. Finally, both salads were found to be a reservoir of opportunistic human pathogens, while washing methods usually applied at home proved to be inefficient in their removal.
Collapse
|
43
|
Manageiro V, Clemente L, Romão R, Silva C, Vieira L, Ferreira E, Caniça M. IncX4 Plasmid Carrying the New mcr-1.9 Gene Variant in a CTX-M-8-Producing Escherichia coli Isolate Recovered From Swine. Front Microbiol 2019; 10:367. [PMID: 30923516 PMCID: PMC6426780 DOI: 10.3389/fmicb.2019.00367] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/12/2019] [Indexed: 11/22/2022] Open
Abstract
We studied a commensal colistin-resistant Escherichia coli isolated from a swine cecum sample collected at a slaughter, in Portugal. Antimicrobial susceptibility phenotype of E. coli LV23529 showed resistance to colistin at a minimum inhibitory concentration of 4 mg/L. Whole genome of E. coli LV23529 was sequenced using a MiSeq system and the assembled contigs were analyzed for the presence of antibiotic resistance and plasmid replicon types using bioinformatics tools. We report a novel mcr-1 gene variant (mcr-1.9), carried by an IncX4 plasmid, where one-point mutation at nucleotide T1238C leads to Val413Ala substitution. The mcr-1.9 genetic context was characterized by an IS26 element upstream of the mcr-pap2 element and by the absence of ISApl1. Bioinformatic analysis also revealed genes conferring resistance to β-lactams, sulphamethoxazole, trimethoprim, chloramphenicol and colistin, corresponding to the phenotype noticed. Moreover, we highlight the presence of mcr-1.9 plus blaCTX-M-8, a blaESBL gene rarely detected in Europe in isolates of animal origin; these two genes were located on different plasmids with 33,303 and 89,458 bp, respectively. MCR-1.9-harboring plasmid showed high identity to other X4-type mcr-1-harboring plasmids characterized worldwide, which strongly suggests that the presence of PMCR-encoding genes in food-producing animals, such as MCR-1.9, represent a potential threat to humans, as it is located in mobile genetic elements that have the potential to spread horizontally.
Collapse
Affiliation(s)
- Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.,Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
| | - Lurdes Clemente
- Bacteriology and Mycology Laboratory, INIAV - National Institute of Agrarian and Veterinary Research, Oeiras, Portugal
| | - Raquel Romão
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Catarina Silva
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.,Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.,Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal
| |
Collapse
|
44
|
Fang J, Shen Y, Qu D, Han J. Antimicrobial resistance profiles and characteristics of integrons in Escherichia coli strains isolated from a large-scale centralized swine slaughterhouse and its downstream markets in Zhejiang, China. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Manageiro V, Romão R, Moura IB, Sampaio DA, Vieira L, Ferreira E, Caniça M. Molecular Epidemiology and Risk Factors of Carbapenemase-Producing Enterobacteriaceae Isolates in Portuguese Hospitals: Results From European Survey on Carbapenemase-Producing Enterobacteriaceae (EuSCAPE). Front Microbiol 2018; 9:2834. [PMID: 30538682 PMCID: PMC6277554 DOI: 10.3389/fmicb.2018.02834] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022] Open
Abstract
In Portugal, the epidemiological stage for the spread of carbapenemase-producing Enterobacteriaceae (CPE) increased from sporadic isolates or single hospital clones (2010–2013), to hospital outbreaks, later. Here we report data from a 6-month study performed under the European Survey on Carbapenemase-Producing Enterobacteriaceae (EuSCAPE). During the study period, 67 isolates (61 Klebsiella pneumoniae and 6 Escherichia coli) non-susceptible to carbapenems were identified in participant hospital laboratories. We detected 37 blaKPC–type (including one new variant: blaKPC–21), 1 blaGES–5, and 1 blaGES–6 plus blaKPC–3, alone or in combination with other bla genes. Bioinformatics analysis of the KPC-21-producing E. coli identified the new variant blaKPC–21 in a 12,748 bp length plasmid. The blaKPC–21 gene was harbored on a non-Tn4401 element, presenting upstream a partial ISKpn6 (ΔISKpn6/ΔtraN) with the related left IR (IRL) and downstream a truncated Tn3 transposon. PFGE and MLST analysis showed an important diversity, as isolates belonged to distinct PFGE and STs profiles. In this study, we highlighted the presence of the high-risk clone E. coli sequence-type (ST) 131 clade C/H30. This worldwide disseminated E. coli lineage was already detected in Portugal among other antibiotic resistance reservoirs. This study highlights the intra- and inter-hospital spread and possible intercontinental circulation of CPE isolates.
Collapse
Affiliation(s)
- Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.,Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Oporto, Oporto, Portugal
| | - Raquel Romão
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Inês Barata Moura
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Daniel A Sampaio
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.,Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Oporto, Oporto, Portugal
| | | | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal.,Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Oporto, Oporto, Portugal
| |
Collapse
|
46
|
Blau K, Bettermann A, Jechalke S, Fornefeld E, Vanrobaeys Y, Stalder T, Top EM, Smalla K. The Transferable Resistome of Produce. mBio 2018; 9:e01300-18. [PMID: 30401772 PMCID: PMC6222124 DOI: 10.1128/mbio.01300-18] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/20/2018] [Indexed: 11/20/2022] Open
Abstract
Produce is increasingly recognized as a reservoir of human pathogens and transferable antibiotic resistance genes. This study aimed to explore methods to characterize the transferable resistome of bacteria associated with produce. Mixed salad, arugula, and cilantro purchased from supermarkets in Germany were analyzed by means of cultivation- and DNA-based methods. Before and after a nonselective enrichment step, tetracycline (TET)-resistant Escherichia coli were isolated and plasmids conferring TET resistance were captured by exogenous plasmid isolation. TET-resistant E. coli isolates, transconjugants, and total community DNA (TC-DNA) from the microbial fraction detached from leaves or after enrichment were analyzed for the presence of resistance genes, class 1 integrons, and various plasmids by real-time PCR and PCR-Southern blot hybridization. Real-time PCR primers were developed for IncI and IncF plasmids. TET-resistant E. coli isolated from arugula and cilantro carried IncF, IncI1, IncN, IncHI1, IncU, and IncX1 plasmids. Three isolates from cilantro were positive for IncN plasmids and blaCTX-M-1 From mixed salad and cilantro, IncF, IncI1, and IncP-1β plasmids were captured exogenously. Importantly, whereas direct detection of IncI and IncF plasmids in TC-DNA failed, these plasmids became detectable in DNA extracted from enrichment cultures. This confirms that cultivation-independent DNA-based methods are not always sufficiently sensitive to detect the transferable resistome in the rare microbiome. In summary, this study showed that an impressive diversity of self-transmissible multiple resistance plasmids was detected in bacteria associated with produce that is consumed raw, and exogenous capturing into E. coli suggests that they could transfer to gut bacteria as well.IMPORTANCE Produce is one of the most popular food commodities. Unfortunately, leafy greens can be a reservoir of transferable antibiotic resistance genes. We found that IncF and IncI plasmids were the most prevalent plasmid types in E. coli isolates from produce. This study highlights the importance of the rare microbiome associated with produce as a source of antibiotic resistance genes that might escape cultivation-independent detection, yet may be transferred to human pathogens or commensals.
Collapse
Affiliation(s)
- Khald Blau
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Antje Bettermann
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Sven Jechalke
- Justus Liebig University Giessen, Institute for Phytopathology, Gießen, Germany
| | - Eva Fornefeld
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Yann Vanrobaeys
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| |
Collapse
|
47
|
Fröhling A, Rademacher A, Rumpold B, Klocke M, Schlüter O. Screening of microbial communities associated with endive lettuce during postharvest processing on industrial scale. Heliyon 2018; 4:e00671. [PMID: 30094360 PMCID: PMC6076399 DOI: 10.1016/j.heliyon.2018.e00671] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/26/2018] [Accepted: 06/25/2018] [Indexed: 11/15/2022] Open
Abstract
In this study, the composition of the microbial community on endive lettuce (Cichorium endivia) was evaluated during different postharvest processing steps. Microbial community structure was characterized by culture-dependent and culture-independent methods. Endive lettuce was sampled exemplarily at four different stages of processing (raw material, cut endive lettuce, washed endive lettuce, and spin-dried (ready to pack) endive lettuce) and analysed by plate count analysis using non-selective and selective agar plates with subsequent identification of bacteria colonies by matrix-assisted laser desorption/ionization time-of light mass spectrometry (MALDI-TOF MS). Additionally, terminal-restriction fragment length polymorphism (TRFLP) analysis and 16S rRNA gene nucleotide sequence analysis were conducted. The results revealed structural differences in the lettuce microbiomes during the different processing steps. The most predominant bacteria on endive lettuce were detected by almost all methods. Bacterial species belonging to the families Pseudomonadaceae, Enterobacteriaceae, Xanthomonadaceae, and Moraxellaceae were detected in most of the examined samples including some unexpected potentially human pathogenic bacteria, especially those with the potential to build resistance to antibiotics (e.g., Stenotrophomonas maltophilia (0.9 % in cut sample, 0.4 % in spin-dried sample), Acinetobacter sp. (0.6 % in raw material, 0.9 % in cut sample, 0.9 % in washed sample, 0.4 % in spin-dried sample), Morganella morganii (0.2 % in cut sample, 3 % in washed sample)) revealing the potential health risk for consumers. However, more seldom occurring bacterial species were detected in varying range by the different methods. In conclusion, the applied methods allow the determination of the microbiome's structure and its dynamic changes during postharvest processing in detail. Such a combined approach enables the implementation of tailored control strategies including hygienic design, innovative decontamination techniques, and appropriate storage conditions for improved product safety.
Collapse
Affiliation(s)
- Antje Fröhling
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Quality and Safety of Food and Feed, Department of Horticultural Engineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Antje Rademacher
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Quality and Safety of Food and Feed, Department of Bioengineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Birgit Rumpold
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Quality and Safety of Food and Feed, Department of Horticultural Engineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Michael Klocke
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Quality and Safety of Food and Feed, Department of Bioengineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Oliver Schlüter
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Quality and Safety of Food and Feed, Department of Horticultural Engineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| |
Collapse
|
48
|
Zhu YG, Gillings M, Simonet P, Stekel D, Banwart S, Penuelas J. Human dissemination of genes and microorganisms in Earth's Critical Zone. GLOBAL CHANGE BIOLOGY 2018; 24:1488-1499. [PMID: 29266645 DOI: 10.1111/gcb.14003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Earth's Critical Zone sustains terrestrial life and consists of the thin planetary surface layer between unaltered rock and the atmospheric boundary. Within this zone, flows of energy and materials are mediated by physical processes and by the actions of diverse organisms. Human activities significantly influence these physical and biological processes, affecting the atmosphere, shallow lithosphere, hydrosphere, and biosphere. The role of organisms includes an additional class of biogeochemical cycling, this being the flow and transformation of genetic information. This is particularly the case for the microorganisms that govern carbon and nitrogen cycling. These biological processes are mediated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions. Understanding human effects on microbial activity, fitness and distribution is an important component of Critical Zone science, but is highly challenging to investigate across the enormous physical scales of impact ranging from individual organisms to the planet. One arena where this might be tractable is by studying the dynamics and dissemination of genes for antibiotic resistance and the organisms that carry such genes. Here we explore the transport and transformation of microbial genes and cells through Earth's Critical Zone. We do so by examining the origins and rise of antibiotic resistance genes, their subsequent dissemination, and the ongoing colonization of diverse ecosystems by resistant organisms.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Michael Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Pascal Simonet
- Environmental Microbial Genomics Group, Université de Lyon, Lyon, France
| | - Dov Stekel
- School of Biosciences, University of Nottingham, Nottingham, UK
| | - Steven Banwart
- Department of Geography, The University of Sheffield, Sheffield, UK
| | - Josep Penuelas
- CSIC, Global Ecology Unit, CREAF- CSIC-UAB, Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| |
Collapse
|
49
|
Martini MC, Quiroga MP, Pistorio M, Lagares A, Centrón D, Del Papa MF. Novel environmental class 1 integrons and cassette arrays recovered from an on-farm bio-purification plant. FEMS Microbiol Ecol 2017; 94:4781311. [DOI: 10.1093/femsec/fix190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/27/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- María Carla Martini
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| | - María Paula Quiroga
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Paraguay 2155, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariano Pistorio
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| | - Antonio Lagares
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| | - Daniela Centrón
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Paraguay 2155, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Florencia Del Papa
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 entre 49 y 50, 1900, La Plata, Argentina
| |
Collapse
|
50
|
New insights into resistance to colistin and third-generation cephalosporins of Escherichia coli in poultry, Portugal: Novel bla CTX-M-166 and bla ESAC genes. Int J Food Microbiol 2017; 263:67-73. [DOI: 10.1016/j.ijfoodmicro.2017.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/27/2017] [Accepted: 10/03/2017] [Indexed: 01/07/2023]
|