1
|
Makowska-Zawierucha N, Trzebny A, Zawierucha K, Manthapuri V, Bradley JA, Pruden A. Arctic plasmidome analysis reveals distinct relationships among associated antimicrobial resistance genes and virulence genes along anthropogenic gradients. GLOBAL CHANGE BIOLOGY 2024; 30:e17293. [PMID: 38687495 DOI: 10.1111/gcb.17293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/30/2024] [Accepted: 03/30/2024] [Indexed: 05/02/2024]
Abstract
Polar regions are relatively isolated from human activity and thus could offer insight into anthropogenic and ecological drivers of the spread of antibiotic resistance. Plasmids are of particular interest in this context given the central role that they are thought to play in the dissemination of antibiotic resistance genes (ARGs). However, plasmidomes are challenging to profile in environmental samples. The objective of this study was to compare various aspects of the plasmidome associated with glacial ice and adjacent aquatic environments across the high Arctic archipelago of Svalbard, representing a gradient of anthropogenic inputs and specific treated and untreated wastewater outflows to the sea. We accessed plasmidomes by applying enrichment cultures, plasmid isolation and shotgun Illumina sequencing of environmental samples. We examined the abundance and diversity of ARGs and other stress-response genes that might be co/cross-selected or co-transported in these environments, including biocide resistance genes (BRGs), metal resistance genes (MRGs), virulence genes (VGs) and integrons. We found striking differences between glacial ice and aquatic environments in terms of the ARGs carried by plasmids. We found a strong correlation between MRGs and ARGs in plasmids in the wastewaters and fjords. Alternatively, in glacial ice, VGs and BRGs genes were dominant, suggesting that glacial ice may be a repository of pathogenic strains. Moreover, ARGs were not found within the cassettes of integrons carried by the plasmids, which is suggestive of unique adaptive features of the microbial communities to their extreme environment. This study provides insight into the role of plasmids in facilitating bacterial adaptation to Arctic ecosystems as well as in shaping corresponding resistomes. Increasing human activity, warming of Arctic regions and associated increases in the meltwater run-off from glaciers could contribute to the release and spread of plasmid-related genes from Svalbard to the broader pool of ARGs in the Arctic Ocean.
Collapse
Affiliation(s)
- Nicoletta Makowska-Zawierucha
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Vineeth Manthapuri
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - James A Bradley
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Oyelade AA, Ikhimiukor OO, Nwadike BI, Fagade OE, Adelowo OO. Assessing the risk of exposure to antimicrobial resistance at public beaches: Genome-based insights into the resistomes, mobilomes and virulomes of beta-lactams resistant Enterobacteriaceae from recreational beaches in Lagos, Nigeria. Int J Hyg Environ Health 2024; 258:114347. [PMID: 38492327 DOI: 10.1016/j.ijheh.2024.114347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/18/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
The role of recreational water use in the acquisition and transmission of antimicrobial resistance (AMR) is under-explored in low- and middle-income countries (LMICs). We used whole genome sequence analysis to provide insights into the resistomes, mobilomes and virulomes of 14 beta-lactams resistant Enterobacterales isolated from water and wet-sand at four recreational beaches in Lagos, Nigeria. Carriage of multiple beta-lactamase genes was detected in all isolates except two, including six isolates carrying blaNDM-1. Most detected antibiotic resistance genes (ARGs) were located within a diverse landscape of plasmids, insertion sequences and transposons including the presence of ISKpn14 upstream of blaNDM-1 in a first report in Africa. Virulence genes involved in adhesion and motility as well as secretion systems are particularly abundant in the genomes of the isolates. Our results confirmed the four beaches are contaminated with bacteria carrying clinically relevant ARGs associated with mobile genetic elements (MGE) which could promote the transmission of ARGs at the recreational water-human interface.
Collapse
Affiliation(s)
- Abolade A Oyelade
- New Jersey Department of Health, Public Health and Environmental Laboratories, New Jersey, USA
| | - Odion O Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, New York, USA
| | - Blessing I Nwadike
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Obasola E Fagade
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Olawale O Adelowo
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
3
|
D'Angelo EM. Diversity of virulence and antibiotic resistance genes expressed in Class A biosolids and biosolids-amended soil as revealed by metatranscriptomic analysis. Lett Appl Microbiol 2023; 76:ovad097. [PMID: 37596067 DOI: 10.1093/lambio/ovad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 08/20/2023]
Abstract
Class A biosolids is a treated sewage sludge, commonly applied to agricultural fields, home lawns/gardens, golf courses, forests, and remediation sites around the world. This practice is of public and agricultural concern due to the possibility that biosolids contain antibiotic-resistant bacteria and fungal pathogens that could persist for extended periods in soil. This possibility was determined by metatranscriptomic analysis of virulence, antibiotic resistance, and plasmid conjugation genes, a Class A biosolids, organically managed soil, and biosolids-amended soil under realistic conditions. Biosolids harbored numerous transcriptionally active pathogens, antibiotic resistance genes, and conjugative genes that annotated mostly to Gram-positive pathogens of animal hosts. Biosolids amendment to soil significantly increased the expression of virulence genes by numerous pathogens and antibiotic-resistant genes that were strongly associated with biosolids. Biosolids amendment also significantly increased the expression of virulence genes by native soil fungal pathogens of plant hosts, which suggests higher risks of crop damage by soil fungal pathogens in biosolids-amended soil. Although results are likely to be different in other soils, biosolids, and microbial growth conditions, they provide a more holistic, accurate view of potential health risks associated with biosolids and biosolids-amended soils than has been achievable with more selective cultivation and PCR-based techniques.
Collapse
Affiliation(s)
- Elisa Marie D'Angelo
- Plant and Soil Sciences Department, University of Kentucky, N-122 Agricultural Science Center North, Lexington, KY 40546, United States
| |
Collapse
|
4
|
Xu M, Selvaraj GK, Lu H. Environmental sporobiota: Occurrence, dissemination, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161809. [PMID: 36702282 DOI: 10.1016/j.scitotenv.2023.161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Spore-forming bacteria known as sporobiota are widespread in diverse environments from terrestrial and aquatic habitats to industrial and healthcare systems. Studies on sporobiota have been mainly focused on food processing and clinical fields, while a large amount of sporobiota exist in natural environments. Due to their persistence and capabilities of transmitting virulence factors and antibiotic resistant genes, environmental sporobiota could pose significant health risks to humans. These risks could increase as global warming and environmental pollution has altered the life cycle of sporobiota. This review summarizes the current knowledge of environmental sporobiota, including their occurrence, characteristics, and functions. An interaction network among clinical-, food-related, and environment-related sporobiota is constructed. Recent and effective methods for detecting and disinfecting environmental sporobiota are also discussed. Key problems and future research needs for better understanding and reducing the risks of environmental sporobiota and sporobiome are proposed.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ganesh-Kumar Selvaraj
- Department of Microbiology, St. Peter's Institute of Higher Education and Research, Chennai 600054, Tamil Nadu, India.
| | - Huijie Lu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety, Zhejiang, China.
| |
Collapse
|
5
|
Quillaguamán J, Guzmán D, Campero M, Hoepfner C, Relos L, Mendieta D, Higdon SM, Eid D, Fernández CE. The microbiome of a polluted urban lake harbors pathogens with diverse antimicrobial resistance and virulence genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116488. [PMID: 33485000 DOI: 10.1016/j.envpol.2021.116488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Bacterial resistance to antibiotics is one of the greatest threats to the modern human population. Paradoxically, urban settlements are often culpable in generating such resistance by influencing the adaptation of bacterial communities via pollution of natural ecosystems. Urban lakes are well-known examples of this problem, as they often receive discharges of both domestic and industrial wastewater. In this study, we used shotgun metagenome sequencing to examine the microbial diversity of water and sediment samples of Lake Alalay, a polluted urban lake near Cochabamba, Bolivia. We found that Proteobacteria dominated the relative abundance of both water and sediment samples at levels over 25% and that a significant proportion of the microbial diversity could not be classified (about 9% in water and 22% in sediment). Further metagenomic investigation of antimicrobial resistance (AR) genes identified 277 and 150 AR genes in water and sediment samples, respectively. These included genes with functional annotations for resistance to fluoroquinolones, tetracyclines, phenicols, macrolides, beta-lactams, and rifamycin. A high number of genes involved in bacterial virulence also occurred in both water and sediment samples (169 and 283, respectively), where the virulence gene pscP normally found in the Pseudomonas aeruginosa type III secretion system had the highest relative abundance. Isolated and identified bacteria from water samples also revealed the presence of pathogenic bacteria among the microbiota of Lake Alalay. Seeing as most AR and virulence genes detected in this study are commonly described in nosocomial infections, we provide evidence suggesting that the microbial ecosystem of Lake Alalay presents a severe health risk to the surrounding population.
Collapse
Affiliation(s)
- Jorge Quillaguamán
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia.
| | - Daniel Guzmán
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Melina Campero
- Center of Limnology and Aquatic Resources, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Claudia Hoepfner
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Laura Relos
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Daniela Mendieta
- Center of Biotechnology, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Shawn M Higdon
- Department of Plant Sciences, University of California, Davis, CA, 95616, United States
| | - Daniel Eid
- Institute of Biomedical Research and Social Research, Faculty of Medicine, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | - Carla E Fernández
- Center of Limnology and Aquatic Resources, Faculty of Science and Technology, Universidad Mayor de San Simón, Cochabamba, Bolivia
| |
Collapse
|
6
|
Perez MF, Kurth D, Farías ME, Soria MN, Castillo Villamizar GA, Poehlein A, Daniel R, Dib JR. First Report on the Plasmidome From a High-Altitude Lake of the Andean Puna. Front Microbiol 2020; 11:1343. [PMID: 32655530 PMCID: PMC7324554 DOI: 10.3389/fmicb.2020.01343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Mobile genetic elements, including plasmids, drive the evolution of prokaryotic genomes through the horizontal transfer of genes allowing genetic exchange between bacteria. Moreover, plasmids carry accessory genes, which encode functions that may offer an advantage to the host. Thus, it is expected that in a certain ecological niche, plasmids are enriched in accessory functions, which are important for their hosts to proliferate in that niche. Puquio de Campo Naranja is a high-altitude lake from the Andean Puna exposed to multiple extreme conditions, including high UV radiation, alkalinity, high concentrations of arsenic, heavy metals, dissolved salts, high thermal amplitude and low O2 pressure. Microorganisms living in this lake need to develop efficient mechanisms and strategies to cope under these conditions. The aim of this study was to characterize the plasmidome of microbialites from Puquio de Campo Naranja, and identify potential hosts and encoded functions using a deep-sequencing approach. The potential ecological impact of the plasmidome, including plasmids from cultivable and non-cultivable microorganisms, is described for the first time in a lake representing an extreme environment of the Puna. This study showed that the recovered genetic information for the plasmidome was novel in comparison to the metagenome derived from the same environment. The study of the total plasmid population allowed the identification of genetic features typically encoded by plasmids, such as resistance and virulence factors. The resistance genes comprised resistances to heavy metals, antibiotics and stress factors. These results highlight the key role of plasmids for their hosts and impact of extrachromosomal elements to thrive in a certain ecological niche.
Collapse
Affiliation(s)
- María Florencia Perez
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Daniel Kurth
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - María Eugenia Farías
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Mariana Noelia Soria
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Genis Andrés Castillo Villamizar
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany.,Línea Tecnológica Biocorrosión, Corporación para la Investigación de la Corrosión C.I.C., Piedecuesta, Colombia
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Julián Rafael Dib
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Instituto de Microbiología, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
7
|
Characteristics of the First Protein Tyrosine Phosphatase with Phytase Activity from a Soil Metagenome. Genes (Basel) 2019; 10:genes10020101. [PMID: 30700057 PMCID: PMC6409689 DOI: 10.3390/genes10020101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 11/30/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) fulfil multiple key regulatory functions. Within the group of PTPs, the atypical lipid phosphatases (ALPs) are known for their role as virulence factors associated with human pathogens. Another group of PTPs, which is capable of using inositol-hexakisphosphate (InsP6) as substrate, are known as phytases. Phytases play major roles in the environmental phosphorus cycle, biotechnology, and pathogenesis. So far, all functionally characterized PTPs, including ALPs and PTP-phytases, have been derived exclusively from isolated microorganisms. In this study, screening of a soil-derived metagenomic library resulted in identification of a gene (pho16B), encoding a PTP, which shares structural characteristics with the ALPs. In addition, the characterization of the gene product (Pho16B) revealed the capability of the protein to use InsP6 as substrate, and the potential of soil as a source of phytases with so far unknown characteristics. Thus, Pho16B represents the first functional environmentally derived PTP-phytase. The enzyme has a molecular mass of 38 kDa. The enzyme is promiscuous, showing highest activity and affinity toward naphthyl phosphate (Km 0.966 mM). Pho16B contains the HCXXGKDR[TA]G submotif of PTP-ALPs, and it is structurally related to PtpB of Mycobacterium tuberculosis. This study demonstrates the presence and functionality of an environmental gene codifying a PTP-phytase homologous to enzymes closely associated to bacterial pathogenicity.
Collapse
|