1
|
Arisan D, Moya-Beltrán A, Rojas-Villalobos C, Issotta F, Castro M, Ulloa R, Chiacchiarini PA, Díez B, Martín AJM, Ñancucheo I, Giaveno A, Johnson DB, Quatrini R. Acidithiobacillia class members originating at sites within the Pacific Ring of Fire and other tectonically active locations and description of the novel genus ' Igneacidithiobacillus'. Front Microbiol 2024; 15:1360268. [PMID: 38633703 PMCID: PMC11021618 DOI: 10.3389/fmicb.2024.1360268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
Recent studies have expanded the genomic contours of the Acidithiobacillia, highlighting important lacunae in our comprehension of the phylogenetic space occupied by certain lineages of the class. One such lineage is 'Igneacidithiobacillus', a novel genus-level taxon, represented by 'Igneacidithiobacillus copahuensis' VAN18-1T as its type species, along with two other uncultivated metagenome-assembled genomes (MAGs) originating from geothermally active sites across the Pacific Ring of Fire. In this study, we investigate the genetic and genomic diversity, and the distribution patterns of several uncharacterized Acidithiobacillia class strains and sequence clones, which are ascribed to the same 16S rRNA gene sequence clade. By digging deeper into this data and contributing to novel MAGs emerging from environmental studies in tectonically active locations, the description of this novel genus has been consolidated. Using state-of-the-art genomic taxonomy methods, we added to already recognized taxa, an additional four novel Candidate (Ca.) species, including 'Ca. Igneacidithiobacillus chanchocoensis' (mCHCt20-1TS), 'Igneacidithiobacillus siniensis' (S30A2T), 'Ca. Igneacidithiobacillus taupoensis' (TVZ-G3 TS), and 'Ca. Igneacidithiobacillus waiarikiensis' (TVZ-G4 TS). Analysis of published data on the isolation, enrichment, cultivation, and preliminary microbiological characterization of several of these unassigned or misassigned strains, along with the type species of the genus, plus the recoverable environmental data from metagenomic studies, allowed us to identify habitat preferences of these taxa. Commonalities and lineage-specific adaptations of the seven species of the genus were derived from pangenome analysis and comparative genomic metabolic reconstruction. The findings emerging from this study lay the groundwork for further research on the ecology, evolution, and biotechnological potential of the novel genus 'Igneacidithiobacillus'.
Collapse
Affiliation(s)
- Dilanaz Arisan
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Ana Moya-Beltrán
- Departamento de Informática y Computación, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Camila Rojas-Villalobos
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Francisco Issotta
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago, Chile
| | - Matías Castro
- Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile
| | - Ricardo Ulloa
- PROBIEN (CCT Patagonia Confluencia-CONICET, UNCo), Facultad de Ingeniería, Departamento de Química, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Patricia A. Chiacchiarini
- PROBIEN (CCT Patagonia Confluencia-CONICET, UNCo), Facultad de Ingeniería, Departamento de Química, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Beatriz Díez
- Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago, Chile
- Center for Climate and Resilience Research (CR), Santiago, Chile
| | - Alberto J. M. Martín
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Iván Ñancucheo
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur, Concepción, Chile
| | - Alejandra Giaveno
- PROBIEN (CCT Patagonia Confluencia-CONICET, UNCo), Facultad de Ingeniería, Departamento de Química, Universidad Nacional del Comahue, Neuquén, Argentina
| | - D. Barrie Johnson
- College of Natural Sciences, Bangor University, Bangor, United Kingdom
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
- Natural History Museum, London, United Kingdom
| | - Raquel Quatrini
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| |
Collapse
|
2
|
Sepúlveda-Rebolledo P, González-Rosales C, Dopson M, Pérez-Rueda E, Holmes DS, Valdés JH. Comparative genomics sheds light on transcription factor-mediated regulation in the extreme acidophilic Acidithiobacillia representatives. Res Microbiol 2024; 175:104135. [PMID: 37678513 DOI: 10.1016/j.resmic.2023.104135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Extreme acidophiles thrive in acidic environments, confront a multitude of challenges, and demonstrate remarkable adaptability in their metabolism to cope with the ever-changing environmental fluctuations, which encompass variations in temperature, pH levels, and the availability of electron acceptors and donors. The survival and proliferation of members within the Acidithiobacillia class rely on the deployment of transcriptional regulatory systems linked to essential physiological traits. The study of these transcriptional regulatory systems provides valuable insights into critical processes, such as energy metabolism and nutrient assimilation, and how they integrate into major genetic-metabolic circuits. In this study, we examined the transcriptional regulatory repertoires and potential interactions of forty-three Acidithiobacillia complete and draft genomes, encompassing nine species. To investigate the function and diversity of Transcription Factors (TFs) and their DNA Binding Sites (DBSs), we conducted a genome-wide comparative analysis, which allowed us to identify these regulatory elements in representatives of Acidithiobacillia. We classified TFs into gene families and compared their occurrence among all representatives, revealing conservation patterns across the class. The results identified conserved regulators for several pathways, including iron and sulfur oxidation, the main pathways for energy acquisition, providing new evidence for viable regulatory interactions and branch-specific conservation in Acidithiobacillia. The identification of TFs and DBSs not only corroborates existing experimental information for selected species, but also introduces novel candidates for experimental validation. Moreover, these promising candidates have the potential for further extension to new representatives within the class.
Collapse
Affiliation(s)
- Pedro Sepúlveda-Rebolledo
- Centro de Genómica y Bioinformática and PhD. Program on Integrative Genomics, Facultad de Ciencias, Universidad Mayor, Santiago (8580745), Chile.
| | - Carolina González-Rosales
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago (8580638), Chile; Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Yucatán, Mexico.
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago (8580638), Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago (7510156), Chile.
| | - Jorge H Valdés
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago (8370146), Chile.
| |
Collapse
|
3
|
Beard S, Moya-Beltrán A, Silva-García D, Valenzuela C, Pérez-Acle T, Loyola A, Quatrini R. Pangenome-level analysis of nucleoid-associated proteins in the Acidithiobacillia class: insights into their functional roles in mobile genetic elements biology. Front Microbiol 2023; 14:1271138. [PMID: 37817747 PMCID: PMC10561277 DOI: 10.3389/fmicb.2023.1271138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 10/12/2023] Open
Abstract
Mobile genetic elements (MGEs) are relevant agents in bacterial adaptation and evolutionary diversification. Stable appropriation of these DNA elements depends on host factors, among which are the nucleoid-associated proteins (NAPs). NAPs are highly abundant proteins that bind and bend DNA, altering its topology and folding, thus affecting all known cellular DNA processes from replication to expression. Even though NAP coding genes are found in most prokaryotic genomes, their functions in host chromosome biology and xenogeneic silencing are only known for a few NAP families. Less is known about the occurrence, abundance, and roles of MGE-encoded NAPs in foreign elements establishment and mobility. In this study, we used a combination of comparative genomics and phylogenetic strategies to gain insights into the diversity, distribution, and functional roles of NAPs within the class Acidithiobacillia with a special focus on their role in MGE biology. Acidithiobacillia class members are aerobic, chemolithoautotrophic, acidophilic sulfur-oxidizers, encompassing substantial genotypic diversity attributable to MGEs. Our search for NAP protein families (PFs) in more than 90 genomes of the different species that conform the class, revealed the presence of 1,197 proteins pertaining to 12 different NAP families, with differential occurrence and conservation across species. Pangenome-level analysis revealed 6 core NAP PFs that were highly conserved across the class, some of which also existed as variant forms of scattered occurrence, in addition to NAPs of taxa-restricted distribution. Core NAPs identified are reckoned as essential based on the conservation of genomic context and phylogenetic signals. In turn, various highly diversified NAPs pertaining to the flexible gene complement of the class, were found to be encoded in known plasmids or, larger integrated MGEs or, present in genomic loci associated with MGE-hallmark genes, pointing to their role in the stabilization/maintenance of these elements in strains and species with larger genomes. Both core and flexible NAPs identified proved valuable as markers, the former accurately recapitulating the phylogeny of the class, and the later, as seed in the bioinformatic identification of novel episomal and integrated mobile elements.
Collapse
Affiliation(s)
- Simón Beard
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Ana Moya-Beltrán
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Danitza Silva-García
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Cesar Valenzuela
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Tomás Pérez-Acle
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Alejandra Loyola
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Raquel Quatrini
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
4
|
Moya-Beltrán A, Gajdosik M, Rojas-Villalobos C, Beard S, Mandl M, Silva-García D, Johnson DB, Ramirez P, Quatrini R, Kucera J. Influence of mobile genetic elements and insertion sequences in long- and short-term adaptive processes of Acidithiobacillus ferrooxidans strains. Sci Rep 2023; 13:10876. [PMID: 37407610 DOI: 10.1038/s41598-023-37341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
The recent revision of the Acidithiobacillia class using genomic taxonomy methods has shown that, in addition to the existence of previously unrecognized genera and species, some species of the class harbor levels of divergence that are congruent with ongoing differentiation processes. In this study, we have performed a subspecies-level analysis of sequenced strains of Acidithiobacillus ferrooxidans to prove the existence of distinct sublineages and identify the discriminant genomic/genetic characteristics linked to these sublineages, and to shed light on the processes driving such differentiation. Differences in the genomic relatedness metrics, levels of synteny, gene content, and both integrated and episomal mobile genetic elements (MGE) repertoires support the existence of two subspecies-level taxa within A. ferrooxidans. While sublineage 2A harbors a small plasmid related to pTF5, this episomal MGE is absent in sublineage 2B strains. Likewise, clear differences in the occurrence, coverage and conservation of integrated MGEs are apparent between sublineages. Differential MGE-associated gene cargo pertained to the functional categories of energy metabolism, ion transport, cell surface modification, and defense mechanisms. Inferred functional differences have the potential to impact long-term adaptive processes and may underpin the basis of the subspecies-level differentiation uncovered within A. ferrooxidans. Genome resequencing of iron- and sulfur-adapted cultures of a selected 2A sublineage strain (CCM 4253) showed that both episomal and large integrated MGEs are conserved over twenty generations in either growth condition. In turn, active insertion sequences profoundly impact short-term adaptive processes. The ISAfe1 element was found to be highly active in sublineage 2A strain CCM 4253. Phenotypic mutations caused by the transposition of ISAfe1 into the pstC2 encoding phosphate-transport system permease protein were detected in sulfur-adapted cultures and shown to impair growth on ferrous iron upon the switch of electron donor. The phenotypic manifestation of the △pstC2 mutation, such as a loss of the ability to oxidize ferrous iron, is likely related to the inability of the mutant to secure the phosphorous availability for electron transport-linked phosphorylation coupled to iron oxidation. Depletion of the transpositional △pstC2 mutation occurred concomitantly with a shortening of the iron-oxidation lag phase at later transfers on a ferrous iron-containing medium. Therefore, the pstII operon appears to play an essential role in A. ferrooxidans when cells oxidize ferrous iron. Results highlight the influence of insertion sequences and both integrated and episomal mobile genetic elements in the short- and long-term adaptive processes of A. ferrooxidans strains under changing growth conditions.
Collapse
Affiliation(s)
- Ana Moya-Beltrán
- Fundación Ciencia & Vida, Avenida Del Valle Norte 725, 8580702, Huechuraba, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Martin Gajdosik
- Department of Biochemistry, Faculty of Science, Masaryk University, 61137, Brno, Czech Republic
| | - Camila Rojas-Villalobos
- Fundación Ciencia & Vida, Avenida Del Valle Norte 725, 8580702, Huechuraba, Santiago, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
| | - Simón Beard
- Fundación Ciencia & Vida, Avenida Del Valle Norte 725, 8580702, Huechuraba, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510157, Providencia, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Martin Mandl
- Department of Biochemistry, Faculty of Science, Masaryk University, 61137, Brno, Czech Republic
| | - Danitza Silva-García
- Fundación Ciencia & Vida, Avenida Del Valle Norte 725, 8580702, Huechuraba, Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Piramide 5750, 8580000, Huechuraba, Santiago, Chile
| | - D Barrie Johnson
- College of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
- Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB, UK
- Natural History Museum, London, UK
| | - Pablo Ramirez
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Raquel Quatrini
- Fundación Ciencia & Vida, Avenida Del Valle Norte 725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510157, Providencia, Santiago, Chile.
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile.
| | - Jiri Kucera
- Department of Biochemistry, Faculty of Science, Masaryk University, 61137, Brno, Czech Republic.
| |
Collapse
|
5
|
The Essential Role of OmpR in Acidithiobacillus caldus Adapting to the High Osmolarity and Its Regulation on the Tetrathionate-Metabolic Pathway. Microorganisms 2022; 11:microorganisms11010035. [PMID: 36677326 PMCID: PMC9861516 DOI: 10.3390/microorganisms11010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Acidithiobacillus spp. are prevalent in acid mine drainage, and they have been widely used in biomining for extracting nonferrous metals from ores. The osmotic stress generated by elevated concentrations of inorganic ions is a severe challenge for the growth of Acidithiobacillus spp. in the bioleaching process; however, the adaptation mechanism of these bacteria to high osmotic pressure remains unclear. In this study, bioinformatics analysis indicated that the osmotic stress response two-component system EnvZ-OmpR is widely distributed in Acidithiobacillus spp., while OmpRs from Acidithiobacillus spp. exhibited a far more evolutionary relationship with the well-studied OmpRs in E. coli and Salmonella typhimurium. The growth measurement of an Acidithiobacillus caldus (A. caldus) ompR-knockout strain demonstrated that OmpR is essential in the adaptation of this bacterium to high osmotic stress. The overall impact of OmpR on the various metabolic and regulatory systems of A. caldus was revealed by transcriptome analysis. The OmpR binding sequences of differentially expressed genes (DEGs) were predicted, and the OmpR box motif in A. caldus was analysed. The direct and negative regulation of EnvZ-OmpR on the tetrathionate-metabolic (tetH) cluster in A. caldus was discovered for the first time, and a co-regulation mode mediated by EnvZ-OmpR and RsrS-RsrR for the tetrathionate intermediate thiosulfate-oxidizing (S4I) pathway in this microorganism was proposed. This study reveals that EnvZ-OmpR is an indispensable regulatory system for the ability of A. caldus to cope with high osmotic stress and the significance of EnvZ-OmpR on the regulation of sulfur metabolism in A. caldus adapting to the high-salt environment.
Collapse
|
6
|
Muñoz-Villagrán C, Grossolli-Gálvez J, Acevedo-Arbunic J, Valenzuela X, Ferrer A, Díez B, Levicán G. Characterization and genomic analysis of two novel psychrotolerant Acidithiobacillus ferrooxidans strains from polar and subpolar environments. Front Microbiol 2022; 13:960324. [PMID: 36090071 PMCID: PMC9449456 DOI: 10.3389/fmicb.2022.960324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The bioleaching process is carried out by aerobic acidophilic iron-oxidizing bacteria that are mainly mesophilic or moderately thermophilic. However, many mining sites are located in areas where the mean temperature is lower than the optimal growth temperature of these microorganisms. In this work, we report the obtaining and characterization of two psychrotolerant bioleaching bacterial strains from low-temperature sites that included an abandoned mine site in Chilean Patagonia (PG05) and an acid rock drainage in Marian Cove, King George Island in Antarctic (MC2.2). The PG05 and MC2.2 strains showed significant iron-oxidation activity and grew optimally at 20°C. Genome sequence analyses showed chromosomes of 2.76 and 2.84 Mbp for PG05 and MC2.2, respectively, and an average nucleotide identity estimation indicated that both strains clustered with the acidophilic iron-oxidizing bacterium Acidithiobacillus ferrooxidans. The Patagonian PG05 strain had a high content of genes coding for tolerance to metals such as lead, zinc, and copper. Concordantly, electron microscopy revealed the intracellular presence of polyphosphate-like granules, likely involved in tolerance to metals and other stress conditions. The Antarctic MC2.2 strain showed a high dosage of genes for mercury resistance and low temperature adaptation. This report of cold-adapted cultures of the At. ferrooxidans species opens novel perspectives to satisfy the current challenges of the metal bioleaching industry.
Collapse
Affiliation(s)
- Claudia Muñoz-Villagrán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Jonnathan Grossolli-Gálvez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Javiera Acevedo-Arbunic
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Ximena Valenzuela
- Programa de Biorremediación, Campus Patagonia, Universidad Austral de Chile, Valdivia, Chile
| | - Alonso Ferrer
- Núcleo de Química y Bioquímica, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Beatriz Díez
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, Santiago, Chile
- Center for Genome Regulation (CRG), Santiago, Chile
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
- *Correspondence: Gloria Levicán,
| |
Collapse
|
7
|
Narayanan M, Natarajan D, Kandasamy S, Chinnathambi A, Ali Alharbi S, Karuppusamy I, Kathirvel B. Pyrite biomining proficiency of sulfur dioxygenase (SDO) enzyme extracted from Acidithiobacillus thiooxidans. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Genomic evolution of the class Acidithiobacillia: deep-branching Proteobacteria living in extreme acidic conditions. THE ISME JOURNAL 2021; 15:3221-3238. [PMID: 34007059 PMCID: PMC8528912 DOI: 10.1038/s41396-021-00995-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 02/04/2023]
Abstract
Members of the genus Acidithiobacillus, now ranked within the class Acidithiobacillia, are model bacteria for the study of chemolithotrophic energy conversion under extreme conditions. Knowledge of the genomic and taxonomic diversity of Acidithiobacillia is still limited. Here, we present a systematic analysis of nearly 100 genomes from the class sampled from a wide range of habitats. Some of these genomes are new and others have been reclassified on the basis of advanced genomic analysis, thus defining 19 Acidithiobacillia lineages ranking at different taxonomic levels. This work provides the most comprehensive classification and pangenomic analysis of this deep-branching class of Proteobacteria to date. The phylogenomic framework obtained illuminates not only the evolutionary past of this lineage, but also the molecular evolution of relevant aerobic respiratory proteins, namely the cytochrome bo3 ubiquinol oxidases.
Collapse
|
9
|
Potential application of a knowledgebase of iron metabolism of Acidithiobacillus ferrooxidans as an alternative platform. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
10
|
Quorum Sensing Signaling Molecules Positively Regulate c-di-GMP Effector PelD Encoding Gene and PEL Exopolysaccharide Biosynthesis in Extremophile Bacterium Acidithiobacillus thiooxidans. Genes (Basel) 2021; 12:genes12010069. [PMID: 33430222 PMCID: PMC7825692 DOI: 10.3390/genes12010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/20/2023] Open
Abstract
Acidithiobacillus species are fundamental players in biofilm formation by acidophile bioleaching communities. It has been previously reported that Acidithiobacillus ferrooxidans possesses a functional quorum sensing mediated by acyl-homoserine lactones (AHL), involved in biofilm formation, and AHLs naturally produced by Acidithiobacillus species also induce biofilm formation in Acidithiobacillus thiooxidans. A c-di-GMP pathway has been characterized in Acidithiobacillus species but it has been pointed out that the c-di-GMP effector PelD and pel-like operon are only present in the sulfur oxidizers such as A. thiooxidans. PEL exopolysaccharide has been recently involved in biofilm formation in this Acidithiobacillus species. Here, by comparing wild type and ΔpelD strains through mechanical analysis of biofilm-cells detachment, fluorescence microscopy and qPCR experiments, the structural role of PEL exopolysaccharide and the molecular network involved for its biosynthesis by A. thiooxidans were tackled. Besides, the effect of AHLs on PEL exopolysaccharide production was assessed. Mechanical resistance experiments indicated that the loss of PEL exopolysaccharide produces fragile A. thiooxidans biofilms. qRT-PCR analysis established that AHLs induce the transcription of pelA and pelD genes while epifluorescence microscopy studies revealed that PEL exopolysaccharide was required for the development of AHL-induced biofilms. Altogether these results reveal for the first time that AHLs positively regulate pel genes and participate in the molecular network for PEL exopolysaccharide biosynthesis by A. thiooxidans.
Collapse
|
11
|
Massello FL, Chan CS, Chan KG, Goh KM, Donati E, Urbieta MS. Meta-Analysis of Microbial Communities in Hot Springs: Recurrent Taxa and Complex Shaping Factors beyond pH and Temperature. Microorganisms 2020; 8:microorganisms8060906. [PMID: 32560103 PMCID: PMC7356817 DOI: 10.3390/microorganisms8060906] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
The study of microbial communities from extreme environments is a fascinating topic. With every study, biologists and ecologists reveal interesting facts and questions that dispel the old belief that these are inhospitable environments. In this work, we assess the microbial diversity of three hot springs from Neuquén, Argentina, using high-throughput amplicon sequencing. We predicted a distinct metabolic profile in the acidic and the circumneutral samples, with the first ones being dominated by chemolithotrophs and the second ones by chemoheterotrophs. Then, we collected data of the microbial communities of hot springs around the world in an effort to comprehend the roles of pH and temperature as shaping factors. Interestingly, there was a covariation between both parameters and the phylogenetic distance between communities; however, neither of them could explain much of the microbial profile in an ordination model. Moreover, there was no correlation between alpha diversity and these parameters. Therefore, the microbial communities' profile seemed to have complex shaping factors beyond pH and temperature. Lastly, we looked for taxa associated with different environmental conditions. Several such taxa were found. For example, Hydrogenobaculum was frequently present in acidic springs, as was the Sulfolobaceae family; on the other hand, Candidatus Hydrothermae phylum was strongly associated with circumneutral conditions. Interestingly, some singularities related to sites featuring certain taxa were also observed.
Collapse
Affiliation(s)
- Francisco L. Massello
- CINDEFI (CCT, La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, 1900 Buenos Aires, Argentina; (F.L.M.); (E.D.)
| | - Chia Sing Chan
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (C.S.C.); (K.M.G.)
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (C.S.C.); (K.M.G.)
| | - Edgardo Donati
- CINDEFI (CCT, La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, 1900 Buenos Aires, Argentina; (F.L.M.); (E.D.)
| | - María Sofía Urbieta
- CINDEFI (CCT, La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, 1900 Buenos Aires, Argentina; (F.L.M.); (E.D.)
- Correspondence:
| |
Collapse
|
12
|
Norris PR, Davis-Belmar CS, Calvo-Bado LA, Ogden TJ. Salt-tolerant Acidihalobacter and Acidithiobacillus species from Vulcano (Italy) and Milos (Greece). Extremophiles 2020; 24:593-602. [PMID: 32451688 DOI: 10.1007/s00792-020-01178-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/12/2020] [Indexed: 12/25/2022]
Abstract
Ferrous iron- and sulfur-oxidizing Acidihalobacter species and similar so far unclassified bacteria have been isolated from the islands of Vulcano (Italy) and Milos (Greece), specifically from where seawater was acidified at sulfide-rich geothermal sites. Acidithiobacillus species which tolerated concentrations of chloride that inhibit most Acidithiobacillus spp. were also isolated from sites on both islands: these were At. thiooxidans strains and an unclassified species, Acidithiobacillus sp. strain V1. The potential of salt-tolerant acidophiles for industrial application in promoting copper extraction from mineral sulfides where chloride is naturally present at concentrations which would inhibit most acidophiles, or where seawater rather than fresh water is available, appears to be limited by the sensitivity of ferrous-iron oxidizing Acidihalobacter spp. to copper. However, tolerance of copper and chloride shown by At. thiooxidans strain A7 suggests it could oxidize sulfur and benefit acid leaching if ferric iron or copper was provided as the primary oxidant of sulfide ores.
Collapse
Affiliation(s)
- Paul R Norris
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- College of Engineering, Maths and Physical Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| | - Carol S Davis-Belmar
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- BHP Billiton Chile, Base Metals, Av. Américo Vespucio Sur 100, Las Condes, PO Box 7580150, Santiago, Chile
| | - Leonides A Calvo-Bado
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Micropathology Ltd, University of Warwick Science Park, Venture Centre, Sir William Lyons Road, Coventry, CV4 7EZ, UK
| | - Thomas J Ogden
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
13
|
Camacho D, Frazao R, Fouillen A, Nanci A, Lang BF, Apte SC, Baron C, Warren LA. New Insights Into Acidithiobacillus thiooxidans Sulfur Metabolism Through Coupled Gene Expression, Solution Chemistry, Microscopy, and Spectroscopy Analyses. Front Microbiol 2020; 11:411. [PMID: 32231653 PMCID: PMC7082400 DOI: 10.3389/fmicb.2020.00411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/27/2020] [Indexed: 01/23/2023] Open
Abstract
Here, we experimentally expand understanding of the reactions and enzymes involved in Acidithiobacillus thiooxidans ATCC 19377 S0 andS 2 O 3 2 - metabolism by developing models that integrate gene expression analyzed by RNA-Seq, solution sulfur speciation, electron microscopy and spectroscopy. The A. thiooxidansS 2 O 3 2 - metabolism model involves the conversion ofS 2 O 3 2 - to SO 4 2 - , S0 andS 4 O 6 2 - , mediated by the sulfur oxidase complex (Sox), tetrathionate hydrolase (TetH), sulfide quinone reductase (Sqr), and heterodisulfate reductase (Hdr) proteins. These same proteins, with the addition of rhodanese (Rhd), were identified to convert S0 to SO 3 2 - ,S 2 O 3 2 - and polythionates in the A. thiooxidans S0 metabolism model. Our combined results shed light onto the important role specifically of TetH inS 2 O 3 2 - metabolism. Also, we show that activity of Hdr proteins rather than Sdo are likely associated with S0 oxidation. Finally, our data suggest that formation of intracellularS 2 O 3 2 - is a critical step in S0 metabolism, and that recycling of internally generated SO 3 2 - occurs, through comproportionating reactions that result inS 2 O 3 2 - . Electron microscopy and spectroscopy confirmed intracellular production and storage of S0 during growth on both S0 andS 2 O 3 2 - substrates.
Collapse
Affiliation(s)
- David Camacho
- School of Geography and Earth Science, Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Rodolfo Frazao
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Aurélien Fouillen
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| | - Antonio Nanci
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| | - B. Franz Lang
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Simon C. Apte
- CSIRO, Land and Water, Lucas Heights, NSW, Australia
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Lesley A. Warren
- School of Geography and Earth Science, Faculty of Science, McMaster University, Hamilton, ON, Canada
- Department of Civil and Mineral Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Acidithiobacillus ferrianus sp. nov.: an ancestral extremely acidophilic and facultatively anaerobic chemolithoautotroph. Extremophiles 2020; 24:329-337. [PMID: 31980944 PMCID: PMC7040056 DOI: 10.1007/s00792-020-01157-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/10/2020] [Indexed: 01/21/2023]
Abstract
Strain MG, isolated from an acidic pond sediment on the island of Milos (Greece), is proposed as a novel species of ferrous iron- and sulfur-oxidizing Acidithiobacillus. Currently, four of the eight validated species of this genus oxidize ferrous iron, and strain MG shares many key characteristics with these four, including the capacities for catalyzing the oxidative dissolution of pyrite and for anaerobic growth via ferric iron respiration. Strain MG also grows aerobically on hydrogen and anaerobically on hydrogen coupled to ferric iron reduction. While the 16S rRNA genes of the iron-oxidizing Acidi-thiobacillus species (and strain MG) are located in a distinct phylogenetic clade and are closely related (98–99% 16S rRNA gene identity), genomic relatedness indexes (ANI/dDDH) revealed strong genomic divergence between strain MG and all sequenced type strains of the taxon, and placed MG as the first cultured representative of an ancestral phylotype of iron oxidizing acidithiobacilli. Strain MG is proposed as a novel species, Acidithiobacillus ferrianus sp. nov. The type strain is MGT (= DSM 107098T = JCM 33084T). Similar strains have been found as isolates or indicated by cloned 16S rRNA genes from several mineral sulfide mine sites.
Collapse
|
15
|
Complete Genome Sequence of Acidithiobacillus Ferrooxidans YNTRS-40, a Strain of the Ferrous Iron- and Sulfur-Oxidizing Acidophile. Microorganisms 2019; 8:microorganisms8010002. [PMID: 31861345 PMCID: PMC7023503 DOI: 10.3390/microorganisms8010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022] Open
Abstract
Acidithiobacillus ferrooxidans YNTRS-40 (A. ferrooxidans) is a chemolithoautotrophic aerobic bacterium isolated from Tengchong hot springs, Yunnan Province, China, with a broad growth pH range of 1.0–4.5. This study reports the genome sequence of this strain and the information of genes related to the adaptation of diverse stresses and the oxidation of ferrous iron and sulfur. Results showed that YNTRS-40 possesses chromosomal DNA (3,209,933-bp) and plasmid DNA (47,104-bp). The complete genome of 3,257,037-bp consists of 3,349 CDS genes comprising 6 rRNAs, 52 tRNAs, and 6 ncRNAs. There are many encoded genes associated with diverse stresses adaptation and ferrous iron and sulfur oxidation such as rus operon, res operon, petI, petII, sqr, doxDA, cydAB, and cyoABCD. This work will provide essential information for further application of A. ferrooxidans YNTRS-40 in industry.
Collapse
|
16
|
Fariq A, Blazier JC, Yasmin A, Gentry TJ, Deng Y. Whole genome sequence analysis reveals high genetic variation of newly isolated Acidithiobacillus ferrooxidans IO-2C. Sci Rep 2019; 9:13049. [PMID: 31506467 PMCID: PMC6736930 DOI: 10.1038/s41598-019-49213-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 08/20/2019] [Indexed: 12/30/2022] Open
Abstract
Acidithiobacillus ferrooxidans, a chemolithoautotrophic bacterium, is well known for its mineral oxidizing properties. The current study combines experimental and whole genome sequencing approaches to investigate an iron oxidizing, extreme acidophilic bacterium, A. ferrooxidans isolate (IO-2C) from an acid seep area near Carlos, TX, USA. Strain IO-2C was capable of oxidizing iron i.e. iron sulphate and iron ammonium sulphate yielding shwertmannite and jarosite minerals. Further, the bacterium's genome was sequenced, assembled and annotated to study its general features, structure and functions. To determine genetic heterogeneity, it was compared with the genomes of other published A. ferrooxidans strains. Pan-genome analysis displayed low gene conservation and significant genetic diversity in A. ferrooxidans species comprising of 6926 protein coding sequences with 23.04% (1596) core genes, 46.13% (3195) unique and 30.82% (2135) accessory genes. Variant analysis showed >75,000 variants, 287 of them with a predicted high impact, in A. ferrooxidans IO-2C genome compared to the reference strain, resulting in abandonment of some important functional key genes. The genome contains numerous functional genes for iron and sulphur metabolism, nitrogen fixation, secondary metabolites, degradation of aromatic compounds, and multidrug and heavy metal resistance. This study demonstrated the bio-oxidation of iron by newly isolated A. ferrooxidans IO-2C under acidic conditions, which was further supported by genomic analysis. Genomic analysis of this strain provided valuable information about the complement of genes responsible for the utilization of iron and tolerance of other metals.
Collapse
Affiliation(s)
- Anila Fariq
- Microbiology & Biotechnology Research Lab, Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan.,Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - John C Blazier
- Texas A&M Institute of Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
| | - Azra Yasmin
- Microbiology & Biotechnology Research Lab, Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan.
| | - Terry J Gentry
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Youjun Deng
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
17
|
Falagán C, Moya-Beltrán A, Castro M, Quatrini R, Johnson DB. Acidithiobacillus sulfuriphilus sp. nov.: an extremely acidophilic sulfur-oxidizing chemolithotroph isolated from a neutral pH environment. Int J Syst Evol Microbiol 2019; 69:2907-2913. [PMID: 31274405 DOI: 10.1099/ijsem.0.003576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The genus Acidithiobacillus currently includes seven species with validly published names, which fall into two major groups, those that can oxidize ferrous iron and those that do not. All seven species can use zero-valent sulfur and reduced sulfur oxy-anions as electron donors, are obligately chemolithotrophic and acidophilic bacteria with pH growth optima below 3.0. The 16S rRNA gene of a novel strain (CJ-2T) isolated from circum-neutral pH mine drainage showed 95-97 % relatedness to members of the genus Acidithiobacillus. Digital DNA-DNA hybridization (dDDH) values between strains and whole-genome pairwise comparisons between the CJ-2T strain and the reference genomes available for members of the genus Acidithiobacillus confirmed that CJ-2Trepresents a novel species of this genus. CJ-2T is a strict aerobe, oxidizes zero-valent sulfur and reduced inorganic sulfur compounds but does not use ferrous iron or hydrogen as electron donors. The isolate is mesophilic (optimum growth temperature 25-28 °C) and extremely acidophilic (optimum growth pH 3.0), though its pH optimum and maximum were significantly higher than those of non-iron-oxidising acidithiobacilli with validly published names. The major fatty acids of CJ-2T were C18 : 1ω7c, C:16 : 1ω7c/iso-C15 : 0 2-OH, C16 : 0 and C19 : 0 cyclo ω8c and the major respiratory quinone present was Q8. The name Acidithiobacillussulfuriphilus sp. nov. is proposed, the type strain is CJ-2T (=DSM 105150T=KCTC 4683T).
Collapse
Affiliation(s)
- Carmen Falagán
- Present address: Environmental Sustainability Institute and Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK.,School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Ana Moya-Beltrán
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile.,Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Matías Castro
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Raquel Quatrini
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile.,Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago, Chile
| | - D Barrie Johnson
- School of Biological Sciences, Bangor University, Bangor LL57 2UW, UK
| |
Collapse
|
18
|
Tu X, Xu M, Li J, Li E, Feng R, Zhao G, Huang S, Guo J. Enhancement of using combined packing materials on the removal of mixed sulfur compounds in a biotrickling filter and analysis of microbial communities. BMC Biotechnol 2019; 19:52. [PMID: 31345193 PMCID: PMC6659214 DOI: 10.1186/s12896-019-0540-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/05/2019] [Indexed: 11/23/2022] Open
Abstract
Background Packing materials is a critical design consideration when employing biological reactor to treat malodorous gases. The acidification of packing bed usually results in a significant drop in the removal efficiency. In the present study, a biotrickling filter (BTF2) packed with plastic balls in the upper layer and with lava rocks in the bottom layer, was proposed to mitigate the acidification. Results Results showed that using combined packing materials efficiently enhanced the removal performance of BTF2 when compared with BTF1, which was packed with sole lava rocks. Removal efficiencies of more than 92.5% on four sulfur compounds were achieved in BTF2. Average pH value in its bottom packing bed was about 4.86, significantly higher than that in BTF1 (2.85). Sulfate and elemental sulfur were observed to accumulate more in BTF1 than in BTF2. Analysis of principal coordinate analysis proved that structure of microbial communities in BTF2 changed less after the shutdown but more when the initial pH value was set at 5.5. Network analysis of significant co-occurrence patterns based on the correlations between microbial taxa revealed that BTF2 harbored more diverse microorganisms involving in the bio-oxidation of sulfur compounds and had more complex interactions between microbial species. Conclusions Results confirmed that using combined packing materials effectively improved conditions for the growth of microorganisms. The robustness of reactor against acidification, adverse temperature and gas supply shutdown was greatly enhanced. These provided a theoretical basis for using mixed packing materials to improve removal performance.
Collapse
Affiliation(s)
- Xiang Tu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Meiying Xu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Jianjun Li
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China. .,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China. .,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China.
| | - Enze Li
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Rongfang Feng
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Gang Zhao
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jun Guo
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, 510070, People's Republic of China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, 510070, People's Republic of China
| |
Collapse
|
19
|
Zhang X, Liu X, Li L, Wei G, Zhang D, Liang Y, Miao B. Phylogeny, Divergent Evolution, and Speciation of Sulfur-Oxidizing Acidithiobacillus Populations. BMC Genomics 2019; 20:438. [PMID: 31146680 PMCID: PMC6543593 DOI: 10.1186/s12864-019-5827-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/23/2019] [Indexed: 01/18/2023] Open
Abstract
Background Habitats colonized by acidophiles as an ideal physical barrier may induce genetic exchange of microbial members within the common communities, but little is known about how species in extremely acidic environments diverge and evolve. Results Using the acidophilic sulfur-oxidizer Acidithiobacillus as a case study, taxonomic reclassifications of many isolates provides novel insights into their phylogenetic lineage. Whole-genome-based comparisons were attempted to investigate the intra- and inter-species divergence. Recent studies clarified that functional and structural specificities of bacterial strains might provide opportunities for adaptive evolution responding to local environmental conditions. Acidophilic microorganisms play a key role in the acidification of natural waters and thus the formation of extremely acidic environments, and the feedbacks of the latter might confer the distinct evolutionary patterns of Acidithiobacillus spp. Varied horizontal gene transfer events occurred in different bacterial strains, probably resulting in the expansion of Acidithiobacillus genomes. Gene loss as another evolutionary force might cause the adaptive phenotypic diversity. A conceptual model for potential community-dependent evolutionary adaptation was thus proposed to illustrate the observed genome differentiation. Conclusions Collectively, the findings shed light on the phylogeny and divergent evolution of Acidithiobacillus strains, and provided a useful reference for evolutionary studies of other extremophiles. Electronic supplementary material The online version of this article (10.1186/s12864-019-5827-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Guanyun Wei
- School of Life Sciences, Nantong University, Nantong, China
| | - Danli Zhang
- Department of Biology, Taiyuan Normal University, Taiyuan, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Bo Miao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
20
|
Yang CL, Chen XK, Wang R, Lin JQ, Liu XM, Pang X, Zhang CJ, Lin JQ, Chen LX. Essential Role of σ Factor RpoF in Flagellar Biosynthesis and Flagella-Mediated Motility of Acidithiobacillus caldus. Front Microbiol 2019; 10:1130. [PMID: 31178842 PMCID: PMC6543871 DOI: 10.3389/fmicb.2019.01130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/03/2019] [Indexed: 12/04/2022] Open
Abstract
Acidithiobacillaceae, an important family of acidophilic and chemoautotrophic sulfur or iron oxidizers, participate in geobiochemical circulation of the elements and drive the release of heavy metals in mining associated habitats. Because of their environmental adaptability and energy metabolic systems, Acidithiobacillus spp. have become the dominant bacteria used in bioleaching for heavy metal recovery. Flagella-driven motility is associated with bacterial chemotaxis and bacterial responses to environmental stimuli. However, little is known about how the flagellum of Acidithiobacillus spp. is regulated and how the flagellum affects the growth of these chemoautotrophic bacteria. In this study, we analyzed the flagellar gene clusters in Acidithiobacillus strains and uncovered the close relationship between flagella and the sulfur-oxidizing systems (Sox system). The σ28 gene (rpoF) knockout and overexpression strains of Acidithiobacillus caldus were constructed. Scanning electron microscopy shows that A. caldus ΔrpoF cells lacked flagella, indicating the essential role of RpoF in regulating flagella synthesis in these chemoautotrophic bacteria. Motility analysis suggests that the deletion of rpoF resulted in the reduction of swarming capability, while this capability was enhanced in the rpoF overexpression strain. Both static cultivation and low concentration of energy substrates (elemental sulfur or tetrathionate) led to weak growth of A. caldus ΔrpoF cells. The deletion of rpoF promoted bacterial attachment to the surface of elemental sulfur in static cultivation. The absence of RpoF caused an obvious change in transcription profile, including genes in flagellar cluster and those involved in biofilm formation. These results provide an understanding on the regulation of flagellar hierarchy and the flagellar function in these sulfur or iron oxidizers.
Collapse
Affiliation(s)
- Chun-Long Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xian-Ke Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rui Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian-Qiang Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiang-Mei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Pang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Cheng-Jia Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
21
|
Flores-Ríos R, Moya-Beltrán A, Pareja-Barrueto C, Arenas-Salinas M, Valenzuela S, Orellana O, Quatrini R. The Type IV Secretion System of ICE Afe1: Formation of a Conjugative Pilus in Acidithiobacillus ferrooxidans. Front Microbiol 2019; 10:30. [PMID: 30804894 PMCID: PMC6370655 DOI: 10.3389/fmicb.2019.00030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/09/2019] [Indexed: 01/10/2023] Open
Abstract
The dispersal of mobile genetic elements and their gene cargo relies on type IV secretion systems (T4SS). In this work the ICEAfe1 Tra-type T4SS nanomachine, encoded in the publicly available genome of Acidithiobacillus ferrooxidans ATCC 23270TY, was characterized in terms of its organization, conservation, expression and mating bridge formation. Twenty-one conjugative genes grouped in four genetic clusters encode the ICEAfe1 T4SS, containing all the indispensable functions for the formation and stabilization of the pili and for DNA processing. The clusters' organization resembles that of other mobile genetic elements (such as plasmids and integrative and conjugative elements-ICEs). Sequence conservation, genetic organization and distribution of the tra system in the genomes of other sequenced Acidithiobacillus spp. suggests that the ICEAfe1 T4SS could mediate the lateral gene transfer between related bacteria. All ICEAfe1 T4SS genes are transcriptionally active and expressed from four independent operons. The transcriptional levels of selected marker genes increase in response to Mitomycin C treatment, a DNA damage elicitor that has acknowledged stimulatory effects on excision rates and gene expression of other ICEs, including ICEAfe1. Using a tailor-made pilin-antiserum against ICEAfe1 T4SS TraA pilin and epifluorescence microscopy, the presence of the conjugative pili on the cell surface of A. ferrooxidans could be demonstrated. Additionally, immunodetection assays, by immunogold, allowed the identification of pili-like extracellular structures. Together, the results obtained in this work demonstrate that the ICEAfe1 T4SS is phylogenetically conserved within the taxon, is expressed at mRNA and protein levels in vivo in the A. ferrooxidans type strain, and produces a pili-like structure of extracellular and intercellular localization in this model acidophile, supporting its functionality. Additional efforts will be required to prove conjugation of the ICEAfe1 or parts of this element through the cognate T4SS.
Collapse
Affiliation(s)
- Rodrigo Flores-Ríos
- Fundación Ciencia y Vida, Santiago, Chile.,Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ana Moya-Beltrán
- Fundación Ciencia y Vida, Santiago, Chile.,Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | | | - Mauricio Arenas-Salinas
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | | | - Omar Orellana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Santiago, Chile.,Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
22
|
Ulloa R, Moya-Beltrán A, Rojas-Villalobos C, Nuñez H, Chiacchiarini P, Donati E, Giaveno A, Quatrini R. Domestication of Local Microbial Consortia for Efficient Recovery of Gold Through Top-Down Selection in Airlift Bioreactors. Front Microbiol 2019; 10:60. [PMID: 30761108 PMCID: PMC6363673 DOI: 10.3389/fmicb.2019.00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/15/2019] [Indexed: 11/20/2022] Open
Abstract
Extreme acidophiles play central roles in the geochemical cycling of diverse elements in low pH environments. This has been harnessed in biotechnologies such as biomining, where microorganisms facilitate the recovery of economically important metals such as gold. By generating both extreme acidity and a chemical oxidant (ferric iron) many species of prokaryotes that thrive in low pH environments not only catalyze mineral dissolution but also trigger both community and individual level adaptive changes. These changes vary in extent and direction depending on the ore mineralogy, water availability and local climate. The use of indigenous versus introduced microbial consortia in biomining practices is still a matter of debate. Yet, indigenous microbial consortia colonizing sulfidic ores that have been domesticated, i.e., selected for their ability to survive under specific polyextreme conditions, are claimed to outperform un-adapted foreign consortia. Despite this, little is known on the domestication of acidic microbial communities and the changes elicited in their members. In this study, high resolution targeted metagenomic techniques were used to analyze the changes occurring in the community structure of local microbial consortia acclimated to growing under extreme acidic conditions and adapted to endure the conditions imposed by the target mineral during biooxidation of a gold concentrate in an airlift reactor over a period of 2 years. The results indicated that operative conditions evolving through biooxidation of the mineral concentrate exerted strong selective pressures that, early on, purge biodiversity in favor of a few Acidithiobacillus spp. over other iron oxidizing acidophiles. Metagenomic analysis of the domesticated consortium present at the end of the adaptation experiment enabled reconstruction of the RVS1-MAG, a novel representative of Acidithiobacillus ferrooxidans from the Andacollo gold mineral district. Comparative genomic analysis performed with this genome draft revealed a net enrichment of gene functions related to heavy metal transport and stress management that are likely to play a significant role in adaptation and survival to adverse conditions experienced by these acidophiles during growth in presence of gold concentrates.
Collapse
Affiliation(s)
- Ricardo Ulloa
- PROBIEN (CCT Comahue-CONICET, UNCo), Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Ana Moya-Beltrán
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | | | - Harold Nuñez
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Patricia Chiacchiarini
- PROBIEN (CCT Comahue-CONICET, UNCo), Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Edgardo Donati
- CINDEFI-CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alejandra Giaveno
- PROBIEN (CCT Comahue-CONICET, UNCo), Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Raquel Quatrini
- Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
- Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
23
|
Wang R, Lin JQ, Liu XM, Pang X, Zhang CJ, Yang CL, Gao XY, Lin CM, Li YQ, Li Y, Lin JQ, Chen LX. Sulfur Oxidation in the Acidophilic Autotrophic Acidithiobacillus spp. Front Microbiol 2019; 9:3290. [PMID: 30687275 PMCID: PMC6335251 DOI: 10.3389/fmicb.2018.03290] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Sulfur oxidation is an essential component of the earth's sulfur cycle. Acidithiobacillus spp. can oxidize various reduced inorganic sulfur compounds (RISCs) with high efficiency to obtain electrons for their autotrophic growth. Strains in this genus have been widely applied in bioleaching and biological desulfurization. Diverse sulfur-metabolic pathways and corresponding regulatory systems have been discovered in these acidophilic sulfur-oxidizing bacteria. The sulfur-metabolic enzymes in Acidithiobacillus spp. can be categorized as elemental sulfur oxidation enzymes (sulfur dioxygenase, sulfur oxygenase reductase, and Hdr-like complex), enzymes in thiosulfate oxidation pathways (tetrathionate intermediate thiosulfate oxidation (S4I) pathway, the sulfur oxidizing enzyme (Sox) system and thiosulfate dehydrogenase), sulfide oxidation enzymes (sulfide:quinone oxidoreductase) and sulfite oxidation pathways/enzymes. The two-component systems (TCSs) are the typical regulation elements for periplasmic thiosulfate metabolism in these autotrophic sulfur-oxidizing bacteria. Examples are RsrS/RsrR responsible for S4I pathway regulation and TspS/TspR for Sox system regulation. The proposal of sulfur metabolic and regulatory models provide new insights and overall understanding of the sulfur-metabolic processes in Acidithiobacillus spp. The future research directions and existing barriers in the bacterial sulfur metabolism are also emphasized here and the breakthroughs in these areas will accelerate the research on the sulfur oxidation in Acidithiobacillus spp. and other sulfur oxidizers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
24
|
Borilova S, Mandl M, Zeman J, Kucera J, Pakostova E, Janiczek O, Tuovinen OH. Can Sulfate Be the First Dominant Aqueous Sulfur Species Formed in the Oxidation of Pyrite by Acidithiobacillus ferrooxidans? Front Microbiol 2019; 9:3134. [PMID: 30619202 PMCID: PMC6305575 DOI: 10.3389/fmicb.2018.03134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
According to the literature, pyrite (FeS2) oxidation has been previously determined to involve thiosulfate as the first aqueous intermediate sulfur product, which is further oxidized to sulfate. In the present study, pyrite oxidation by Acidithiobacillus ferrooxidans was studied using electrochemical and metabolic approaches in an effort to extend existing knowledge on the oxidation mechanism. Due to the small surface area, the reaction rate of a compact pyrite electrode in the form of polycrystalline pyrite aggregate in A. ferrooxidans suspension was very slow at a spontaneously formed high redox potential. The slow rate made it possible to investigate the oxidation process in detail over a term of 100 days. Using electrochemical parameters from polarization curves and levels of released iron, the number of exchanged electrons per pyrite molecule was estimated. The values close to 14 and 2 electrons were determined for the oxidation with and without bacteria, respectively. These results indicated that sulfate was the dominant first aqueous sulfur species formed in the presence of bacteria and elemental sulfur was predominantly formed without bacteria. The stoichiometric calculations are consistent with high iron-oxidizing activities of bacteria that continually keep the released iron in the ferric form, resulting in a high redox potential. The sulfur entity of pyrite was oxidized to sulfate by Fe3+ without intermediate thiosulfate under these conditions. Cell attachment on the corroded pyrite electrode surface was documented although pyrite surface corrosion by Fe3+ was evident without bacterial participation. Attached cells may be important in initiating the oxidation of the pyrite surface to release iron from the mineral. During the active phase of oxidation of a pyrite concentrate sample, the ATP levels in attached and planktonic bacteria were consistent with previously established ATP content of iron-oxidizing cells. No significant upregulation of three essential genes involved in energy metabolism of sulfur compounds was observed in the planktonic cells, which represented the dominant biomass in the pyrite culture. The study demonstrated the formation of sulfate as the first dissolved sulfur species with iron-oxidizing bacteria under high redox potential conditions. Minor aqueous sulfur intermediates may be formed but as a result of side reactions.
Collapse
Affiliation(s)
- Sarka Borilova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin Mandl
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Josef Zeman
- Department of Geological Sciences, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jiri Kucera
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Eva Pakostova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Oldrich Janiczek
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Olli H Tuovinen
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
25
|
Ma L, Wang X, Liu X, Wang S, Wang H. Intensified bioleaching of chalcopyrite by communities with enriched ferrous or sulfur oxidizers. BIORESOURCE TECHNOLOGY 2018; 268:415-423. [PMID: 30103167 DOI: 10.1016/j.biortech.2018.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
The chalcopyrite bioleaching by enriched ferrous or sulfur oxidizers was investigated. The bioleaching was also intensified three times by the enriched communities. The results indicated that copper recoveries extracted by the enriched ferrous and sulfur oxidizers (Fe-O and S-O) were 38.87% and 43.13%, compared with that by the original community (35.35%). The positive effects of re-introducing S-enriched community to Fe-O and S-O groups were observed with copper extraction rates up to 41.67% and 46.45%. CCA indicated that the community dynamics intensified by S-enriched community was closer to that of the no re-inoculated one, but the Fe-enriched community drove a great fluctuation. A mechanism model for S-enriched community intensifying chalcopyrite bioleaching was proposed. More sulfur oxidizers in community slowed down jarosite formation and maintained lower ORP, which was propitious to chalcopyrite dissolution. Meanwhile, they accelerated S0 decomposition and decreased pH, which promoted acid leaching of chalcopyrite at a low cost.
Collapse
Affiliation(s)
- Liyuan Ma
- School of Environmental Studies, China University of Geosciences, 430074, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, 510006, China
| | - Xingjie Wang
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, 430081, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, 410083, China
| | - Shanquan Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, 510006, China
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences, 430074, China.
| |
Collapse
|
26
|
Issotta F, Moya-Beltrán A, Mena C, Covarrubias PC, Thyssen C, Bellenberg S, Sand W, Quatrini R, Vera M. Insights into the biology of acidophilic members of the Acidiferrobacteraceae family derived from comparative genomic analyses. Res Microbiol 2018; 169:608-617. [PMID: 30142431 DOI: 10.1016/j.resmic.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
The family Acidiferrobacteraceae (order Acidiferrobacterales) currently contains Gram negative, neutrophilic sulfur oxidizers such as Sulfuricaulis and Sulfurifustis, as well as acidophilic iron and sulfur oxidizers belonging to the Acidiferrobacter genus. The diversity and taxonomy of the genus Acidiferrobacter has remained poorly explored. Although several metagenome and bioleaching studies have identified its presence worldwide, only two strains, namely Acidiferrobacter thiooxydans DSM 2932T, and Acidiferrobacter spp. SP3/III have been isolated and made publically available. Using 16S rRNA sequence data publically available for the Acidiferrobacteraceae, we herein shed light into the molecular taxonomy of this family. Results obtained support the presence of three clades Acidiferrobacter, Sulfuricaulis and Sulfurifustis. Genomic analyses of the genome sequences of A. thiooxydansT and Acidiferrobacter spp. SP3/III indicate that ANI relatedness between the SPIII/3 strain and A. thiooxydansT is below 95-96%, supporting the classification of strain SP3/III as a new species within this genus. In addition, approximately 70% of Acidiferrobacter sp. SPIII/3 predicted genes have a conserved ortholog in A. thiooxydans strains. A comparative analysis of iron, sulfur oxidation pathways, genome plasticity and cell-cell communication mechanisms of Acidiferrobacter spp. are also discussed.
Collapse
Affiliation(s)
- Francisco Issotta
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ana Moya-Beltrán
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Cristóbal Mena
- Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, 7820486, Santiago, Chile
| | - Paulo C Covarrubias
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Christian Thyssen
- Universität Duisburg Essen, Biofilm Centre, Aquatische Biotechnologie, Universitätsstr. 5, 45141, Essen, Germany
| | - Sören Bellenberg
- Universität Duisburg Essen, Biofilm Centre, Aquatische Biotechnologie, Universitätsstr. 5, 45141, Essen, Germany
| | - Wolfgang Sand
- Universität Duisburg Essen, Biofilm Centre, Aquatische Biotechnologie, Universitätsstr. 5, 45141, Essen, Germany; College of Environmental Science and Engineering, Donghua University, 2999 North Ren Min Rd., Song Jiang District, Shanghai, 201620, PR China; Technische Universität Bergakademie Freiberg, Institut für Biowissenschaften, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile.
| | - Mario Vera
- Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, 7820486, Santiago, Chile; Departamento de Ingeniería Hidráulica y Ambiental, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, 7820486, Santiago, Chile.
| |
Collapse
|
27
|
Covarrubias PC, Moya-Beltrán A, Atavales J, Moya-Flores F, Tapia PS, Acuña LG, Spinelli S, Quatrini R. Occurrence, integrity and functionality of AcaML1-like viruses infecting extreme acidophiles of the Acidithiobacillus species complex. Res Microbiol 2018; 169:628-637. [PMID: 30138723 DOI: 10.1016/j.resmic.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
General knowledge on the diversity and biology of microbial viruses infecting bacterial hosts from extreme acidic environments lags behind most other econiches. In this study, we analyse the AcaML1 virus occurrence in the taxon, its genetic composition and infective behaviour under standard acidic and SOS-inducing conditions to assess its integrity and functionality. Occurrence analysis in sequenced acidithiobacilli showed that AcaML1-like proviruses are confined to the mesothermophiles Acidithiobacillus caldus and Thermithiobacillus tepidarius. Among A. caldus strains and isolates this provirus had a modest prevalence (30%). Comparative genomic analysis revealed a significant conservation with the T. tepidarius AcaML1-like provirus, excepting the tail genes, and a high conservation of the virus across strains of the A. caldus species. Such conservation extends from the modules architecture to the gene level, suggesting that organization and composition of these viruses are preserved for functional reasons. Accordingly, the AcaML1 proviruses were demonstrated to excise from their host genomes under DNA-damaging conditions triggering the SOS-response and to produce DNA-containing VLPs. Despite this fact, under the conditions evaluated (acidic) the VLPs obtained from A. caldus ATCC 51756 could not produce productive infections of a candidate sensitive strain (#6) nor trigger it lysis.
Collapse
Affiliation(s)
- Paulo C Covarrubias
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ana Moya-Beltrán
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Joaquin Atavales
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Francisco Moya-Flores
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Pablo S Tapia
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Lillian G Acuña
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR 7257, Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile.
| |
Collapse
|
28
|
Zhang X, Liu Z, Wei G, Yang F, Liu X. In Silico Genome-Wide Analysis Reveals the Potential Links Between Core Genome of Acidithiobacillus thiooxidans and Its Autotrophic Lifestyle. Front Microbiol 2018; 9:1255. [PMID: 29937764 PMCID: PMC6002666 DOI: 10.3389/fmicb.2018.01255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/24/2018] [Indexed: 12/27/2022] Open
Abstract
The coinage “pan-genome” was first introduced dating back to 2005, and was used to elaborate the entire gene repertoire of any given species. Core genome consists of genes shared by all bacterial strains studied and is considered to encode essential functions associated with species’ basic biology and phenotypes, yet its relatedness with bacterial lifestyle of the species remains elusive. We performed the pan-genome analysis of sulfur-oxidizing acidophile Acidithiobacillus thiooxidans as a case study to highlight species’ core genome and its relevance with autotrophic lifestyle of bacterial species. The mathematical modeling based on bacterial genomes of A. thiooxidans species, including a novel strain ZBY isolated from Zambian copper mine plus eight other recognized strains, was attempted to extrapolate the expansion of its pan-genome, suggesting that A. thiooxidans pan-genome is closed. Further investigation revealed a common set of genes, many of which were assigned to metabolic profiles, notably with respect to energy metabolism, amino acid metabolism, and carbohydrate metabolism. The predicted metabolic profiles of A. thiooxidans were characterized by the fixation of inorganic carbon, assimilation of nitrogen compounds, and aerobic oxidation of various sulfur species. Notably, several hydrogenase (H2ase)-like genes dispersed in core genome might represent the novel classes due to the potential functional disparities, despite being closely related homologous genes that code for H2ase. Overall, the findings shed light on the distinguishing features of A. thiooxidans genomes on a global scale, and extend the understanding of its conserved core genome pertaining to autotrophic lifestyle.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Guanyun Wei
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
29
|
Salt Stress-Induced Loss of Iron Oxidoreduction Activities and Reacquisition of That Phenotype Depend on rus Operon Transcription in Acidithiobacillus ferridurans. Appl Environ Microbiol 2018; 84:AEM.02795-17. [PMID: 29374029 DOI: 10.1128/aem.02795-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/14/2018] [Indexed: 01/08/2023] Open
Abstract
The type strain of the mineral-oxidizing acidophilic bacterium Acidithiobacillus ferridurans was grown in liquid medium containing elevated concentrations of sodium chloride with hydrogen as electron donor. While it became more tolerant to chloride, after about 1 year, the salt-stressed acidophile was found to have lost its ability to oxidize iron, though not sulfur or hydrogen. Detailed molecular examination revealed that this was due to an insertion sequence, ISAfd1, which belongs to the ISPepr1 subgroup of the IS4 family, having been inserted downstream of the two promoters PI and PII of the rus operon (which codes for the iron oxidation pathway in this acidophile), thereby preventing its transcription. The ability to oxidize iron was regained on protracted incubation of the culture inoculated onto salt-free solid medium containing ferrous iron and incubated under hydrogen. Two revertant strains were obtained. In one, the insertion sequence ISAfd1 had been excised, leaving an 11-bp signature, while in the other an ∼2,500-bp insertion sequence (belonging to the IS66 family) was detected in the downstream inverted repeat of ISAfd1 The transcriptional start site of the rus operon in the second revertant strain was downstream of the two ISs, due to the creation of a new "hybrid" promoter. The loss and subsequent regaining of the ability of A. ferriduransT to reduce ferric iron were concurrent with those observed for ferrous iron oxidation, suggesting that these two traits are closely linked in this acidophile.IMPORTANCE Iron-oxidizing acidophilic bacteria have primary roles in the oxidative dissolution of sulfide minerals, a process that underpins commercial mineral-processing biotechnologies ("biomining"). Most of these prokaryotes have relatively low tolerance to chloride, which limits their activities when only saline or brackish waters are available. The study showed that it was possible to adapt a typical iron-oxidizing acidophile to grow in the presence of salt concentrations similar to those in seawater, but in so doing they lost their ability to oxidize iron, though not sulfur or hydrogen. The bacterium regained its capacity for oxidizing iron when the salt stress was removed but simultaneously reverted to tolerating lower concentrations of salt. These results suggest that the bacteria that have the main roles in biomining operations could survive but become ineffective in cases where saline or brackish waters are used for irrigation.
Collapse
|
30
|
Norris PR, Laigle L, Slade S. Cytochromes in anaerobic growth of Acidithiobacillus ferrooxidans. Microbiology (Reading) 2018; 164:383-394. [DOI: 10.1099/mic.0.000616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Paul R. Norris
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Present address: Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Ludovic Laigle
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Present address: The Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Susan Slade
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
- Present address: Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, UK
| |
Collapse
|
31
|
Biofilm Formation by the Acidophile Bacterium Acidithiobacillus thiooxidans Involves c-di-GMP Pathway and Pel exopolysaccharide. Genes (Basel) 2018; 9:genes9020113. [PMID: 29466318 PMCID: PMC5852609 DOI: 10.3390/genes9020113] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023] Open
Abstract
Acidophile bacteria belonging to the Acidithiobacillus genus are pivotal players for the bioleaching of metallic values such as copper. Cell adherence to ores and biofilm formation, mediated by the production of extracellular polymeric substances, strongly favors bioleaching activity. In recent years, the second messenger cyclic diguanylate (c-di-GMP) has emerged as a central regulator for biofilm formation in bacteria. C-di-GMP pathways have been reported in different Acidithiobacillus species; however, c-di-GMP effectors and signal transduction networks are still largely uncharacterized in these extremophile species. Here we investigated Pel exopolysaccharide and its role in biofilm formation by sulfur-oxidizing species Acidithiobacillusthiooxidans. We identified 39 open reading frames (ORFs) encoding proteins involved in c-di-GMP metabolism and signal transduction, including the c-di-GMP effector protein PelD, a structural component of the biosynthesis apparatus for Pel exopolysaccharide production. We found that intracellular c-di-GMP concentrations and transcription levels of pel genes were higher in At. thiooxidans biofilm cells compared to planktonic ones. By developing an At. thiooxidans ΔpelD null-mutant strain we revealed that Pel exopolysaccharide is involved in biofilm structure and development. Further studies are still necessary to understand how Pel biosynthesis is regulated in Acidithiobacillus species, nevertheless these results represent the first characterization of a c-di-GMP effector protein involved in biofilm formation by acidophile species.
Collapse
|
32
|
Microbiomes in extremely acidic environments: functionalities and interactions that allow survival and growth of prokaryotes at low pH. Curr Opin Microbiol 2018; 43:139-147. [PMID: 29414445 DOI: 10.1016/j.mib.2018.01.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 11/23/2022]
Abstract
Extremely acidic environments have global distribution and can have natural or, increasingly, anthropogenic origins. Extreme acidophiles grow optimally at pH 3 or less, have multiple strategies for tolerating stresses that accompany high levels of acidity and are scattered in all three domains of the tree of life. Metagenomic studies have expanded knowledge of the diversity of extreme acidophile communities, their ecological networks and their metabolic potentials, both confirmed and inferred. High resolution compositional and functional profiling of these microbiomes have begun to reveal spatial diversity patterns at global, regional, local, zonal and micro-scales. Future integration of genomic and other meta-omic data will offer new opportunities to utilize acidic microbiomes and to engineer beneficial interactions within them in biotechnologies.
Collapse
|
33
|
Castro M, Moya-Beltrán A, Covarrubias PC, Gonzalez M, Cardenas JP, Issotta F, Nuñez H, Acuña LG, Encina G, Holmes DS, Johnson DB, Quatrini R. Draft genome sequence of the type strain of the sulfur-oxidizing acidophile, Acidithiobacillus albertensis (DSM 14366). Stand Genomic Sci 2017; 12:77. [PMID: 29255572 PMCID: PMC5731081 DOI: 10.1186/s40793-017-0282-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022] Open
Abstract
Acidithiobacillus albertensis is an extremely acidophilic, mesophilic, obligatory autotrophic sulfur-oxidizer, with potential importance in the bioleaching of sulfidic metal ores, first described in the 1980s. Here we present the draft genome sequence of Acidithiobacillus albertensis DSM 14366T, thereby both filling a long-standing gap in the genomics of the acidithiobacilli, and providing further insight into the understanding of the biology of the non iron-oxidizing members of the Acidithiobacillus genus. The assembled genome is 3,1 Mb, and contains 47 tRNAs, tmRNA gene and 2 rRNA operons, along with 3149 protein-coding predicted genes. The Whole Genome Shotgun project was deposited in DDBJ/EMBL/GenBank under the accession MOAD00000000.
Collapse
Affiliation(s)
- Matías Castro
- Fundación Ciencia & Vida, Av. Zañartu 1482, Santiago, 7780272 Chile
| | - Ana Moya-Beltrán
- Fundación Ciencia & Vida, Av. Zañartu 1482, Santiago, 7780272 Chile
| | - Paulo C. Covarrubias
- Fundación Ciencia & Vida, Av. Zañartu 1482, Santiago, 7780272 Chile
- Current Address: uBiome Chile, SpA, Santiago, Chile
| | - Mónica Gonzalez
- Fundación Ciencia & Vida, Av. Zañartu 1482, Santiago, 7780272 Chile
| | - Juan Pablo Cardenas
- Fundación Ciencia & Vida, Av. Zañartu 1482, Santiago, 7780272 Chile
- Current Address: uBiome Chile, SpA, Santiago, Chile
| | | | - Harold Nuñez
- Fundación Ciencia & Vida, Av. Zañartu 1482, Santiago, 7780272 Chile
- Current Address: uBiome Chile, SpA, Santiago, Chile
| | - Lillian G. Acuña
- Fundación Ciencia & Vida, Av. Zañartu 1482, Santiago, 7780272 Chile
| | | | - David S. Holmes
- Fundación Ciencia & Vida, Av. Zañartu 1482, Santiago, 7780272 Chile
- Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | | | - Raquel Quatrini
- Fundación Ciencia & Vida, Av. Zañartu 1482, Santiago, 7780272 Chile
| |
Collapse
|
34
|
Tran TTT, Mangenot S, Magdelenat G, Payen E, Rouy Z, Belahbib H, Grail BM, Johnson DB, Bonnefoy V, Talla E. Comparative Genome Analysis Provides Insights into Both the Lifestyle of Acidithiobacillus ferrivorans Strain CF27 and the Chimeric Nature of the Iron-Oxidizing Acidithiobacilli Genomes. Front Microbiol 2017; 8:1009. [PMID: 28659871 PMCID: PMC5468388 DOI: 10.3389/fmicb.2017.01009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
The iron-oxidizing species Acidithiobacillus ferrivorans is one of few acidophiles able to oxidize ferrous iron and reduced inorganic sulfur compounds at low temperatures (<10°C). To complete the genome of At. ferrivorans strain CF27, new sequences were generated, and an update assembly and functional annotation were undertaken, followed by a comparative analysis with other Acidithiobacillus species whose genomes are publically available. The At. ferrivorans CF27 genome comprises a 3,409,655 bp chromosome and a 46,453 bp plasmid. At. ferrivorans CF27 possesses genes allowing its adaptation to cold, metal(loid)-rich environments, as well as others that enable it to sense environmental changes, allowing At. ferrivorans CF27 to escape hostile conditions and to move toward favorable locations. Interestingly, the genome of At. ferrivorans CF27 exhibits a large number of genomic islands (mostly containing genes of unknown function), suggesting that a large number of genes has been acquired by horizontal gene transfer over time. Furthermore, several genes specific to At. ferrivorans CF27 have been identified that could be responsible for the phenotypic differences of this strain compared to other Acidithiobacillus species. Most genes located inside At. ferrivorans CF27-specific gene clusters which have been analyzed were expressed by both ferrous iron-grown and sulfur-attached cells, indicating that they are not pseudogenes and may play a role in both situations. Analysis of the taxonomic composition of genomes of the Acidithiobacillia infers that they are chimeric in nature, supporting the premise that they belong to a particular taxonomic class, distinct to other proteobacterial subgroups.
Collapse
Affiliation(s)
- Tam T T Tran
- Aix-Marseille Université, CNRS, LCBMarseille, France
| | - Sophie Mangenot
- Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, C.E.A., Institut de Génomique - GenoscopeEvry, France
| | - Ghislaine Magdelenat
- Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, C.E.A., Institut de Génomique - GenoscopeEvry, France
| | - Emilie Payen
- Laboratoire de Biologie Moléculaire pour l'Etude des Génomes, C.E.A., Institut de Génomique - GenoscopeEvry, France
| | - Zoé Rouy
- CNRS UMR8030, CEA/DSV/IG/Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le MétabolismeEvry, France
| | | | - Barry M Grail
- College of Natural Sciences, Bangor UniversityBangor, United Kingdom
| | - D Barrie Johnson
- College of Natural Sciences, Bangor UniversityBangor, United Kingdom
| | | | | |
Collapse
|