1
|
Tejada-Arranz A, Lulla A, Bouilloux-Lafont M, Turlin E, Pei XY, Douché T, Matondo M, Williams AH, Raynal B, Luisi BF, De Reuse H. Acetylation regulates the oligomerization state and activity of RNase J, the Helicobacter pylori major ribonuclease. Nat Commun 2023; 14:8072. [PMID: 38057323 PMCID: PMC10700544 DOI: 10.1038/s41467-023-43825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
In the gastric pathogen Helicobacter pylori, post-transcriptional regulation relies strongly on the activity of the essential ribonuclease RNase J. Here, we elucidated the crystal and cryo-EM structures of RNase J and determined that it assembles into dimers and tetramers in vitro. We found that RNase J extracted from H. pylori is acetylated on multiple lysine residues. Alanine substitution of several of these residues impacts on H. pylori morphology, and thus on RNase J function in vivo. Mutations of Lysine 649 modulates RNase J oligomerization in vitro, which in turn influences ribonuclease activity in vitro. Our structural analyses of RNase J reveal loops that gate access to the active site and rationalizes how acetylation state of K649 can influence activity. We propose acetylation as a regulatory level controlling the activity of RNase J and its potential cooperation with other enzymes of RNA metabolism in H. pylori.
Collapse
Affiliation(s)
- Alejandro Tejada-Arranz
- Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
- Biozentrum, University of Basel, Basel, Switzerland
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Maxime Bouilloux-Lafont
- Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, Institut Pasteur, Paris, France
| | - Evelyne Turlin
- Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, Institut Pasteur, Paris, France
| | - Xue-Yuan Pei
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Thibaut Douché
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR CNRS 2000, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR CNRS 2000, Institut Pasteur, Paris, France
| | - Allison H Williams
- University of California San Francisco, Cellular Molecular Pharmacology, San Francisco, CA, USA
| | - Bertrand Raynal
- Département de Biologie structurale et chimie, Plateforme de biophysique moléculaire, Institut Pasteur, Paris, France
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Hilde De Reuse
- Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, Institut Pasteur, Paris, France.
| |
Collapse
|
2
|
Ogura M, Matsutani M, Asai K, Suzuki M. Glucose controls manganese homeostasis through transcription factors regulating known and newly identified manganese transporter genes in Bacillus subtilis. J Biol Chem 2023; 299:105069. [PMID: 37468100 PMCID: PMC10448178 DOI: 10.1016/j.jbc.2023.105069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Mn2+ is an essential nutrient whose concentration is tightly controlled in bacteria. In Bacillus subtilis, the Mn2+-activated transcription factor MntR controls Mn2+ transporter genes. However, factors regulating intracellular Mn2+ concentration are incompletely understood. Here, we found that glucose addition induces an increase in intracellular Mn2+ concentration. We determined this upshift was mediated by glucose induction of the major Mn2+ importer gene mntH by the transcription factor AhrC, which is known to be involved in arginine metabolism and to be indirectly induced by glucose. In addition, we identified novel AhrC-regulated genes encoding the Mn2+ importer YcsG and the ABC-type exporter YknUV. We found the expression of these genes was also regulated by glucose and contributes to the glucose induction of Mn2+ concentrations. ycsG expression is regulated by MntR as well. Furthermore, we analyzed the interaction of AhrC and MntR with the promoter driving ycsG expression and examined the Mn2+-dependent induction of this promoter to identify the transcription factors responsible for the Mn2+ induction. RNA-Seq revealed that disruption of ahrC and mntR affected the expression of 502 and 478 genes, respectively (false discovery rate, <0.001, log2[fold change] ≥ |2|. The AhrC- and/or MntR-dependent expression of twenty promoters was confirmed by LacZ analysis, and AhrC or MntR binding to some of these promoters was observed via EMSA. The finding that glucose promotes an increase in intracellular Mn2+ levels without changes in extracellular Mn2+ concentrations is reasonable for the bacterium, as intracellular Mn2+ is required for enzymes and pathways mediating glucose metabolism.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan.
| | | | - Kei Asai
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Michio Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Ogura M. Identification of transposon-inserted mutations including rnpB::Tn that abolished glucose induction of sigX encoding extracytoplasmic function-sigma factor in Bacillus subtilis. Biosci Biotechnol Biochem 2022; 86:282-285. [PMID: 34864869 DOI: 10.1093/bbb/zbab211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/27/2021] [Indexed: 11/13/2022]
Abstract
We investigated the regulators of the glucose induction (GI) of the ECF-sigma genes sigX/M. During further screening of transposon-inserted mutants, we identified several regulators including an RNA component of RNase P (rnpB), which is required for tRNA maturation. A depletion of rnpB is known to trigger the stringent response. We showed evidence that the stringent response inhibited GI of sigX/M.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Orido, Shizuoka, Japan
| |
Collapse
|
4
|
Kanesaki Y, Ogura M. RNA-seq analysis identified glucose-responsive genes and YqfO as a global regulator in Bacillus subtilis. BMC Res Notes 2021; 14:450. [PMID: 34906218 PMCID: PMC8670212 DOI: 10.1186/s13104-021-05869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Objective We observed that the addition of glucose enhanced the expression of sigX and sigM, encoding extra-cytoplasmic function sigma factors in Bacillus subtilis. Several regulatory factors were identified for this phenomenon, including YqfO, CshA (RNA helicase), and YlxR (nucleoid-associated protein). Subsequently, the relationships among these regulators were analyzed. Among them, YqfO is conserved in many bacterial genomes and may function as a metal ion insertase or metal chaperone, but has been poorly characterized. Thus, to further characterize YqfO, we performed RNA sequencing (RNA-seq) analysis of YqfO in addition to CshA and YlxR. Results We first performed comparative RNA-seq to detect the glucose-responsive genes. Next, to determine the regulatory effects of YqfO in addition to CshA and YlxR, three pairs of comparative RNA-seq analyses were performed (yqfO/wt, cshA/wt, and ylxR/wt). We observed relatively large regulons (approximately 420, 780, and 180 for YqfO, CshA, and YlxR, respectively) and significant overlaps, indicating close relationships among the three regulators. This study is the first to reveal that YqfO functions as a global regulator in B. subtilis. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05869-1.
Collapse
Affiliation(s)
- Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, 3-20-1 Orido Shimizu-ku, Shizuoka, 424-8610, Japan.
| |
Collapse
|
5
|
Maan H, Gilhar O, Porat Z, Kolodkin-Gal I. Bacillus subtilis Colonization of Arabidopsis thaliana Roots Induces Multiple Biosynthetic Clusters for Antibiotic Production. Front Cell Infect Microbiol 2021; 11:722778. [PMID: 34557426 PMCID: PMC8454505 DOI: 10.3389/fcimb.2021.722778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 12/01/2022] Open
Abstract
Beneficial and probiotic bacteria play an important role in conferring immunity of their hosts to a wide range of bacterial, viral, and fungal diseases. Bacillus subtilis is a Gram-positive bacterium that protects the plant from various pathogens due to its capacity to produce an extensive repertoire of antibiotics. At the same time, the plant microbiome is a highly competitive niche, with multiple microbial species competing for space and resources, a competition that can be determined by the antagonistic potential of each microbiome member. Therefore, regulating antibiotic production in the rhizosphere is of great importance for the elimination of pathogens and establishing beneficial host-associated communities. In this work, we used B. subtilis as a model to investigate the role of plant colonization in antibiotic production. Flow cytometry and imaging flow cytometry (IFC) analysis supported the notion that Arabidopsis thaliana specifically induced the transcription of the biosynthetic clusters for the non-ribosomal peptides surfactin, bacilysin, plipastatin, and the polyketide bacillaene. IFC was more robust in quantifying the inducing effects of A. thaliana, considering the overall heterogeneity of the population. Our results highlight IFC as a useful tool to study the effect of association with a plant host on bacterial gene expression. Furthermore, the common regulation of multiple biosynthetic clusters for antibiotic production by the plant can be translated to improve the performance and competitiveness of beneficial members of the plant microbiome.
Collapse
Affiliation(s)
- Harsh Maan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Omri Gilhar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Ogura M. Glucose-Mediated Protein Arginine Phosphorylation/Dephosphorylation Regulates ylxR Encoding Nucleoid-Associated Protein and Cell Growth in Bacillus subtilis. Front Microbiol 2020; 11:590828. [PMID: 33101263 PMCID: PMC7546277 DOI: 10.3389/fmicb.2020.590828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Glucose is the most favorable carbon source for many bacteria, and these bacteria have several glucose-responsive networks. We proposed new glucose responsive system, which includes protein acetylation and probable translation control through TsaEBD, which is a tRNA modification enzyme required for the synthesis of threonylcarbamoyl adenosine (t6A)-tRNA. The system also includes nucleoid-associated protein YlxR, regulating more than 400 genes including many metabolic genes and the ylxR-containing operon driven by the PylxS promoter is induced by glucose. Thus, transposon mutagenesis was performed for searching regulatory factors for PylxS expression. As a result, ywlE was identified. The McsB kinase phosphorylates arginine (Arg) residues of proteins and the YwlE phosphatase counteracts against McsB through Arg-dephosphorylation. Phosphorylated Arg has been known to function as a tag for ClpCP-dependent protein degradation. The previous analysis identified TsaD as an Arg-phosphorylated protein. Our results showed that the McsB/YwlE system regulates PylxS expression through ClpCP-mediated protein degradation of TsaD. In addition, we observed that glucose induced ywlE expression and repressed mcsB expression. It was concluded that these phenomena would cause glucose induction (GI) of PylxS, based on the Western blot analyses of TsaD-FLAG. These observations and the previous those that many glycolytic enzymes are Arg-phosphorylated suggested that the McsB/YwlE system might be involved in cell growth in glucose-containing medium. We observed that the disruption of mcsB and ywlE resulted in an increase of cell mass and delayed growth, respectively, in semi-synthetic medium. These results provide us broader insights to the physiological roles of the McsB/YwlE system and protein Arg-phosphorylation.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan
| |
Collapse
|
7
|
Ogura M, Shindo K, Kanesaki Y. Bacillus subtilis Nucleoid-Associated Protein YlxR Is Involved in Bimodal Expression of the Fructoselysine Utilization Operon ( frlBONMD-yurJ) Promoter. Front Microbiol 2020; 11:2024. [PMID: 32983026 PMCID: PMC7475707 DOI: 10.3389/fmicb.2020.02024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 11/13/2022] Open
Abstract
Bacteria must survive harsh environmental fluctuations at times and have evolved several strategies. “Collective” behaviors have been identified due to recent progress in single-cell analysis. Since most bacteria exist as single cells, bacterial populations are often considered clonal. However, accumulated evidence suggests this is not the case. Gene expression and protein expression are often not homogeneous, resulting in phenotypic heterogeneity. In extreme cases, this leads to bistability, the existence of two stable states. In many cases, expression of key master regulators is bimodal via positive feedback loops causing bimodal expression of the target genes. We observed bimodal expression of metabolic genes for alternative carbon sources. Expression profiles of the frlBONMD-yurJ operon driven by the frlB promoter (PfrlB), which encodes degradation enzymes and a transporter for amino sugars including fructoselysine, were investigated using transcriptional lacZ and gfp, and translational fluorescence reporter mCherry fusions. Disruption effects of genes encoding CodY, FrlR, RNaseY, and nucleoid-associated protein YlxR, four known regulatory factors for PfrlB, were examined for expression of each fusion construct. Expression of PfrlB-gfp and PfrlB-mCherry, which were located at amyE and its original locus, respectively, was bimodal; and disruption of ylxR resulted in the disappearance of the clear bimodal expression pattern in flow cytometric analyses. This suggested a role for YlxR on the bimodal expression of PfrlB. The data indicated that YlxR acted on the bimodal expression of PfrlB through both transcription and translation. YlxR regulates many genes, including those related to translation, supporting the above notion. Depletion of RNaseY abolished heterogenous expression of transcriptional PfrlB-gfp but not bimodal expression of translational PfrlB-mCherry, suggesting the role of RNaseY in regulation of the operon through mRNA stability control and regulatory mechanism for PfrlB-mCherry at the translational level. Based on these results, we discuss the meaning and possible cause of bimodal PfrlB expression.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan
| | - Kazutoshi Shindo
- Department of Food and Nutrition, Japan Women's University, Tokyo, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
8
|
Xiang M, Kang Q, Zhang D. Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell. Synth Syst Biotechnol 2020; 5:245-251. [PMID: 32775709 PMCID: PMC7394859 DOI: 10.1016/j.synbio.2020.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
The Gram-positive model bacterium Bacillus subtilis, has been broadly applied in various fields because of its low pathogenicity and strong protein secretion ability, as well as its well-developed fermentation technology. B. subtilis is considered as an attractive host in the field of metabolic engineering, in particular for protein expression and secretion, so it has been well studied and applied in genetic engineering. In this review, we discussed why B. subtilis is a good chassis cell for metabolic engineering. We also summarized the latest research progress in systematic biology, synthetic biology and evolution-based engineering of B. subtilis, and showed systemic metabolic engineering expedite the harnessing B. subtilis for bioproduction.
Collapse
Affiliation(s)
- Mengjie Xiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qian Kang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
9
|
Kim JE, Choi JS, Kim JS, Cho YH, Roe JH. Lysine acetylation of the housekeeping sigma factor enhances the activity of the RNA polymerase holoenzyme. Nucleic Acids Res 2020; 48:2401-2411. [PMID: 31970401 PMCID: PMC7049703 DOI: 10.1093/nar/gkaa011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/28/2019] [Accepted: 01/04/2020] [Indexed: 02/03/2023] Open
Abstract
Protein lysine acetylation, one of the most abundant post-translational modifications in eukaryotes, occurs in prokaryotes as well. Despite the evidence of lysine acetylation in bacterial RNA polymerases (RNAPs), its function remains unknown. We found that the housekeeping sigma factor (HrdB) was acetylated throughout the growth of an actinobacterium, Streptomyces venezuelae, and the acetylated HrdB was enriched in the RNAP holoenzyme complex. The lysine (K259) located between 1.2 and 2 regions of the sigma factor, was determined to be the acetylated residue of HrdB in vivo by LC–MS/MS analyses. Specifically, the label-free quantitative analysis revealed that the K259 residues of all the HrdB subunits were acetylated in the RNAP holoenzyme. Using mutations that mimic or block acetylation (K259Q and K259R), we found that K259 acetylation enhances the interaction of HrdB with the RNAP core enzyme as well as the binding activity of the RNAP holoenzyme to target promoters in vivo. Taken together, these findings provide a novel insight into an additional layer of modulation of bacterial RNAP activity.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Joon-Sun Choi
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - Jung-Hye Roe
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
10
|
Zhao H, Roistacher DM, Helmann JD. Deciphering the essentiality and function of the anti-σ M factors in Bacillus subtilis. Mol Microbiol 2019; 112:482-497. [PMID: 30715747 PMCID: PMC6679829 DOI: 10.1111/mmi.14216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
Abstract
Bacteria use alternative sigma factors to adapt to different growth and stress conditions. The Bacillus subtilis extracytoplasmic function sigma factor SigM regulates genes for cell wall synthesis and is crucial for maintaining cell wall homeostasis under stress conditions. The activity of SigM is regulated by its anti-sigma factor, YhdL, and the accessory protein YhdK. Here, we show that dysregulation of SigM caused by the absence of either component of the anti-sigma factor complex leads to toxic levels of SigM and severe growth defects. High SigM activity results from a dysregulated positive feedback loop, and can be suppressed by overexpression of the housekeeping sigma, SigA. Using a sigM merodiploid strain, we selected for suppressor mutations that allow survival of yhdL depletion strain. The recovered suppressor mutations map to the beta and beta-prime subunits of RNA polymerase core enzyme and selectively reduce SigM activity, and in some cases increase the activity of other alternative sigma factors. This work highlights the ability of mutations in RNA polymerase that remodel the sigma-core interface to differentially affect sigma factor activity, and thereby alter the transcriptional landscape of the cell.
Collapse
Affiliation(s)
- Heng Zhao
- Cornell University, Department of Microbiology, Ithaca, NY, USA
| | | | - John D. Helmann
- Cornell University, Department of Microbiology, Ithaca, NY, USA
| |
Collapse
|
11
|
Christensen DG, Xie X, Basisty N, Byrnes J, McSweeney S, Schilling B, Wolfe AJ. Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions. Front Microbiol 2019; 10:1604. [PMID: 31354686 PMCID: PMC6640162 DOI: 10.3389/fmicb.2019.01604] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N-𝜀-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.
Collapse
Affiliation(s)
- David G. Christensen
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Xueshu Xie
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, CA, United States
| | - James Byrnes
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | - Sean McSweeney
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | | | - Alan J. Wolfe
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
12
|
Rojas-Tapias DF, Helmann JD. Roles and regulation of Spx family transcription factors in Bacillus subtilis and related species. Adv Microb Physiol 2019; 75:279-323. [PMID: 31655740 DOI: 10.1016/bs.ampbs.2019.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacillus subtilis Spx is the prototype for a large family of redox-responsive transcription factors found in many bacteria, most notably those from the phylum Firmicutes. Unusually for a transcription factor, B. subtilis Spx protein modulates gene expression by binding as a monomer to the αCTD domain of RNA polymerase (RNAP), and only interacts with DNA during subsequent promoter engagement. B. subtilis Spx drives the expression of a large regulon in response to proteotoxic conditions, such as heat and disulfide stress, as well as cell wall stress. Here, we review the detailed mechanisms that control the expression, stability, and activity of Spx in response to a variety of stress conditions. We also summarize current knowledge regarding Spx homologs in other Firmicutes, the environmental conditions in which those homologs are activated, and their biological role.
Collapse
Affiliation(s)
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
13
|
Ogura M, Sato T, Abe K. Bacillus subtilis YlxR, Which Is Involved in Glucose-Responsive Metabolic Changes, Regulates Expression of tsaD for Protein Quality Control of Pyruvate Dehydrogenase. Front Microbiol 2019; 10:923. [PMID: 31118925 PMCID: PMC6504816 DOI: 10.3389/fmicb.2019.00923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/11/2019] [Indexed: 01/09/2023] Open
Abstract
Glucose is the most favorable carbon source for many bacteria, which have several glucose-responsive gene networks. Recently, we found that in Bacillus subtilis glucose induces the expression of the extracellular sigma factor genes sigX and sigM through the acetylation of CshA (RNA helicase), which associates with RNA polymerase (RNAP). We performed a transposon mutagenesis screen for mutants with no glucose induction (GI) of sigX-lacZ. While screening for such mutants, we recently found that the GI of sigX/M involves YlxR, a nucleoid-associated protein (NAP) that regulates nearly 400 genes, including metabolic genes. It has been shown that acetylated CshA positively regulates expression of ylxR-containing operon. Here, we report additional mutations in yqfO or tsaD required for the GI of sigX. YqfO contains a universally conserved domain with unknown function. YqfO and YlxR were found to regulate expression of the tsaEBD-containing operon. Mutational analysis using lacZ fusions revealed the adenine-rich cis-element for YlxR. TsaD is a component of the TsaEBD enzyme required for the synthesis of threonylcarbamoyl adenosine (t6A). The t6A modification of tRNA is universal across the three domains of life. Western blot analysis showed that the tsaD mutation in the presence of glucose reduced levels of soluble PdhA, PdhB, and PdhD, which are subunits of the pyruvate dehydrogenase complex (PDHc). This resulted in severely defective PDHc function and thus reduced concentrations of cellular acetyl-CoA, a reaction product of PDHc and plausible source for CshA acetylation. Thus, we discuss a suggested glucose-responsive system (GRS) involving self-reinforcing CshA acetylation. This self-reinforcing pathway may contribute to the maintenance of the acetyl-CoA pool for protein acetylation.
Collapse
Affiliation(s)
- Mitsuo Ogura
- Institute of Oceanic Research and Development, Tokai University, Shizuoka, Japan
| | - Tsutomu Sato
- Department of Frontier Bioscience, Hosei University, Koganei, Japan
| | - Kimihiro Abe
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Japan
| |
Collapse
|
14
|
Suzuki S, Kondo N, Yoshida M, Nishiyama M, Kosono S. Dynamic changes in lysine acetylation and succinylation of the elongation factor Tu in Bacillus subtilis. MICROBIOLOGY-SGM 2018; 165:65-77. [PMID: 30394869 DOI: 10.1099/mic.0.000737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nε-lysine acetylation and succinylation are ubiquitous post-translational modifications in eukaryotes and bacteria. In the present study, we showed a dynamic change in acetylation and succinylation of TufA, the translation elongation factor Tu, from Bacillus subtilis. Increased acetylation of TufA was observed during the exponential growth phase in LB and minimal glucose conditions, and its acetylation level decreased upon entering the stationary phase, while its succinylation increased during the late stationary phase. TufA was also succinylated during vegetative growth under minimal citrate or succinate conditions. Mutational analysis showed that triple succinylation mimic mutations at Lys306, Lys308 and Lys316 in domain-3 of TufA had a negative effect on B. subtilis growth, whereas the non-acylation mimic mutations at these three lysine residues did not. Consistent with the growth phenotypes, the triple succinylation mimic mutant showed 67 % decreased translation activity in vitro, suggesting a possibility that succinylation at the lysine residues in domain-3 decreases the translation activity. TufA, including Lys308, was non-enzymatically succinylated by physiological concentrations of succinyl-CoA. Lys42 in the G-domain was identified as the most frequently modified acetylation site, though its acetylation was likely dispensable for TufA translation activity and growth. Determination of the intracellular levels of acetylating substrates and TufA acetylation revealed that acetyl phosphate was responsible for acetylation at several lysine sites of TufA, but not for Lys42 acetylation. It was speculated that acetyl-CoA was likely responsible for Lys42 acetylation, though AcuA acetyltransferase was not involved. Zn2+-dependent AcuC and NAD+-dependent SrtN deacetylases were responsible for deacetylation of TufA, including Lys42. These findings suggest the potential regulatory roles of acetylation and succinylation in controlling TufA function and translation in response to nutrient environments in B. subtilis.
Collapse
Affiliation(s)
- Shota Suzuki
- 1Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoko Kondo
- 1Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Minoru Yoshida
- 2Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,3Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,4RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Makoto Nishiyama
- 1Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,2Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Saori Kosono
- 1Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,4RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.,2Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
15
|
Newly Identified Nucleoid-Associated-Like Protein YlxR Regulates Metabolic Gene Expression in Bacillus subtilis. mSphere 2018; 3:3/5/e00501-18. [PMID: 30355672 PMCID: PMC6200986 DOI: 10.1128/msphere.00501-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Expression of genes encoding NAPs is often temporally regulated. According to results from single-cell analysis, the ylxR gene is induced by glucose and expressed in a bistable mode. These characteristics have not previously been reported for NAP gene expression. Transcriptional profiling of the ylxR disruptant revealed a change in the expression levels of approximately 400 genes, including genes for synthesis of 12 amino acids and 4 nucleotides, in addition to the SigX/M regulons. Thus, YlxR is a critical regulator of glucose response in B. subtilis. Glucose is the most favorable carbon source for the majority of bacteria, which have several glucose-responsive gene networks. Recently, we found that in Bacillus subtilis, glucose induces expression of the extracellular sigma factor genes sigX/M. To explore the factors affecting this phenomenon, we performed a transposon mutagenesis screen for mutants with no glucose induction (GI) of sigX-lacZ and identified ylxR. YlxR is widely conserved in eubacteria. Further analysis revealed that ylxR is induced by glucose addition. In vitro DNA-binding and cytological studies suggested that YlxR is a nucleoid-associated protein (NAP) in B. subtilis. In many cases, NAPs influence transcription, recombination, and genome stability. Thus, we performed transcriptome sequencing (RNA-Seq) analysis to evaluate the impact of ylxR disruption on the transcriptome in the presence of glucose and observed that YlxR has a profound impact on metabolic gene expression in addition to that of four sigma factor genes. The wide fluctuations of gene expression may result in abolition of GI of sigX/M in the ylxR disruptant. IMPORTANCE Expression of genes encoding NAPs is often temporally regulated. According to results from single-cell analysis, the ylxR gene is induced by glucose and expressed in a bistable mode. These characteristics have not previously been reported for NAP gene expression. Transcriptional profiling of the ylxR disruptant revealed a change in the expression levels of approximately 400 genes, including genes for synthesis of 12 amino acids and 4 nucleotides, in addition to the SigX/M regulons. Thus, YlxR is a critical regulator of glucose response in B. subtilis.
Collapse
|
16
|
Asai K. Anti-sigma factor-mediated cell surface stress responses in Bacillus subtilis. Genes Genet Syst 2018; 92:223-234. [PMID: 29343670 DOI: 10.1266/ggs.17-00046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Proteins belonging to the sigma factor family in eubacteria initiate transcription by associating with RNA polymerase. A subfamily, the extracytoplasmic function (ECF) sigma factors, which form a widely distributed bacterial signal transduction system comprising a sigma factor and a cognate membrane-embedded anti-sigma factor, regulates genes in response to stressors that threaten cell envelope integrity including the cell wall and membrane. The Gram-positive soil bacterium Bacillus subtilis provides a valuable model for investigation of the ECF sigma factors. This review focuses on the function and regulation of ECF sigma factors in B. subtilis, in which anti-sigma factors play a role in connecting an external stimulus with gene regulation. As representative examples, the regulon and regulatory mechanism of σW are closely associated with membrane-active stressors, whereas σM is strongly induced by conditions that impair peptidoglycan synthesis. These studies demonstrate that the mechanisms of ECF-dependent signaling are divergent and constitute a multi-layered hierarchy, and provide useful insights into the elucidation of unknown mechanisms related to ECF sigma factors.
Collapse
Affiliation(s)
- Kei Asai
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture
| |
Collapse
|
17
|
Abstract
Nε-Lysine acetylation is now recognized as an abundant posttranslational modification (PTM) that influences many essential biological pathways. Advancements in mass spectrometry-based proteomics have led to the discovery that bacteria contain hundreds of acetylated proteins, contrary to the prior notion of acetylation events being rare in bacteria. Although the mechanisms that regulate protein acetylation are still not fully defined, it is understood that this modification is finely tuned via both enzymatic and nonenzymatic mechanisms. The opposing actions of Gcn5-related N-acetyltransferases (GNATs) and deacetylases, including sirtuins, provide the enzymatic control of lysine acetylation. A nonenzymatic mechanism of acetylation has also been demonstrated and proven to be prominent in bacteria, as well as in mitochondria. The functional consequences of the vast majority of the identified acetylation sites remain unknown. From studies in mammalian systems, acetylation of critical lysine residues was shown to impact protein function by altering its structure, subcellular localization, and interactions. It is becoming apparent that the same diversity of functions can be found in bacteria. Here, we review current knowledge of the mechanisms and the functional consequences of acetylation in bacteria. Additionally, we discuss the methods available for detecting acetylation sites, including quantitative mass spectrometry-based methods, which promise to promote this field of research. We conclude with possible future directions and broader implications of the study of protein acetylation in bacteria.
Collapse
|
18
|
Sineva E, Savkina M, Ades SE. Themes and variations in gene regulation by extracytoplasmic function (ECF) sigma factors. Curr Opin Microbiol 2017; 36:128-137. [PMID: 28575802 DOI: 10.1016/j.mib.2017.05.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/15/2017] [Accepted: 05/13/2017] [Indexed: 01/08/2023]
Abstract
The ECF sigma family was identified 23 years ago as a distinct group of σ70-like factors. ECF sigma factors have since emerged as a major form of bacterial signal transduction that can be grouped into over 50 phylogenetically distinct subfamilies. Advances in our understanding of these sigma factors and the signaling pathways governing their activity have elucidated conserved features as well as aspects that have evolved over time. All ECF sigma factors are predicted to share a common streamlined domain structure and mode of promoter interaction. The activity of most ECF sigma factors is controlled by an anti-sigma factor. The nature of the anti-sigma factor and the activating signaling pathways appear to be conserved within ECF families, while considerable diversity exists between different families.
Collapse
Affiliation(s)
- Elena Sineva
- Department of Biochemistry and Molecular Biology, 408 Althouse Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Maria Savkina
- Department of Biochemistry and Molecular Biology, 408 Althouse Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah E Ades
- Department of Biochemistry and Molecular Biology, 408 Althouse Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|