1
|
Skliros D, Droubogiannis S, Kalloniati C, Katharios P, Flemetakis E. Perturbation of Quorum Sensing after the Acquisition of Bacteriophage Resistance Could Contribute to Novel Traits in Vibrio alginolyticus. Microorganisms 2023; 11:2273. [PMID: 37764117 PMCID: PMC10535087 DOI: 10.3390/microorganisms11092273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Bacteria employ a wide range of molecular mechanisms to confer resistance to bacteriophages, and these mechanisms are continuously being discovered and characterized. However, there are instances where certain bacterial species, despite lacking these known mechanisms, can still develop bacteriophage resistance through intricate metabolic adaptation strategies, potentially involving mutations in transcriptional regulators or phage receptors. Vibrio species have been particularly useful for studying the orchestrated metabolic responses of Gram-negative marine bacteria in various challenges. In a previous study, we demonstrated that Vibrio alginolyticus downregulates the expression of specific receptors and transporters in its membrane, which may enable the bacterium to evade infection by lytic bacteriophages. In our current study, our objective was to explore how the development of bacteriophage resistance in Vibrio species disrupts the quorum-sensing cascade, subsequently affecting bacterial physiology and metabolic capacity. Using a real-time quantitative PCR (rt-QPCR) platform, we examined the expression pattern of quorum-sensing genes, auto-inducer biosynthesis genes, and cell density regulatory proteins in phage-resistant strains. Our results revealed that bacteriophage-resistant bacteria downregulate the expression of quorum-sensing regulatory proteins, such as LuxM, LuxN, and LuxP. This downregulation attenuates the normal perception of quorum-sensing peptides and subsequently diminishes the expression of cell density regulatory proteins, including LuxU, aphA, and LuxR. These findings align with the diverse phenotypic traits observed in the phage-resistant strains, such as altered biofilm formation, reduced planktonic growth, and reduced virulence. Moreover, the transcriptional depletion of aphA, the master regulator associated with low cell density, was linked to the downregulation of genes related to virulence. This phenomenon appears to be phage-specific, suggesting a finely tuned metabolic adaptation driven by phage-host interaction. These findings contribute to our understanding of the role of Vibrio species in microbial marine ecology and highlight the complex interplay between phage resistance, quorum sensing, and bacterial physiology.
Collapse
Affiliation(s)
- Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.); (C.K.)
| | - Stavros Droubogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece; (S.D.); (P.K.)
| | - Chrysanthi Kalloniati
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.); (C.K.)
- Department of Marine Sciences, University of the Aegean, 81100 Mytilene, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece; (S.D.); (P.K.)
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.); (C.K.)
| |
Collapse
|
2
|
Skliros D, Papazoglou P, Gkizi D, Paraskevopoulou E, Katharios P, Goumas DE, Tjamos S, Flemetakis E. In planta interactions of a novel bacteriophage against Pseudomonas syringae pv. tomato. Appl Microbiol Biotechnol 2023; 107:3801-3815. [PMID: 37074382 PMCID: PMC10175458 DOI: 10.1007/s00253-023-12493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/20/2023]
Abstract
The biology and biotechnology of bacteriophages have been extensively studied in recent years to explore new and environmentally friendly methods of controlling phytopathogenic bacteria. Pseudomonas syringae pv. tomato (Pst) is responsible for bacterial speck disease in tomato plants, leading to decreased yield. Disease management strategies rely on the use of copper-based pesticides. The biological control of Pst with the use of bacteriophages could be an alternative environmentally friendly approach to diminish the detrimental effects of Pst in tomato cultivations. The lytic efficacy of bacteriophages can be used in biocontrol-based disease management strategies. Here, we report the isolation and complete characterization of a bacteriophage, named Medea1, which was also tested in planta against Pst, under greenhouse conditions. The application of Medea1 as a root drenching inoculum or foliar spraying reduced 2.5- and fourfold on average, respectively, Pst symptoms in tomato plants, compared to a control group. In addition, it was observed that defense-related genes PR1b and Pin2 were upregulated in the phage-treated plants. Our research explores a new genus of Pseudomonas phages and explores its biocontrol potential against Pst, by utilizing its lytic nature and ability to trigger the immune response of plants. KEY POINTS: • Medea1 is a newly reported bacteriophage against Pseudomonas syringae pv. tomato having genomic similarities with the phiPSA1 bacteriophage • Two application strategies were reported, one by root drenching the plants with a phage-based solution and one by foliar spraying, showing up to 60- and 6-fold reduction of Pst population and disease severity in some cases, respectively, compared to control • Bacteriophage Medea1 induced the expression of the plant defense-related genes Pin2 and PR1b.
Collapse
Affiliation(s)
- Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Polyxeni Papazoglou
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Danai Gkizi
- Department of Wine, Vine and Beverage Sciences, School of Food Sciences, University of West Attica, 12243, Athens, Greece
| | - Eleni Paraskevopoulou
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500, Heraklion, Greece
| | - Dimitrios E Goumas
- Laboratory of Plant Pathology-Bacteriology, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, 71004, Heraklio, Estavromenos, Greece
| | - Sotirios Tjamos
- Laboratory of Plant Pathology, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, 1855, Athens, Greece.
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
3
|
Zlatohurska M, Gorb T, Romaniuk L, Shenderovska N, Faidiuk Y, Zhuminska G, Hubar Y, Hubar O, Kropinski AM, Kushkina A, Tovkach F. Broad-host-range lytic Erwinia phage Key with exopolysaccharide degrading activity. Virus Res 2023; 329:199088. [PMID: 36907559 DOI: 10.1016/j.virusres.2023.199088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
In this study, the genome of the lytic broad-host-range phage Key infecting Erwinia amylovora, Erwinia horticola, and Pantoea agglomerans strains was characterized. Key phage has a 115,651 bp long double-stranded DNA genome with the G + C ratio of 39.03%, encoding 182 proteins and 27 tRNA genes. The majority (69%) of predicted coding sequences (CDSs) encode proteins with unknown functions. The protein products of 57 annotated genes were found to have probable functions in nucleotide metabolism, DNA replication, recombination, repair, and packaging, virion morphogenesis, phage-host interaction and lysis. Furthermore, the product of gene 141 shared amino acid sequence similarity and conserved domain architecture with the exopolysaccharide (EPS) degrading proteins of Erwinia and Pantoea infecting phages as well as bacterial EPS biosynthesis proteins. Due to the genome synteny and similarity to the proteins of T5-related phages, phage Key, together with its closest relative, Pantoea phage AAS21, was suggested to represent a novel genus within the Demerecviridae family, for which we tentatively propose the name "Keyvirus".
Collapse
Affiliation(s)
- Maryna Zlatohurska
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, the National Academy of Sciences (NAS) of Ukraine, Kyiv 03143, Ukraine
| | - Tetiana Gorb
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, the National Academy of Sciences (NAS) of Ukraine, Kyiv 03143, Ukraine
| | - Liudmyla Romaniuk
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, the National Academy of Sciences (NAS) of Ukraine, Kyiv 03143, Ukraine
| | - Natalia Shenderovska
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, the National Academy of Sciences (NAS) of Ukraine, Kyiv 03143, Ukraine; Biotechnology products development lab, Scientific Center, Pharmaceutical Corporation YURiA-PHARM, Kyiv 03151, Ukraine
| | - Yuliia Faidiuk
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, the National Academy of Sciences (NAS) of Ukraine, Kyiv 03143, Ukraine; Educational and Scientific Center "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine; Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Ganna Zhuminska
- Department of Microbiology, Virology and Biotechnology, Biological Faculty, Odesa National Mechnykov University, Odesa 65058, Ukraine
| | - Yuliia Hubar
- Preclinical and Clinical Trials Department, Pharmaceutical Corporation YURiA-PHARM, Kyiv 03151, Ukraine
| | - Oleksandr Hubar
- Biotechnology products development lab, Scientific Center, Pharmaceutical Corporation YURiA-PHARM, Kyiv 03151, Ukraine
| | - Andrew M Kropinski
- Departments of Food Science; and, Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alla Kushkina
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, the National Academy of Sciences (NAS) of Ukraine, Kyiv 03143, Ukraine
| | - Fedor Tovkach
- Department of Bacteriophage Molecular Genetics, D. K. Zabolotny Institute of Microbiology and Virology, the National Academy of Sciences (NAS) of Ukraine, Kyiv 03143, Ukraine
| |
Collapse
|
4
|
Molina-Quiroz RC, Camilli A, Silva-Valenzuela CA. Role of Bacteriophages in the Evolution of Pathogenic Vibrios and Lessons for Phage Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:149-173. [PMID: 36792875 PMCID: PMC10587905 DOI: 10.1007/978-3-031-22997-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Viruses of bacteria, i.e., bacteriophages (or phages for short), were discovered over a century ago and have played a major role as a model system for the establishment of the fields of microbial genetics and molecular biology. Despite the relative simplicity of phages, microbiologists are continually discovering new aspects of their biology including mechanisms for battling host defenses. In turn, novel mechanisms of host defense against phages are being discovered at a rapid clip. A deeper understanding of the arms race between bacteria and phages will continue to reveal novel molecular mechanisms and will be important for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections, respectively. Here we delve into the molecular interactions of Vibrio species and phages.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, MA, USA
| | | |
Collapse
|
5
|
Droubogiannis S, Pavlidi L, Tsertou MI, Kokkari C, Skliros D, Flemetakis E, Katharios P. Vibrio Phage Artemius, a Novel Phage Infecting Vibrio alginolyticus. Pathogens 2022; 11:pathogens11080848. [PMID: 36014969 PMCID: PMC9416449 DOI: 10.3390/pathogens11080848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Vibrio alginolyticus is an important pathogen of marine animals and has been the target of phage therapy applications in marine aquaculture for many years. Here, we report the isolation and partial characterization of a novel species of the Siphoviridae family, the Vibrio phage Artemius. The novel phage was species-specific and could only infect strains of V. alginolyticus. It could efficiently reduce the growth of the host bacterium at various multiplicities of infection as assessed by an in vitro lysis assay. It had a genome length of 43,349 base pairs. The complete genome has double-stranded DNA with a G + C content of 43.61%. In total, 57 ORFs were identified, of which 19 were assigned a predicted function. A genomic analysis indicated that Vibrio phage Artemius is lytic and does not harbor genes encoding toxins and antibiotic resistance determinants.
Collapse
Affiliation(s)
- Stavros Droubogiannis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
- Department of Biology, School of Sciences and Engineering, University of Crete, 71500 Heraklion, Greece
| | - Lydia Pavlidi
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
| | - Maria Ioanna Tsertou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
| | - Constantina Kokkari
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
| | - Dimitrios Skliros
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.); (E.F.)
| | - Emmanouil Flemetakis
- Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.); (E.F.)
| | - Pantelis Katharios
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology & Aquaculture, 71500 Heraklion, Greece; (S.D.); (L.P.); (M.I.T.); (C.K.)
- Correspondence:
| |
Collapse
|
6
|
Li X, Guo R, Zou X, Yao Y, Lu L. The First Cbk-Like Phage Infecting Erythrobacter, Representing a Novel Siphoviral Genus. Front Microbiol 2022; 13:861793. [PMID: 35620087 PMCID: PMC9127768 DOI: 10.3389/fmicb.2022.861793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Erythrobacter is an important and widespread bacterial genus in the ocean. However, our knowledge about their phages is still rare. Here, a novel lytic phage vB_EliS-L02, infecting Erythrobacter litoralis DSM 8509, was isolated and purified from Sanggou Bay seawater, China. Morphological observation revealed that the phage belonged to Cbk-like siphovirus, with a long prolate head and a long tail. The host range test showed that phage vB_EliS-L02 could only infect a few strains of Erythrobacter, demonstrating its potential narrow-host range. The genome size of vB_EliS-L02 was 150,063 bp with a G+C content of 59.43%, encoding 231 putative open reading frames (ORFs), but only 47 were predicted to be functional domains. Fourteen auxiliary metabolic genes were identified, including phoH that may confer vB_EliS-L02 the advantage of regulating phosphate uptake and metabolism under a phosphate-limiting condition. Genomic and phylogenetic analyses indicated that vB_EliS-L02 was most closely related to the genus Lacusarxvirus with low similarity (shared genes < 30%, and average nucleotide sequence identity < 70%), distantly from other reported phages, and could be grouped into a novel viral genus cluster, in this study as Eliscbkvirus. Meanwhile, the genus Eliscbkvirus and Lacusarxvirus stand out from other siphoviral genera and could represent a novel subfamily within Siphoviridae, named Dolichocephalovirinae-II. Being a representative of an understudied viral group with manifold adaptations to the host, phage vB_EliS-L02 could improve our understanding of the virus–host interactions and provide reference information for viral metagenomic analysis in the ocean.
Collapse
Affiliation(s)
- Xuejing Li
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), Xiamen, China
| | - Ruizhe Guo
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiao Zou
- Qingdao Central Hospital, Qingdao, China
| | - Yanyan Yao
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai, China
| | - Longfei Lu
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai, China
| |
Collapse
|
7
|
Skliros D, Karpouzis E, Kalloniati C, Katharios P, Flemetakis E. Comparative genomic analysis of dwarf Vibrio myoviruses defines a conserved gene cluster for successful phage infection. Arch Virol 2022; 167:501-516. [PMID: 35000006 DOI: 10.1007/s00705-021-05340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022]
Abstract
Tailed bacteriophages have been at the center of attention, not only for their ability to infect and kill pathogenic bacteria but also due to their peculiar and intriguing complex contractile tail structure. Tailed bacteriophages with contractile tails are known to have a Myoviridae morphotype and are members of the order Caudovirales. Large bacteriophages with a genome larger than 150 kbp have been studied for their ability to use multiple infection and lysis strategies to replicate more efficiently. On the other hand, smaller bacteriophages with fewer genes are represented in the GenBank database in greater numbers, and have several genes with unknown function. Isolation and molecular characterization of a newly reported bacteriophage named Athena1 revealed that it is a strongly lytic bacteriophage with a genome size of 39,826 bp. This prompted us to perform a comparative genomic analysis of Vibrio myoviruses with a genome size of no more than 50 kbp. The results revealed a pattern of genomic organization that includes sets of genes responsible for virion morphogenesis, replication/recombination of DNA, and lysis/lysogeny switching. By studying phylogenetic gene markers, we were able to draw conclusions about evolutionary events that shaped the genomic mosaicism of these phages, pinpointing the importance of a conserved organization of the genomic region encoding the baseplate protein for successful infection of Gram-negative bacteria. In addition, we propose the creation of new genera for dwarf Vibrio myoviruses. Comparative genomics of phages infecting aquatic bacteria could provide information that is useful for combating fish pathogens in aquaculture, using novel strategies.
Collapse
Affiliation(s)
- Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Efthymios Karpouzis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Chrysanthi Kalloniati
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece. .,EU-CONEXUS European University, Athens, Greece.
| |
Collapse
|
8
|
Tackling Vibrio parahaemolyticus in ready-to-eat raw fish flesh slices using lytic phage VPT02 isolated from market oyster. Food Res Int 2021; 150:110779. [PMID: 34865794 DOI: 10.1016/j.foodres.2021.110779] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/19/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
The opportunistic pathogen V. parahaemolyticus is a major causative agent for seafood-borne illness worldwide. It also causes severe vibriosis in aquaculture animals, affecting seafood production with huge economic loss. These issues are getting worse due to the current global warming in oceans, spread of antibiotic resistance, and changes in consumer preference toward ready-to-eat (RTE) food items including seafood. To answer the urgent need for sustainable biocontrol agents against V. parahaemolyticus, we isolated and characterized a novel lytic bacteriophage VPT02 from market oyster. VPT02 lysed antibiotic resistant V. parahaemolyticus strains including FORC_023. Moreover, it exhibited notable properties as a biocontrol agent suitable for seafood-related settings, like short eclipse/latent periods, high burst size, broad thermal and pH stability, and no toxin/antibiotic resistance genes in the genome. Further comparative genomic analysis with the previously reported homologue phage pVp-1 revealed that VPT02 additionally possesses genes related to the nucleotide scavenging pathway, presumably enabling the phage to propagate quickly. Consistent with its strong in vitro bacteriolytic activity, treatment of only a small quantity of VPT02 (multiplicity of infection of 10) significantly increased the survival rate of V. parahaemolyticus-infected brine shrimp (from 16.7% to 46.7%). When applied to RTE raw fish flesh slices, the same quantity of VPT02 achieved up to 3.9 log reduction of spiked V. parahaemolyticus compared with the phage untreated control. Taken together, these results suggest that VPT02 may be a sustainable anti-V. parahaemolyticus agent useful in seafood-related settings including for RTE items.
Collapse
|
9
|
Degradation of host translational machinery drives tRNA acquisition in viruses. Cell Syst 2021; 12:771-779.e5. [PMID: 34143976 DOI: 10.1016/j.cels.2021.05.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 01/06/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Viruses are traditionally thought to be under selective pressure to maintain compact genomes and thus depend on host cell translational machinery for reproduction. However, some viruses encode abundant tRNA and other translation-related genes, potentially optimizing for codon usage differences between phage and host. Here, we systematically interrogate selective advantages that carrying 18 tRNAs may convey to a T4-like Vibriophage. Host DNA and RNA degrade upon infection, including host tRNAs, which are replaced by those of the phage. These tRNAs are expressed at levels slightly better adapted to phage codon usage, especially that of late genes. The phage is unlikely to randomly acquire as diverse an array of tRNAs as observed (p = 0.0017). Together, our results support that the main driver behind phage tRNA acquisition is pressure to sustain translation as host machinery degrades, a process resulting in a dynamically adapted codon usage strategy during the course of infection.
Collapse
|
10
|
The Development of Bacteriophage Resistance in Vibrio alginolyticus Depends on a Complex Metabolic Adaptation Strategy. Viruses 2021; 13:v13040656. [PMID: 33920240 PMCID: PMC8069663 DOI: 10.3390/v13040656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Lytic bacteriophages have been well documented to play a pivotal role in microbial ecology due to their complex interactions with bacterial species, especially in aquatic habitats. Although the use of phages as antimicrobial agents, known as phage therapy, in the aquatic environment has been increasing, recent research has revealed drawbacks due to the development of phage-resistant strains among Gram-negative species. Acquired phage resistance in marine Vibrios has been proven to be a very complicated process utilizing biochemical, metabolic, and molecular adaptation strategies. The results of our multi-omics approach, incorporating transcriptome and metabolome analyses of Vibrio alginolyticus phage-resistant strains, corroborate this prospect. Our results provide insights into phage-tolerant strains diminishing the expression of phage receptors ompF, lamB, and btuB. The same pattern was observed for genes encoding natural nutrient channels, such as rbsA, ptsG, tryP, livH, lysE, and hisp, meaning that the cell needs to readjust its biochemistry to achieve phage resistance. The results showed reprogramming of bacterial metabolism by transcript regulations in key-metabolic pathways, such as the tricarboxylic acid cycle (TCA) and lysine biosynthesis, as well as the content of intracellular metabolites belonging to processes that could also significantly affect the cell physiology. Finally, SNP analysis in resistant strains revealed no evidence of amino acid alterations in the studied putative bacterial phage receptors, but several SNPs were detected in genes involved in transcriptional regulation. This phenomenon appears to be a phage-specific, fine-tuned metabolic engineering, imposed by the different phage genera the bacteria have interacted with, updating the role of lytic phages in microbial marine ecology.
Collapse
|
11
|
Phage Endolysins as Potential Antimicrobials against Multidrug Resistant Vibrio alginolyticus and Vibrio parahaemolyticus: Current Status of Research and Challenges Ahead. Microorganisms 2019; 7:microorganisms7030084. [PMID: 30889831 PMCID: PMC6463129 DOI: 10.3390/microorganisms7030084] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/22/2023] Open
Abstract
Vibrio alginolyticus and V. parahaemolyticus, the causative agents of Vibriosis in marine vertebrates and invertebrates, are also responsible for fatal illnesses such as gastroenteritis, septicemia, and necrotizing fasciitis in humans via the ingestion of contaminated seafood. Aquaculture farmers often rely on extensive prophylactic use of antibiotics in farmed fish to mitigate Vibrios and their biofilms. This has been postulated as being of serious concern in the escalation of antibiotic resistant Vibrios. For this reason, alternative strategies to combat aquaculture pathogens are in high demand. Bacteriophage-derived lytic enzymes and proteins are of interest to the scientific community as promising tools with which to diminish our dependency on antibiotics. Lysqdvp001 is the best-characterized endolysin with lytic activity against multiple species of Vibrios. Various homologues of Vibrio phage endolysins have also been studied for their antibacterial potential. These novel endolysins are the major focus of this mini review.
Collapse
|
12
|
Genomic characterization of three novel Basilisk-like phages infecting Bacillus anthracis. BMC Genomics 2018; 19:685. [PMID: 30227847 PMCID: PMC6145125 DOI: 10.1186/s12864-018-5056-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/06/2018] [Indexed: 01/05/2023] Open
Abstract
Background In the present study, we sequenced the complete genomes of three novel bacteriophages v_B-Bak1, v_B-Bak6, v_B-Bak10 previously isolated from historical anthrax burial sites in the South Caucasus country of Georgia. We report here major trends in the molecular evolution of these phages, which we designate as “Basilisk-Like-Phages” (BLPs), and illustrate patterns in their evolution, genomic plasticity and core genome architecture. Results Comparative whole genome sequence analysis revealed a close evolutionary relationship between our phages and two unclassified Bacillus cereus group phages, phage Basilisk, a broad host range phage (Grose JH et al., J Vir. 2014;88(20):11846-11860) and phage PBC4, a highly host-restricted phage and close relative of Basilisk (Na H. et al. FEMS Microbiol. letters. 2016;363(12)). Genome comparisons of phages v_B-Bak1, v_B-Bak6, and v_B-Bak10 revealed significant similarity in sequence, gene content, and synteny with both Basilisk and PBC4. Transmission electron microscopy (TEM) confirmed the three phages belong to the Siphoviridae family. In contrast to the broad host range of phage Basilisk and the single-strain specificity of PBC4, our three phages displayed host specificity for Bacillus anthracis. Bacillus species including Bacillus cereus, Bacillus subtilis, Bacillus anthracoides, and Bacillus megaterium were refractory to infection. Conclusions Data reported here provide further insight into the shared genomic architecture, host range specificity, and molecular evolution of these rare B. cereus group phages. To date, the three phages represent the only known close relatives of the Basilisk and PBC4 phages and their shared genetic attributes and unique host specificity for B. anthracis provides additional insight into candidate host range determinants. Electronic supplementary material The online version of this article (10.1186/s12864-018-5056-4) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy. Antibiotics (Basel) 2018; 7:antibiotics7010015. [PMID: 29495270 PMCID: PMC5872126 DOI: 10.3390/antibiotics7010015] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 12/27/2022] Open
Abstract
A global distribution in marine, brackish, and freshwater ecosystems, in combination with high abundances and biomass, make vibrios key players in aquatic environments, as well as important pathogens for humans and marine animals. Incidents of Vibrio-associated diseases (vibriosis) in marine aquaculture are being increasingly reported on a global scale, due to the fast growth of the industry over the past few decades years. The administration of antibiotics has been the most commonly applied therapy used to control vibriosis outbreaks, giving rise to concerns about development and spreading of antibiotic-resistant bacteria in the environment. Hence, the idea of using lytic bacteriophages as therapeutic agents against bacterial diseases has been revived during the last years. Bacteriophage therapy constitutes a promising alternative not only for treatment, but also for prevention of vibriosis in aquaculture. However, several scientific and technological challenges still need further investigation before reliable, reproducible treatments with commercial potential are available for the aquaculture industry. The potential and the challenges of phage-based alternatives to antibiotic treatment of vibriosis are addressed in this review.
Collapse
|
14
|
Isolation and characterization of a N4-like lytic bacteriophage infecting Vibrio splendidus, a pathogen of fish and bivalves. PLoS One 2017; 12:e0190083. [PMID: 29284014 PMCID: PMC5746245 DOI: 10.1371/journal.pone.0190083] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/07/2017] [Indexed: 12/04/2022] Open
Abstract
A novel virulent bacteriophage, vB_VspP_pVa5, infecting a strain of Vibrio splendidus was isolated from a sea-cage aquaculture farm in Greece, and characterized using microbiological methods and genomic analysis. Bacteriophage vB_VspP_pVa5 is a N4-like podovirus with an icosahedral head measuring 85 nm in length and a short non-contractile tail. The phage had a narrow host range infecting only the bacterial host, a latent period of 30 min and a burst size of 24 virions per infected bacterium. Its genome size was 78,145 bp and genomic analysis identified 107 densely-packed genes, 40 of which could be annotated. In addition to the very large virion encapsulated DNA-dependent RNA polymerase which is the signature of the N4-like genus, an interesting feature of the novel phage is the presence of a self-splicing group I intron in the thymidylate synthase gene. A tRNAStop interrupted by a ~2.5kb open reading frame–containing area was also identified. The absence of genes related to lysogeny along with the high efficacy observed during in vitro cell lysis trials, indicate that the vB_VspP_pVa5 is a potential candidate component in a bacteriophage cocktail suitable for the biological control of V. splendidus in aquaculture.
Collapse
|