1
|
Nazipi Bushi S, Lund MB, Sandfeld T, Nørskov SS, Fruergaard S, Glasius M, Bilde T, Schramm A. A modified iChip for in situ cultivation of bacteria in arid environments. Appl Environ Microbiol 2025:e0132524. [PMID: 39772876 DOI: 10.1128/aem.01325-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Antimicrobial resistance is an ever-increasing problem for human health, and with only a few novel antimicrobials discovered in recent decades, an extraordinary effort is needed to circumvent this crisis. A promising source of new microbial-derived antimicrobial compounds resides in the large fraction of microbes that are not readily cultured by standard cultivation. It has previously been shown that nests of the social spider Stegodyphus dumicola contain a diverse bacterial community, where only a small fraction of the microbes could be recovered by standard cultivation. To improve the recovery of the bacterial diversity cultured from nests, we modified the previously described isolation chip (iChip) to fit the natural arid environment of S. dumicola nests. Here we provide a comprehensive analysis of the modified iChip's performance. We found that the modified iChip improved the overall culturability, performed equally or better at recovering the bacterial diversity from individual nests, and improved the recovery of rare isolates compared to standard cultivation. Furthermore, we show that the modified iChip can be used in the field. In addition, we observed that the nests contain volatile organic compounds (VOCs) that could serve as substrate for the selective enrichment of rare and iChip-specific isolates. Our modified iChip can be applied for in situ cultivation in a broad range of arid habitats that can be exploited for future drug discovery.IMPORTANCEThe demand for novel antimicrobial compounds is an ever-increasing problem due to the rapid spread of antibiotic-resistant microbes. Therefore, exploring new habitats for microbial-derived antimicrobial compounds is crucial. The nest microbiome of Stegodyphus dumicola remains largely unexplored and could potentially serve as a new source of antimicrobial compounds. To access the nest's microbial diversity, we designed a modified iChip for in situ cultivation inside spider nests and tested its applications in both field and laboratory settings. Our study shows that the iChip's ability to recover in situ abundant genera was comparable or superior to standard cultivation, while the recovery of rare (low-abundant genera) was higher. We argue that these low-abundant and iChip-specific isolates are enriched from naturally occurring nest volatile organic compounds (VOCs) during iChip incubation.
Collapse
Affiliation(s)
- Seven Nazipi Bushi
- Department of Biology - Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Marie B Lund
- Department of Biology - Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Tobias Sandfeld
- Department of Biology - Section for Microbiology, Aarhus University, Aarhus, Denmark
| | | | | | | | - Trine Bilde
- Department of Biology - Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Department of Biology - Section for Microbiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Zagal D, Graham JG, Bisson J, Green SJ, Pauli GF. Medicinal Plant Microbiomes: Factors Affecting Bacterial and Fungal Community Composition. PLANTA MEDICA 2024; 90:1130-1142. [PMID: 39447601 DOI: 10.1055/a-2420-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
This exploratory study was designed to identify factors implicating microbial influence on medicinal plant metabolomes. Utilizing a whole-microbiome approach, amplicon sequencing was used to identify the makeup of fungal and bacterial assemblages from endophytic (interior) and epiphytic (external) environments in two different sets of congeneric host-plant pairs, with collection of multiple samples of two medicinal plant species (Actaea racemosa, Rhodiola rosea) and two generic analogs (Actaea rubra, Rhodiola integrifolia). Diversity analysis of microbial assemblages revealed the influence of three primary factors driving variance in microbial community composition: host-plant taxonomy, the compartmentalization of microbial communities within discrete plant parts, and the scale of distance (microhabitat heterogeneity) between sampling locations. These three factors accounted for ~ 60% of variance within and between investigated microbiomes. Across all our collections, bacterial populations were more diverse than fungi (per compartment), and microbial density in epiphytic compartments (aerial parts, rhizosphere) were higher than those of endophytes (leaf and root). These comparative data point to key loci associated with variation between congeneric pairs and plant genera, providing insight into the complex and contrasting relationships found within this multi-kingdom coevolutionary relationship. Although reflective of only a limited set of botanical source materials, these data document the richness of a relatively unexplored component of the plant world and highlight the relevance of a whole-microbiome ecology-driven approach to botanical research and directed natural product investigations.
Collapse
Affiliation(s)
- Daniel Zagal
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, Illinois, USA
| | - James G Graham
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, Illinois, USA
| | - Jonathan Bisson
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, Illinois, USA
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, Illinois, USA
| | - Guido F Pauli
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, Illinois, USA
| |
Collapse
|
3
|
Clark CM, Kwan JC. Creating and leveraging bespoke large-scale knowledge graphs for comparative genomics and multi-omics drug discovery with SocialGene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608329. [PMID: 39229008 PMCID: PMC11370487 DOI: 10.1101/2024.08.16.608329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The rapid expansion of multi-omics data has transformed biological research, offering unprecedented opportunities to explore complex genomic relationships across diverse organisms. However, the vast volume and heterogeneity of these datasets presents significant challenges for analyses. Here we introduce SocialGene, a comprehensive software suite designed to collect, analyze, and organize multi-omics data into structured knowledge graphs, with the ability to handle small projects to repository-scale analyses. Originally developed to enhance genome mining for natural product drug discovery, SocialGene has been effective across various applications, including functional genomics, evolutionary studies, and systems biology. SocialGene's concerted Python and Nextflow libraries streamline data ingestion, manipulation, aggregation, and analysis, culminating in a custom Neo4j database. The software not only facilitates the exploration of genomic synteny but also provides a foundational knowledge graph supporting the integration of additional diverse datasets and the development of advanced search engines and analyses. This manuscript introduces some of SocialGene's capabilities through brief case studies including targeted genome mining for drug discovery, accelerated searches for similar and distantly related biosynthetic gene clusters in biobank-available organisms, integration of chemical and analytical data, and more. SocialGene is free, open-source, MIT-licensed, designed for adaptability and extension, and available from github.com/socialgene.
Collapse
Affiliation(s)
- Chase M. Clark
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Jason C. Kwan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
4
|
Zhao JX, Yue JM. Frontier studies on natural products: moving toward paradigm shifts. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Kapoor R, Saini A, Sharma D. Indispensable role of microbes in anticancer drugs and discovery trends. Appl Microbiol Biotechnol 2022; 106:4885-4906. [PMID: 35819512 DOI: 10.1007/s00253-022-12046-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/02/2022]
Abstract
Recent years have seen an increased focus on the advancement of naturally derived products for the treatment of cancer. Since the beginning of recorded history, nature has provided a variety of medicinal agents, and an overwhelming number of drugs that we have today are derived from natural sources. Such natural agents are prominently used to treat several diseases such as diabetes, malaria, Alzheimer's, pulmonary disorders, etc. with cancer being the highlight of this review. Due to the rapid development of resistance to chemotherapeutic drugs, the hunt for effective novel drugs is still a paramount concern in cancer treatment. Moreover, many chemotherapy drugs typically have high toxicity and adverse side effects, which necessitates the need to develop anti-tumor drugs that can be employed to treat deadly tumors with fewer negative effects on health and better efficacy. Isolation of several chemotherapeutic drugs has been conducted from a wide range of natural sources which include plants, microbes, fungi, and marine microorganisms. Considering the trends of previous decades, microbial diversity has grown to play a significant role in the formulation of pharmaceuticals and drugs, especially antibiotics and anti-cancer medications. Microbe-derived antitumor antibiotics such as anthracycline, epothilones, bleomycin, actinomycin, and staurosporine are amongst the widely used cancer chemotherapeutic agents. This review deals majorly with microbe-derived anticancer drugs taking into account their derivatives, mechanism of action, isolation procedures, limitations, and tumors targeted by them. This article also reports the phase of clinical study these drugs are undergoing. Moreover, it intends to portray the indispensable part that these microbes have been playing since time immemorial in the odyssey of chemotherapeutic agents. KEY POINTS: • Microbial diversity contributes heavily towards the formulation of anticancer drugs. • Polypeptides, carbohydrates, and alkaloids are prevalent microbe-based drug classes. • Microbe-derived anticancer agents target various sarcomas, carcinomas, and lymphomas.
Collapse
Affiliation(s)
- Ridam Kapoor
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Anamika Saini
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, 302006, India.,Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
| |
Collapse
|
6
|
Ramírez-Rendon D, Passari AK, Ruiz-Villafán B, Rodríguez-Sanoja R, Sánchez S, Demain AL. Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol 2022; 106:1855-1878. [PMID: 35188588 PMCID: PMC8860141 DOI: 10.1007/s00253-022-11821-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/18/2022]
Abstract
Microorganisms are remarkable producers of a wide diversity of natural products that significantly improve human health and well-being. Currently, these natural products comprise half of all the pharmaceuticals on the market. After the discovery of penicillin by Alexander Fleming 85 years ago, the search for and study of antibiotics began to gain relevance as drugs. Since then, antibiotics have played a valuable role in treating infectious diseases and have saved many human lives. New molecules with anticancer, hypocholesterolemic, and immunosuppressive activity have now been introduced to treat other relevant diseases. Smaller biotechnology companies and academic laboratories generate novel antibiotics and other secondary metabolites that big pharmaceutical companies no longer develop. The purpose of this review is to illustrate some of the recent developments and to show the potential that some modern technologies like metagenomics and genome mining offer for the discovery and development of new molecules, with different functions like therapeutic alternatives needed to overcome current severe problems, such as the SARS-CoV-2 pandemic, antibiotic resistance, and other emerging diseases. KEY POINTS: • Novel alternatives for the treatment of infections caused by bacteria, fungi, and viruses. • Second wave of efforts of microbial origin against SARS-CoV-2 and related variants. • Microbial drugs used in clinical practice as hypocholesterolemic agents, immunosuppressants, and anticancer therapy.
Collapse
Affiliation(s)
- Dulce Ramírez-Rendon
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Ajit Kumar Passari
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Beatriz Ruiz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico.
| | - Arnold L Demain
- Charles A. Dana Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ, 07940, USA
| |
Collapse
|
7
|
Sánchez-Suárez J, Garnica-Agudelo M, Villamil L, Díaz L, Coy-Barrera E. Bioactivity and Biotechnological Overview of Naturally Occurring Compounds from the Dinoflagellate Family Symbiodiniaceae: A Systematic Review. ScientificWorldJournal 2021; 2021:1983589. [PMID: 34955690 PMCID: PMC8709762 DOI: 10.1155/2021/1983589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022] Open
Abstract
Marine invertebrates are a significant source of biologically active compounds. Recent studies have highlighted the role of microbiota associated with marine invertebrates in the production of bioactive compounds. Corals and sponges are the main marine invertebrates producing bioactive substances, and Symbiodiniaceae dinoflagellates are well-recognized endosymbionts with corals and sponges playing vital functions. The biological properties of Symbiodiniaceae-derived compounds have garnered attention in the past decades owing to their ecological implications and potentiality for bioprospecting initiatives. This study aims to systematically review studies on bioactivities and potential biotechnological applications of Symbiodiniaceae-derived compounds. The PRISMA guidelines were followed. Our study showed that anti-inflammatory and vasoconstrictive activities of Symbiodiniaceae-derived compounds have been the most investigated. However, very few studies have been published, with in vitro culturing of Symbiodiniaceae being the most significant challenge. Therefore, we surveyed for the metabolites reported so far, analyzed their chemodiversity, and discussed approaches to overcome culturing-related limitations.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía, Colombia
| | - Mariana Garnica-Agudelo
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía, Colombia
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá, Colombia
| | - Luisa Villamil
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía, Colombia
| | - Luis Díaz
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá, Colombia
| |
Collapse
|
8
|
Al-Obaidi JR, Jambari NN, Ahmad-Kamil EI. Mycopharmaceuticals and Nutraceuticals: Promising Agents to Improve Human Well-Being and Life Quality. J Fungi (Basel) 2021; 7:jof7070503. [PMID: 34202552 PMCID: PMC8304235 DOI: 10.3390/jof7070503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/19/2023] Open
Abstract
Fungi, especially edible mushrooms, are considered as high-quality food with nutritive and functional values. They are of considerable interest and have been used in the synthesis of nutraceutical supplements due to their medicinal properties and economic significance. Specific fungal groups, including predominantly filamentous endophytic fungi from Ascomycete phylum and several Basidiomycetes, produce secondary metabolites (SMs) with bioactive properties that are involved in the antimicrobial and antioxidant activities. These beneficial fungi, while high in protein and important fat contents, are also a great source of several minerals and vitamins, in particular B vitamins that play important roles in carbohydrate and fat metabolism and the maintenance of the nervous system. This review article will summarize and discuss the abilities of fungi to produce antioxidant, anticancer, antiobesity, and antidiabetic molecules while also reviewing the evidence from the last decade on the importance of research in fungi related products with direct and indirect impact on human health.
Collapse
Affiliation(s)
- Jameel R. Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia
- Correspondence: (J.R.A.-O.); (N.N.J.)
| | - Nuzul Noorahya Jambari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (J.R.A.-O.); (N.N.J.)
| | - E. I. Ahmad-Kamil
- Malaysian Nature Society (MNS), JKR 641, Jalan Kelantan, Bukit Persekutuan, Kuala Lumpur 50480, Malaysia;
| |
Collapse
|
9
|
Yoganathan S, Alagaratnam A, Acharekar N, Kong J. Ellagic Acid and Schisandrins: Natural Biaryl Polyphenols with Therapeutic Potential to Overcome Multidrug Resistance in Cancer. Cells 2021; 10:458. [PMID: 33669953 PMCID: PMC7924821 DOI: 10.3390/cells10020458] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance (MDR) is one of the major clinical challenges in cancer treatment and compromises the effectiveness of conventional anticancer chemotherapeutics. Among known mechanisms of drug resistance, drug efflux via ATP binding cassette (ABC) transporters, namely P-glycoprotein (P-gp) has been characterized as a major mechanism of MDR. The primary function of ABC transporters is to regulate the transport of endogenous and exogenous small molecules across the membrane barrier in various tissues. P-gp and similar efflux pumps are associated with MDR because of their overexpression in many cancer types. One of the intensively studied approaches to overcome this mode of MDR involves development of small molecules to modulate P-gp activity. This strategy improves the sensitivity of cancer cells to anticancer drugs that are otherwise ineffective. Although multiple generations of P-gp inhibitors have been identified to date, reported compounds have demonstrated low clinical efficacy and adverse effects. More recently, natural polyphenols have emerged as a promising class of compounds to address P-gp linked MDR. This review highlights the chemical structure and anticancer activities of selected members of a structurally unique class of 'biaryl' polyphenols. The discussion focuses on the anticancer properties of ellagic acid, ellagic acid derivatives, and schisandrins. Research reports regarding their inherent anticancer activities and their ability to sensitize MDR cell lines towards conventional anticancer drugs are highlighted here. Additionally, a brief discussion about the axial chirality (i.e., atropisomerism) that may be introduced into these natural products for medicinal chemistry studies is also provided.
Collapse
Affiliation(s)
- Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA; (A.A.); (N.A.); (J.K.)
| | - Anushan Alagaratnam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA; (A.A.); (N.A.); (J.K.)
- Department of Chemistry, St. John’s College of Liberal Arts and Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Nikita Acharekar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA; (A.A.); (N.A.); (J.K.)
| | - Jing Kong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA; (A.A.); (N.A.); (J.K.)
| |
Collapse
|
10
|
Gogineni V, Chen X, Hanna G, Mayasari D, Hamann MT. Role of symbiosis in the discovery of novel antibiotics. J Antibiot (Tokyo) 2020; 73:490-503. [PMID: 32499556 DOI: 10.1038/s41429-020-0321-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/18/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022]
Abstract
Antibiotic resistance has been an ongoing challenge that has emerged almost immediately after the initial discovery of antibiotics and requires the development of innovative new antibiotics and antibiotic combinations that can effectively mitigate the development of resistance. More than 35,000 people die each year from antibiotic resistant infections in just the United States. This signifies the importance of identifying other alternatives to antibiotics for which resistance has developed. Virtually, all currently used antibiotics can trace their genesis to soil derived bacteria and fungi. The bacteria and fungi involved in symbiosis is an area that still remains widely unexplored for the discovery and development of new antibiotics. This brief review focuses on the challenges and opportunities in the application of symbiotic microbes and also provides an interesting platform that links natural product chemistry with evolutionary biology and ecology.
Collapse
Affiliation(s)
- Vedanjali Gogineni
- Analytical Development Department, Cambrex Pharmaceuticals, Charles City, IA, USA
- Department of Drug Discovery, Biomedical Sciences and Public Health, College of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaoyan Chen
- Department of Drug Discovery, Biomedical Sciences and Public Health, College of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - George Hanna
- Department of Drug Discovery, Biomedical Sciences and Public Health, College of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Dian Mayasari
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Mark T Hamann
- Department of Drug Discovery, Biomedical Sciences and Public Health, College of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
11
|
Toghueo RMK, Sahal D, Boyom FF. Recent advances in inducing endophytic fungal specialized metabolites using small molecule elicitors including epigenetic modifiers. PHYTOCHEMISTRY 2020; 174:112338. [PMID: 32179305 DOI: 10.1016/j.phytochem.2020.112338] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Today when the quest of new lead molecules to supply the development pipeline is driving the course of drug discovery, endophytic fungi with their outstanding biosynthetic potential seem to be highly promising avenues for natural product scientists. However, challenges such as the production of inadequate quantities of compounds, the attenuation or loss of ability of endophytes to produce the compound of interest when grown in culture and the inability of fungal endophytes to express their full biosynthetic potential in laboratory conditions have been the major constraints. These have led to the application of small chemical elicitors that induce epigenetic changes in fungi to activate their silent gene clusters optimizing the amount of metabolites of interest or inducing the synthesis of hitherto undescribed compounds. In this respect small molecular weight compounds which are known to function as inhibitors of histone deacetylase (HDAC), DNA methyltransferase (DNMT) and proteasome have proven their efficacy in enhancing or inducing the production of specialized metabolites by fungi. Moreover, organic solvents, metals and plants extracts are also acknowledged for their ability to cause shifts in fungal metabolism. We highlight the successful studies from the past two decades reporting the ability of structurally diverse small molecular weight compounds to elicit the production of previously undescribed metabolites from endophytic fungi grown in culture. This mini review argues in favor of chemical elicitation as an effective strategy to optimize the production of fungal metabolites and invigorate the pipeline of drug discovery with new chemical entities.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
12
|
Murakami S, Hayashi N, Inomata T, Kato H, Hitora Y, Tsukamoto S. Induction of secondary metabolite production by fungal co-culture of Talaromyces pinophilus and Paraphaeosphaeria sp. J Nat Med 2020; 74:545-549. [PMID: 32236853 DOI: 10.1007/s11418-020-01400-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Fungal co-culture is a strategy to induce the production of secondary metabolites by activating cryptic genes. We discovered the production of a new compound, talarodone A (1), along with five known compounds 2-6 in co-culture of Talaromyces pinophilus and Paraphaeosphaeria sp. isolated from soil collected in Miyazaki Prefecture, Japan. Among them, the productions of penicidones C (2) and D (3) were enhanced 27- and sixfold, respectively, by the co-culture. The structure of 3 should be represented as a γ-pyridol form with the reported chemical shifts, but not as a γ-pyridone form, based on DFT calculation.
Collapse
Affiliation(s)
- Shunya Murakami
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Nozomu Hayashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Teruyo Inomata
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Hikaru Kato
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan.
| | - Yuki Hitora
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Sachiko Tsukamoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan.
| |
Collapse
|
13
|
Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. JOURNAL OF NATURAL PRODUCTS 2020; 83:770-803. [PMID: 32162523 DOI: 10.1021/acs.jnatprod.9b01285] [Citation(s) in RCA: 3245] [Impact Index Per Article: 649.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review is an updated and expanded version of the five prior reviews that were published in this journal in 1997, 2003, 2007, 2012, and 2016. For all approved therapeutic agents, the time frame has been extended to cover the almost 39 years from the first of January 1981 to the 30th of September 2019 for all diseases worldwide and from ∼1946 (earliest so far identified) to the 30th of September 2019 for all approved antitumor drugs worldwide. As in earlier reviews, only the first approval of any drug is counted, irrespective of how many "biosimilars" or added approvals were subsequently identified. As in the 2012 and 2016 reviews, we have continued to utilize our secondary subdivision of a "natural product mimic", or "NM", to join the original primary divisions, and the designation "natural product botanical", or "NB", to cover those botanical "defined mixtures" now recognized as drug entities by the FDA (and similar organizations). From the data presented in this review, the utilization of natural products and/or synthetic variations using their novel structures, in order to discover and develop the final drug entity, is still alive and well. For example, in the area of cancer, over the time frame from 1946 to 1980, of the 75 small molecules, 40, or 53.3%, are N or ND. In the 1981 to date time frame the equivalent figures for the N* compounds of the 185 small molecules are 62, or 33.5%, though to these can be added the 58 S* and S*/NMs, bringing the figure to 64.9%. In other areas, the influence of natural product structures is quite marked with, as expected from prior information, the anti-infective area being dependent on natural products and their structures, though as can be seen in the review there are still disease areas (shown in Table 2) for which there are no drugs derived from natural products. Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have been used very successfully in the optimization of many recently approved agents, we are still able to identify only two de novo combinatorial compounds (one of which is a little speculative) approved as drugs in this 39-year time frame, though there is also one drug that was developed using the "fragment-binding methodology" and approved in 2012. We have also added a discussion of candidate drug entities currently in clinical trials as "warheads" and some very interesting preliminary reports on sources of novel antibiotics from Nature due to the absolute requirement for new agents to combat plasmid-borne resistance genes now in the general populace. We continue to draw the attention of readers to the recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated"; thus we consider that this area of natural product research should be expanded significantly.
Collapse
Affiliation(s)
- David J Newman
- NIH Special Volunteer, Wayne, Pennsylvania 19087, United States
| | - Gordon M Cragg
- NIH Special Volunteer, Gaithersburg, Maryland 20877, United States
| |
Collapse
|
14
|
Rodríguez JPG, Bernardi DI, Gubiani JR, Magalhães de Oliveira J, Morais-Urano RP, Bertonha AF, Bandeira KF, Bulla JIQ, Sette LD, Ferreira AG, Batista JM, Silva TDS, Santos RAD, Martins CHG, Lira SP, Cunha MGD, Trivella DBB, Grazzia N, Gomes NES, Gadelha F, Miguel DC, Cauz ACG, Brocchi M, Berlinck RGS. Water-Soluble Glutamic Acid Derivatives Produced in Culture by Penicillium solitum IS1-A from King George Island, Maritime Antarctica. JOURNAL OF NATURAL PRODUCTS 2020; 83:55-65. [PMID: 31895573 DOI: 10.1021/acs.jnatprod.9b00635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new method of screening was developed to generate 770 organic and water-soluble fractions from extracts of nine species of marine sponges, from the growth media of 18 species of marine-derived fungi, and from the growth media of 13 species of endophytic fungi. The screening results indicated that water-soluble fractions displayed significant bioactivity in cytotoxic, antibiotic, anti-Leishmania, anti-Trypanosoma cruzi, and inhibition of proteasome assays. Purification of water-soluble fractions from the growth medium of Penicillium solitum IS1-A provided the new glutamic acid derivatives solitumine A (1), solitumine B (2), and solitumidines A-D (3-6). The structures of compounds 1-6 have been established by analysis of spectroscopic data, chemical derivatizations, and vibrational circular dichroism calculations. Although no biological activity could be observed for compounds 1-6, the new structures reported for 1-6 indicate that the investigation of water-soluble natural products represents a relevant strategy in finding new secondary metabolites.
Collapse
Affiliation(s)
- Julie P G Rodríguez
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| | - Darlon I Bernardi
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| | | | - Raquel P Morais-Urano
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| | - Ariane F Bertonha
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| | - Karin F Bandeira
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| | - Jairo I Q Bulla
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| | - Lara D Sette
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências , Universidade Estadual Paulista "Júlio de Mesquita Filho" , Campus Rio Claro, Avenida 24-A , 1515 , Rio Claro , SP , Brazil
| | - Antonio G Ferreira
- Departamento de Química , Universidade Federal de São Carlos , 13565-905 , São Carlos , SP , Brazil
| | - João M Batista
- Instituto de Ciência e Tecnologia , Universidade Federal de São Paulo , 12231-280 , São José dos Campos , SP , Brazil
| | - Thayná de Souza Silva
- Núcleo de Pesquisa em Ciência e Tecnologia , Universidade de Franca , Avenida Dr. Armando Salles Oliveira, 201. Pq. Universitário , 14404-600 , Franca , SP , Brazil
| | - Raquel Alves Dos Santos
- Núcleo de Pesquisa em Ciência e Tecnologia , Universidade de Franca , Avenida Dr. Armando Salles Oliveira, 201. Pq. Universitário , 14404-600 , Franca , SP , Brazil
| | - Carlos H G Martins
- Núcleo de Pesquisa em Ciência e Tecnologia , Universidade de Franca , Avenida Dr. Armando Salles Oliveira, 201. Pq. Universitário , 14404-600 , Franca , SP , Brazil
| | - Simone P Lira
- Departamento de Ciências Exatas, Escola Superior de Agricultura Luiz de Queiroz , Universidade de São Paulo , Avenida Pádua Dias, 11, CP 9, Agronomia, CEP 13418-900 , Piracicaba , SP , Brazil
| | - Marcos G da Cunha
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Material, Giuseppe Maximo Scolfaro , 10000, Pólo II de Alta Tecnologia de Campinas , 13083-970 Campinas , SP , Brazil
| | - Daniela B B Trivella
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Material, Giuseppe Maximo Scolfaro , 10000, Pólo II de Alta Tecnologia de Campinas , 13083-970 Campinas , SP , Brazil
| | - Nathalia Grazzia
- Instituto de Biologia , Universidade Estadual de Campinas , CEP 13083-862 , Campinas , SP , Brazil
| | - Natália E S Gomes
- Instituto de Biologia , Universidade Estadual de Campinas , CEP 13083-862 , Campinas , SP , Brazil
| | - Fernanda Gadelha
- Instituto de Biologia , Universidade Estadual de Campinas , CEP 13083-862 , Campinas , SP , Brazil
| | - Danilo C Miguel
- Instituto de Biologia , Universidade Estadual de Campinas , CEP 13083-862 , Campinas , SP , Brazil
| | - Ana Carolina G Cauz
- Instituto de Biologia , Universidade Estadual de Campinas , CEP 13083-862 , Campinas , SP , Brazil
| | - Marcelo Brocchi
- Instituto de Biologia , Universidade Estadual de Campinas , CEP 13083-862 , Campinas , SP , Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos , Universidade de São Paulo , CP 780, CEP 13560-970 , São Carlos , SP , Brazil
| |
Collapse
|
15
|
Lefranc F, Koutsaviti A, Ioannou E, Kornienko A, Roussis V, Kiss R, Newman D. Algae metabolites: from in vitro growth inhibitory effects to promising anticancer activity. Nat Prod Rep 2019; 36:810-841. [PMID: 30556575 DOI: 10.1039/c8np00057c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: 1957 to 2017 Algae constitute a heterogeneous group of eukaryotic photosynthetic organisms, mainly found in the marine environment. Algae produce numerous metabolites that help them cope with the harsh conditions of the marine environment. Because of their structural diversity and uniqueness, these molecules have recently gained a lot of interest for the identification of medicinally useful agents, including those with potential anticancer activities. In the current review, which is not a catalogue-based one, we first highlight the major biological events that lead to various types of cancer, including metastatic ones, to chemoresistance, thus to any types of current anticancer treatment relating to the use of chemotherapeutics. We then review algal metabolites for which scientific literature reports anticancer activity. Lastly, we focus on algal metabolites with promising anticancer activity based on their ability to target biological characteristics of cancer cells responsible for poor treatment outcomes. Thus, we highlight compounds that have, among others, one or more of the following characteristics: selectivity in reducing the proliferation of cancer cells over normal ones, potential for killing cancer cells through non-apoptotic signaling pathways, ability to circumvent MDR-related efflux pumps, and activity in vivo in relevant pre-clinical models.
Collapse
Affiliation(s)
- Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, ULB, 1070 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hsiao CC, Sieber S, Georgiou A, Bailly A, Emmanouilidou D, Carlier A, Eberl L, Gademann K. Synthesis and Biological Evaluation of the Novel Growth Inhibitor Streptol Glucoside, Isolated from an Obligate Plant Symbiont. Chemistry 2019; 25:1722-1726. [PMID: 30508325 DOI: 10.1002/chem.201805693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/29/2018] [Indexed: 12/23/2022]
Abstract
The plant Psychotria kirkii hosts an obligatory bacterial symbiont, Candidatus Burkholderia kirkii, in nodules on their leaves. Recently, a glucosylated derivative of (+)-streptol, (+)-streptol glucoside, was isolated from the nodulated leaves and was found to possess a plant growth inhibitory activity. To establish a structure-activity relationship study, a convergent strategy was developed to obtain several pseudosugars from a single synthetic precursor. Furthermore, the glucosylation of streptol was investigated in detail and conditions affording specifically the α or β glucosidic anomer were identified. Although (+)-streptol was the most active compound, its concentration in P. kirkii plant leaves extract was approximately ten-fold lower than that of (+)-streptol glucoside. These results provide compelling evidence that the glucosylation of (+)-streptol protects the plant host against the growth inhibitory effect of the compound, which might constitute a molecular cornerstone for this successful plant-bacteria symbiosis.
Collapse
Affiliation(s)
- Chien-Chi Hsiao
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Antri Georgiou
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Aurélien Bailly
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Despina Emmanouilidou
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Aurélien Carlier
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Leo Eberl
- Institute of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
17
|
Allard PM, Bisson J, Azzollini A, Pauli GF, Cordell GA, Wolfender JL. Pharmacognosy in the digital era: shifting to contextualized metabolomics. Curr Opin Biotechnol 2018; 54:57-64. [PMID: 29499476 PMCID: PMC6110999 DOI: 10.1016/j.copbio.2018.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 01/01/2023]
Abstract
Humans have co-evolved alongside numerous other organisms, some having a profound effect on health and nutrition. As the earliest pharmaceutical subject, pharmacognosy has evolved into a meta-discipline devoted to natural biomedical agents and their functional properties. While the acquisition of expanding data volumes is ongoing, contextualization is lagging. Thus, we assert that the establishment of an integrated and open databases ecosystem will nurture the discipline. After proposing an epistemological framework of knowledge acquisition in pharmacognosy, this study focuses on recent computational and analytical approaches. It then elaborates on the flux of research data, where good practices could foster the implementation of more integrated systems, which will in turn help shaping the future of pharmacognosy and determine its constitutional societal relevance.
Collapse
Affiliation(s)
- Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland.
| | - Jonathan Bisson
- Center for Natural Product Technologies, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Antonio Azzollini
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Guido F Pauli
- Center for Natural Product Technologies, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, United States
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, IL 60203, United States; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
18
|
Demissie ZA, Foote SJ, Tan Y, Loewen MC. Profiling of the Transcriptomic Responses of Clonostachys rosea Upon Treatment With Fusarium graminearum Secretome. Front Microbiol 2018; 9:1061. [PMID: 29930539 PMCID: PMC5999785 DOI: 10.3389/fmicb.2018.01061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/04/2018] [Indexed: 11/23/2022] Open
Abstract
Clonostachys rosea strain ACM941 is a fungal bio-control agent patented against the causative agent of Fusarium Head Blight, Fusarium graminearum. Although the molecular details remain enigmatic, previous studies have suggested that C. rosea may secrete F. graminearum growth inhibitors. Further toward this, experiments described herein show that induction of C. rosea cultures by the addition of an aliquot of F. graminearum(Fg)-spent media (including macroconidia), yield C. rosea (Cr)-spent media that elicited higher anti-F. graminearum activity than either control or deoxynivalenol (DON)-induced Cr-spent media. To gain additional insight into the genetic and metabolic factors modulating this interaction, transcriptomic (RNAseq) profiles of C. rosea in response to DON and Fg-spent media treatment, were developed. This analysis revealed 24,112 C. rosea unigenes, of which 5,605 and 6,285 were differentially regulated by DON and F-spent media, respectively. More than half of these unigenes were up-regulated, with annotations, most notably in the Fg-spent media treatment data, suggesting enhancement of polyketide (PK) and non-ribosomal peptide (NRP) secondary metabolite precursor synthesis, and PK/NRP-like synthases. Four ABC transporters were also up-regulated in response to Fg-spent media. Further analysis showed that the PK and NRP-like synthases belong to three gene clusters that also include ABC transporters, and other genes known to tailor secondary metabolite biosynthesis. The RNAseq data was further validated using quantitative RT-qPCR. Taken together, these results show that C. rosea responds to the presence of Fg-spent media (and to a lesser extent, DON-alone) by up-regulating unique aspects of its secondary metabolism-related genetic repertoire. The identities and roles of C. rosea secondary metabolites produced by the targeted gene clusters are now under investigation.
Collapse
Affiliation(s)
- Zerihun A. Demissie
- Aquatic and Crop Resource Development, National Research Council Canada, Ottawa, ON, Canada
| | - Simon J. Foote
- Human Health Therapeutics, National Research Council of Canada, Ottawa, ON, Canada
| | - Yifang Tan
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Michele C. Loewen
- Aquatic and Crop Resource Development, National Research Council Canada, Ottawa, ON, Canada
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, ON, Canada
| |
Collapse
|
19
|
Adnani N, Chevrette MG, Adibhatla SN, Zhang F, Yu Q, Braun DR, Nelson J, Simpkins SW, McDonald BR, Myers CL, Piotrowski JS, Thompson CJ, Currie CR, Li L, Rajski SR, Bugni TS. Coculture of Marine Invertebrate-Associated Bacteria and Interdisciplinary Technologies Enable Biosynthesis and Discovery of a New Antibiotic, Keyicin. ACS Chem Biol 2017; 12:3093-3102. [PMID: 29121465 DOI: 10.1021/acschembio.7b00688] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advances in genomics and metabolomics have made clear in recent years that microbial biosynthetic capacities on Earth far exceed previous expectations. This is attributable, in part, to the realization that most microbial natural product (NP) producers harbor biosynthetic machineries not readily amenable to classical laboratory fermentation conditions. Such "cryptic" or dormant biosynthetic gene clusters (BGCs) encode for a vast assortment of potentially new antibiotics and, as such, have become extremely attractive targets for activation under controlled laboratory conditions. We report here that coculturing of a Rhodococcus sp. and a Micromonospora sp. affords keyicin, a new and otherwise unattainable bis-nitroglycosylated anthracycline whose mechanism of action (MOA) appears to deviate from those of other anthracyclines. The structure of keyicin was elucidated using high resolution MS and NMR technologies, as well as detailed molecular modeling studies. Sequencing of the keyicin BGC (within the Micromonospora genome) enabled both structural and genomic comparisons to other anthracycline-producing systems informing efforts to characterize keyicin. The new NP was found to be selectively active against Gram-positive bacteria including both Rhodococcus sp. and Mycobacterium sp. E. coli-based chemical genomics studies revealed that keyicin's MOA, in contrast to many other anthracyclines, does not invoke nucleic acid damage.
Collapse
Affiliation(s)
- Navid Adnani
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Marc G. Chevrette
- Department
of Bacteriology, University of Wisconsin, Madison, Wisconsin 53705, United States
- Department
of Genetics, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Srikar N. Adibhatla
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Fan Zhang
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Qing Yu
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Doug R. Braun
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Justin Nelson
- Bioinformatics
and Computational Biology Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Scott W. Simpkins
- Bioinformatics
and Computational Biology Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Bradon R. McDonald
- Department
of Bacteriology, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Chad L. Myers
- Bioinformatics
and Computational Biology Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
- Department
of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | | | | | - Cameron R. Currie
- Department
of Bacteriology, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Scott R. Rajski
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Tim S. Bugni
- Pharmaceutical
Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
20
|
Molloy EM, Hertweck C. Antimicrobial discovery inspired by ecological interactions. Curr Opin Microbiol 2017; 39:121-127. [PMID: 29169087 DOI: 10.1016/j.mib.2017.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/06/2017] [Indexed: 01/08/2023]
Abstract
Bacteria represent an unparalleled source of antibiotics used to treat infectious diseases. Yet, genome analyses have revealed that their full biosynthetic potential is much larger than expected. Valuable strategies to unearth hidden antibiotics are genome mining, pathway engineering and triggering, as well as co-cultivation approaches. Nevertheless, there is growing understanding that it is often essential to consider the ecological context and that there is a great potential for antimicrobial discovery from bacteria engaged in well-defined interactions with other organisms. Various ecological scenarios involving antimicrobial agents are outlined in this review: predator-prey and pathogenic interactions, the protection of insect assets such as offspring and cultivars, as well as host protection in symbiotic relationships with plants, invertebrates and animals/humans. The illustrative examples given reinforce the idea that examination of interactions between organisms can yield new antimicrobial compounds, and ultimately further our understanding of the function of these molecules in the environment.
Collapse
Affiliation(s)
- Evelyn M Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany; Natural Product Chemistry, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
21
|
Symbiotic Microbes from Marine Invertebrates: Driving a New Era of Natural Product Drug Discovery. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Li G, Lou HX. Strategies to diversify natural products for drug discovery. Med Res Rev 2017; 38:1255-1294. [PMID: 29064108 DOI: 10.1002/med.21474] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
Natural product libraries contain specialized metabolites derived from plants, animals, and microorganisms that play a pivotal role in drug discovery due to their immense structural diversity and wide variety of biological activities. The strategies to greatly extend natural product scaffolds through available biological and chemical approaches offer unique opportunities to access a new series of natural product analogues, enabling the construction of diverse natural product-like libraries. The affordability of these structurally diverse molecules has been a crucial step in accelerating drug discovery. This review provides an overview of various approaches to exploit the diversity of compounds for natural product-based drug development, drawing upon a series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Gang Li
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hong-Xiang Lou
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China.,Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
23
|
Pulschen AA, Bendia AG, Fricker AD, Pellizari VH, Galante D, Rodrigues F. Isolation of Uncultured Bacteria from Antarctica Using Long Incubation Periods and Low Nutritional Media. Front Microbiol 2017; 8:1346. [PMID: 28769908 PMCID: PMC5509766 DOI: 10.3389/fmicb.2017.01346] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/03/2017] [Indexed: 12/16/2022] Open
Abstract
Uncultured microorganisms comprise most of the microbial diversity existing on our planet. Despite advances in environmental sequencing and single-cell genomics, in-depth studies about bacterial metabolism and screening of novel bioproducts can only be assessed by culturing microbes in the laboratory. Here we report uncultured, or recalcitrant, microorganisms from an Antarctic soil sample, using relatively simple methods: oligotrophic media, extended incubation periods, observation under stereo microscopy, and selection of slow-growing bacteria. We managed to isolate several rare microorganisms belonging to infrequently isolated or recently described genera, for example Lapillicoccus, Flavitalea, Quadrisphaera, Motilibacter, and Polymorphobacter. Additionally, we obtained isolates presenting 16S rRNA sequence similarity ranging from 92.08 to 94.46% with any other known cultured species, including two distinct isolates from the class Thermoleophilia, that although common in Antarctic soils (as identified by metagenomics), was never reported to be isolated from such samples. Our data indicates that simple methods are still useful for cultivating recalcitrant microorganisms, even when dealing with samples from extreme environments.
Collapse
Affiliation(s)
| | - Amanda G Bendia
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São PauloButantã, Brazil
| | | | - Vivian H Pellizari
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São PauloButantã, Brazil
| | - Douglas Galante
- Laboratório Nacional de Luz Síncrotron, Centro Nacional de Pesquisa em Energia e MateriaisCampinas, Brazil
| | - Fabio Rodrigues
- Departamento de Química Fundamental, Instituto de Química, Universidade de São PauloButantã, Brazil
| |
Collapse
|
24
|
Abstract
Covering: 2010 up to 2017Life on Earth is characterized by a remarkable abundance of symbiotic and highly refined relationships among life forms. Defined as any kind of close, long-term association between two organisms, symbioses can be mutualistic, commensalistic or parasitic. Historically speaking, selective pressures have shaped symbioses in which one organism (typically a bacterium or fungus) generates bioactive small molecules that impact the host (and possibly other symbionts); the symbiosis is driven fundamentally by the genetic machineries available to the small molecule producer. The human microbiome is now integral to the most recent chapter in animal-microbe symbiosis studies and plant-microbe symbioses have significantly advanced our understanding of natural products biosynthesis; this also is the case for studies of fungal-microbe symbioses. However, much less is known about microbe-microbe systems involving interspecies interactions. Microbe-derived small molecules (i.e. antibiotics and quorum sensing molecules, etc.) have been shown to regulate transcription in microbes within the same environmental niche, suggesting interspecies interactions whereas, intraspecies interactions, such as those that exploit autoinducing small molecules, also modulate gene expression based on environmental cues. We, and others, contend that symbioses provide almost unlimited opportunities for the discovery of new bioactive compounds whose activities and applications have been evolutionarily optimized. Particularly intriguing is the possibility that environmental effectors can guide laboratory expression of secondary metabolites from "orphan", or silent, biosynthetic gene clusters (BGCs). Notably, many of the studies summarized here result from advances in "omics" technologies and highlight how symbioses have given rise to new anti-bacterial and antifungal natural products now being discovered.
Collapse
Affiliation(s)
- Navid Adnani
- University of Wisconsin Madison, School of Pharmacy, Div. of Pharmaceutical Sciences, 777 Highland Ave., Madison, WI 53705-2222, USA.
| | | | | |
Collapse
|
25
|
Hill P, Heberlig GW, Boddy CN. Sampling Terrestrial Environments for Bacterial Polyketides. Molecules 2017; 22:E707. [PMID: 28468277 PMCID: PMC6154731 DOI: 10.3390/molecules22050707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
Bacterial polyketides are highly biologically active molecules that are frequently used as drugs, particularly as antibiotics and anticancer agents, thus the discovery of new polyketides is of major interest. Since the 1980s discovery of polyketides has slowed dramatically due in large part to the repeated rediscovery of known compounds. While recent scientific and technical advances have improved our ability to discover new polyketides, one key area has been under addressed, namely the distribution of polyketide-producing bacteria in the environment. Identifying environments where producing bacteria are abundant and diverse should improve our ability to discover (bioprospect) new polyketides. This review summarizes for the bioprospector the state-of-the-field in terrestrial microbial ecology. It provides insight into the scientific and technical challenges limiting the application of microbial ecology discoveries for bioprospecting and summarizes key developments in the field that will enable more effective bioprospecting. The major recent efforts by researchers to sample new environments for polyketide discovery is also reviewed and key emerging environments such as insect associated bacteria, desert soils, disease suppressive soils, and caves are highlighted. Finally strategies for taking and characterizing terrestrial samples to help maximize discovery efforts are proposed and the inclusion of non-actinomycetal bacteria in any terrestrial discovery strategy is recommended.
Collapse
Affiliation(s)
- Patrick Hill
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Graham W Heberlig
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Christopher N Boddy
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|