1
|
Ma J, Nie Y, Zhang L, Xu Y. The evolutionary mechanism and function analysis of two subgroups of histamine-producing and non-histamine-producing Tetragenococcus halophilus. Food Res Int 2024; 176:113744. [PMID: 38163696 DOI: 10.1016/j.foodres.2023.113744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Tetragenococcus halophilus is a halophilic bacterium that existed in the fermentation of soy sauce and miso for flavor production and probiotic benefits. However, it is composed of two subgroups, histamine-producing and non-histamine-producing, with the former causing histamine accumulation and offering risks to food safety. Exploring the evolutionary mechanisms and physiological function of histamine-biosynthesis is of significance for understanding the formative mechanism of T. halophilus's strain-specificity and is helpful for microbial control. Using systematic genomic analysis, we found that plasmid acquisition and loss is the evolutionary form resulting in the two subgroups of T. halophilus. Two plasmids, plasmid α with 30 kb and plasmid β with 4 kb existed in histamine-producing T. halophilus. We investigated the whole genetic information and proposed their genetic function in both two plasmids. The acquisition of histamine-producing plasmid enhanced the acid tolerance of histamine-producing T. halophilus but did not affect salt tolerance. More interestingly, we found that the existence of plasmid will promote the co-culture growth of T. halophilus. This study deepens our understanding of the formative mechanism of microbial species diversity, and provides our knowledge of the physiological function of histamine-producing plasmids.
Collapse
Affiliation(s)
- Jinjin Ma
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Lijie Zhang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Sarquis A, Ladero V, Díaz M, Sánchez-Llana E, Fernández M, Alvarez MA. The gene cluster associated with strong biofilm-formation capacity by histamine-producing Lentilactobacillus parabuchneri encodes a sortase-mediated pilus and is located on a plasmid. Food Res Int 2024; 175:113777. [PMID: 38129064 DOI: 10.1016/j.foodres.2023.113777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Histamine is a biogenic amine synthesized through the enzymatic decarboxylation of the amino acid histidine. It can accumulate at high concentrations in foods through the metabolism of certain bacteria, sometimes leading to adverse reactions in consumers. In cheese, histamine can accumulate at toxic levels; Lentilactobacillus parabuchneri has been identified the major cause of this problem. Previous studies have shown some L. parabuchneri strains to form biofilms on different surfaces, posing a contamination risk during cheese production, particularly for cheeses that are processed post-ripening (e.g., grating or slicing). The food contamination they cause can result in economic losses and even foodborne illness if histamine accumulates in the final product. The aim of the present work was to identify the genes of L. parabuchneri involved in biofilm formation, and to determine their function. The genomes of six strains with different biofilm-production capacities (strong, moderate and weak) were sequenced and analysed. A cluster of four genes, similar to those involved in sortase-mediated pilus formation, was identified in the strong biofilm-producers, suggesting it to have a role in surface adhesion. Cloning and heterologous expression in Lactococcus cremoris NZ9000 confirmed its functionality and involvement in adhesion and, therefore, in biofilm formation. PacBio sequencing showed this cluster to be located on a 33.4 kb plasmid, which might increase its chances of horizontal transmission. These findings provide insight into the genetic factors associated with biofilm formation in histamine-producing L. parabuchneri, and into the risks associated with this bacterium in cheese production.
Collapse
Affiliation(s)
- Agustina Sarquis
- Dairy Research Institute, IPLA, CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Víctor Ladero
- Dairy Research Institute, IPLA, CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain.
| | - María Díaz
- Dairy Research Institute, IPLA, CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain
| | - Esther Sánchez-Llana
- Dairy Research Institute, IPLA, CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain
| | - María Fernández
- Dairy Research Institute, IPLA, CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Miguel A Alvarez
- Dairy Research Institute, IPLA, CSIC, Paseo Rio Linares s/n, 33300 Villaviciosa, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| |
Collapse
|
3
|
Ferrante MC, Mercogliano R. Focus on Histamine Production During Cheese Manufacture and Processing: A Review. Food Chem 2023; 419:136046. [PMID: 37058863 DOI: 10.1016/j.foodchem.2023.136046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Histamine (HIS) intoxication is a poisoning caused by histamine in food. Cheese is one of the most common dairy products associated with histamine levels which vary depending on the processing methods. The final content of histamine in cheese is influenced by intrinsic and extrinsic factors, their interactions, and contamination stemming from food processing. The application of control measures may be useful to inhibit/reduce production during cheese manufacture and processing but have a limited effect. To reduce histamine intoxication outbreaks from cheese consumption the introduction of quality control programs and appropriate risk mitigation options should be applied along the dairy chain from an overall perspective of food safety based on individual susceptibility and consumer sensitivity. As key food safety, this topic should be considered in future regulations in dairy products because the lack of a clear law on HIS limits in cheese may result in a significant potential deviation from the EU food safety strategy.
Collapse
|
4
|
Comparative Genomics of Lentilactobacillus parabuchneri isolated from dairy, KEM complex, Makgeolli, and Saliva Microbiomes. BMC Genomics 2022; 23:803. [PMID: 36471243 PMCID: PMC9724434 DOI: 10.1186/s12864-022-09053-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lentilactobacillus parabuchneri is of particular concern in fermented food bioprocessing due to causing unwanted gas formation, cracks, and off-flavor in fermented dairy foods. This species is also a known culprit of histamine poisonings because of decarboxylating histidine to histamine in ripening cheese. Twenty-eight genomes in NCBI GenBank were evaluated via comparative analysis to determine genomic diversity within this species and identify potential avenues for reducing health associated risks and economic losses in the food industry caused by these organisms. RESULT Core genome-based phylogenetic analysis revealed four distinct major clades. Eight dairy isolates, two strains from an unknown source, and a saliva isolate formed the first clade. Three out of five strains clustered on clade 2 belonged to dairy, and the remaining two strains were isolated from the makgeolli and Korean effective microorganisms (KEM) complex. The third and fourth clade members were isolated from Tete de Moine and dairy-associated niches, respectively. Whole genome analysis on twenty-eight genomes showed ~ 40% of all CDS were conserved across entire strains proposing a considerable diversity among L. parabuchneri strains analyzed. After assigning CDS to their corresponding function, ~ 79% of all strains were predicted to carry putative intact prophages, and ~ 43% of the strains harbored at least one plasmid; however, all the strains were predicted to encode genomic island, insertion sequence, and CRISPR-Cas system. A type I-E CRISPR-Cas subgroup was identified in all the strains, with the exception of DSM15352, which carried a type II-A CRISPR-Cas system. Twenty strains were predicted to encode histidine decarboxylase gene cluster that belongs to not only dairy but also saliva, KEM complex, and unknown source. No bacteriocin-encoding gene(s) or antibiotic resistome was found in any of the L. parabuchneri strains screened. CONCLUSION The findings of the present work provide in-depth knowledge of the genomics of L. parabuchneri by comparing twenty-eight genomes available to date. For example, the hdc gene cluster was generally reported in cheese isolates; however, our findings in the current work indicated that it could also be encoded in those strains isolated from saliva, KEM complex, and unknown source. We think prophages are critical mobile elements of L. parabuchneri genomes that could pave the way for developing novel tools to reduce the occurrence of this unwanted species in the food industry.
Collapse
|
5
|
The significance of cheese sampling in the determination of histamine concentration: Distribution pattern of histamine in ripened cheeses. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Stuivenberg G, Daisley B, Akouris P, Reid G. In vitro assessment of histamine and lactate production by a multi-strain synbiotic. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3419-3427. [PMID: 35875231 PMCID: PMC9304488 DOI: 10.1007/s13197-021-05327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/26/2022]
Abstract
Recent studies suggest histamine and d-lactate may negatively impact host health. As excess histamine is deleterious to the host, the identification of bacterial producers has contributed to concerns over the consumption of probiotics or live microorganisms in fermented food items. Some probiotic products have been suspected of inducing d-lactic-acidosis; an illness associated with neurocognitive symptoms such as ataxia. The goals of the present study were to test the in vitro production of histamine and d-lactate by a 24-strain daily synbiotic and to outline methods that others can use to test for their production. Using enzymatic based assays, no significant production of histamine was observed compared to controls (P > 0.05), while d-lactate production was comparable to a commercially available probiotic with no associated health risk. These assays provide a means to add to the safety profile of synbiotic and probiotic products.
Collapse
|
7
|
Schirone M, Visciano P, Conte F, Paparella A. Formation of biogenic amines in the cheese production chain: favouring and hindering factors. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Berthoud H, Wechsler D, Irmler S. Production of Putrescine and Cadaverine by Paucilactobacillus wasatchensis. Front Microbiol 2022; 13:842403. [PMID: 35308356 PMCID: PMC8928434 DOI: 10.3389/fmicb.2022.842403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 11/28/2022] Open
Abstract
Lactic acid bacteria (LAB) play a key role in many food fermentations. However, some LAB species can also cause food spoilage, e.g., through the formation of biogenic amines. Paucilactobacillus wasatchensis is a LAB that causes late gas production in Cheddar cheese, the molecular causes of which are not fully understood. This study reports on the ability of P. wasatchensis WDC04 to produce cadaverine and putrescine in broth supplemented with lysine and ornithine, as well as in a model cheese. The raclette-type semi-hard cheese produced with P. wasatchensis as an adjunct culture contained 1,085 mg kg−1 of cadaverine and 304 mg kg−1 of putrescine after 120 days of ripening. We identified two ornithine decarboxylase genes (odc) and a putrescine-ornithine antiporter gene (potE) in the genome sequence of P. wasatchensis. We could show that the two odc genes, which are located on two contigs, are contiguous and form the genetic cluster odc2-odc1-potE. Alignment searches showed that similar gene clusters exist in the genomes of Levilactobacillus paucivorans DSMZ22467, Lentilactobacillus kribbianus YH-lac9, Levilactobacillus hunanensis 151-2B, and Levilactobacillus lindianensis 220-4. More amino acid sequence comparisons showed that Odc1 and Odc2 shared 72 and 69% identity with a lysine and ornithine decarboxylase from Ligilactobacillus saerimneri 30a, respectively. To clarify the catalytic activities of both enzymes, the odc-coding genes were cloned and heterologously expressed as His-tagged fusion protein. The purified Odc1 protein decarboxylated lysine into cadaverine, while the recombinant Odc2 protein preferentially produced putrescine from ornithine but also exhibited low lysine decarboxylating activity. Both enzymes were active at pH of 5.5, a value often found in cheese. To our knowledge, this is only the second lysine decarboxylase in LAB whose function has been verified. The tandem arrangement of the genes in a single cluster suggests a gene duplication, evolving the ability to metabolize more amino. Divergent substrate preferences highlight the necessity of verifying the functions of genes, in addition to automatic annotation based on sequence similarity. Acquiring new biochemical data allows better predictive models and, in this case, more accurate biogenic amine production potential for LAB strains and microbiomes.
Collapse
|
9
|
Botello-Morte L, Moniente M, Gil-Ramírez Y, Virto R, García-Gonzalo D, Pagán R. Identification by means of molecular tools of the microbiota responsible for the formation of histamine accumulated in commercial cheeses in Spain. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Oberg TS, McMahon DJ, Culumber MD, McAuliffe O, Oberg CJ. Invited review: Review of taxonomic changes in dairy-related lactobacilli. J Dairy Sci 2022; 105:2750-2770. [DOI: 10.3168/jds.2021-21138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022]
|
11
|
Mou Z, Yang Y, Hall AB, Jiang X. The taxonomic distribution of histamine-secreting bacteria in the human gut microbiome. BMC Genomics 2021; 22:695. [PMID: 34563136 PMCID: PMC8465708 DOI: 10.1186/s12864-021-08004-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Biogenic histamine plays an important role in immune response, neurotransmission, and allergic response. Although endogenous histamine production has been extensively studied, the contributions of histamine produced by the human gut microbiota have not been explored due to the absence of a systematic annotation of histamine-secreting bacteria. RESULTS To identify the histamine-secreting bacteria from in the human gut microbiome, we conducted a systematic search for putative histamine-secreting bacteria in 36,554 genomes from the Genome Taxonomy Database and Unified Human Gastrointestinal Genome catalog. Using bioinformatic approaches, we identified 117 putative histamine-secreting bacteria species. A new three-component decarboxylation system including two colocalized decarboxylases and one transporter was observed in histamine-secreting bacteria among three different phyla. We found significant enrichment of histamine-secreting bacteria in patients with inflammatory bowel disease but not in patients with colorectal cancer suggesting a possible association between histamine-secreting bacteria and inflammatory bowel disease. CONCLUSIONS The findings of this study expand our knowledge of the taxonomic distribution of putative histamine-secreting bacteria in the human gut.
Collapse
Affiliation(s)
- Zhongyu Mou
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Yiyan Yang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - A Brantley Hall
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Xiaofang Jiang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Wechsler D, Irmler S, Berthoud H, Portmann R, Badertscher R, Bisig W, Schafroth K, Fröhlich-Wyder MT. Influence of the inoculum level of Lactobacillus parabuchneri in vat milk and of the cheese-making conditions on histamine formation during ripening. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Moniente M, García‐Gonzalo D, Ontañón I, Pagán R, Botello‐Morte L. Histamine accumulation in dairy products: Microbial causes, techniques for the detection of histamine‐producing microbiota, and potential solutions. Compr Rev Food Sci Food Saf 2021; 20:1481-1523. [DOI: 10.1111/1541-4337.12704] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Marta Moniente
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Diego García‐Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Ignacio Ontañón
- Laboratorio de Análisis del Aroma y Enología, Química Analítica Facultad de Ciencias, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Laura Botello‐Morte
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| |
Collapse
|
14
|
Dreier M, Berthoud H, Shani N, Wechsler D, Junier P. Development of a High-Throughput Microfluidic qPCR System for the Quantitative Determination of Quality-Relevant Bacteria in Cheese. Front Microbiol 2021; 11:619166. [PMID: 33488561 PMCID: PMC7817891 DOI: 10.3389/fmicb.2020.619166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
The composition of the cheese microbiome has an important impact on the sensorial quality and safety of cheese. Therefore, much effort has been made to investigate the microbial community composition of cheese. Quantitative real-time polymerase chain reaction (qPCR) is a well-established method for detecting and quantifying bacteria. High-throughput qPCR (HT-qPCR) using microfluidics brings further advantages by providing fast results and by decreasing the cost per sample. We have developed a HT-qPCR approach for the rapid and cost-efficient quantification of microbial species in cheese by designing qPCR assays targeting 24 species/subspecies commonly found in cheese. Primer pairs were evaluated on the Biomark (Fluidigm) microfluidic HT-qPCR system using DNA from single strains and from artificial mock communities. The qPCR assays worked efficiently under identical PCR conditions, and the validation showed satisfying inclusivity, exclusivity, and amplification efficiencies. Preliminary results obtained from the HT-qPCR analysis of DNA samples of model cheeses made with the addition of adjunct cultures confirmed the potential of the microfluidic HT-qPCR system to screen for selected bacterial species in the cheese microbiome. HT-qPCR data of DNA samples of two downgraded commercial cheeses showed that this approach provides valuable information that can help to identify the microbial origin of quality defects. This newly developed HT-qPCR system is a promising approach that will allow simultaneous monitoring of quality-relevant species in fermented foods with high bacterial diversity, thereby opening up new perspectives for the control and assurance of high product quality.
Collapse
Affiliation(s)
- Matthias Dreier
- Agroscope, Bern, Switzerland.,Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | | | | | | | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
15
|
In Silico Comparison Shows that the Pan-Genome of a Dairy-Related Bacterial Culture Collection Covers Most Reactions Annotated to Human Microbiomes. Microorganisms 2020; 8:microorganisms8070966. [PMID: 32605102 PMCID: PMC7409220 DOI: 10.3390/microorganisms8070966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/22/2023] Open
Abstract
The diversity of the human microbiome is positively associated with human health. However, this diversity is endangered by Westernized dietary patterns that are characterized by a decreased nutrient variety. Diversity might potentially be improved by promoting dietary patterns rich in microbial strains. Various collections of bacterial cultures resulting from a century of dairy research are readily available worldwide, and could be exploited to contribute towards this end. We have conducted a functional in silico analysis of the metagenome of 24 strains, each representing one of the species in a bacterial culture collection composed of 626 sequenced strains, and compared the pathways potentially covered by this metagenome to the intestinal metagenome of four healthy, although overweight, humans. Remarkably, the pan-genome of the 24 strains covers 89% of the human gut microbiome’s annotated enzymatic reactions. Furthermore, the dairy microbial collection covers biological pathways, such as methylglyoxal degradation, sulfate reduction, γ-aminobutyric (GABA) acid degradation and salicylate degradation, which are differently covered among the four subjects and are involved in a range of cardiometabolic, intestinal, and neurological disorders. We conclude that microbial culture collections derived from dairy research have the genomic potential to complement and restore functional redundancy in human microbiomes.
Collapse
|
16
|
Wenger A, Schmidt RS, Portmann R, Roetschi A, Eugster E, Weisskopf L, Irmler S. Identification of a species-specific aminotransferase in Pediococcus acidilactici capable of forming α-aminobutyrate. AMB Express 2020; 10:100. [PMID: 32472439 PMCID: PMC7260336 DOI: 10.1186/s13568-020-01034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/23/2020] [Indexed: 11/19/2022] Open
Abstract
During cheese ripening, the bacterial strain Pediococcus acidilactici FAM18098 produces the non-proteinogenic amino acid, α-aminobutyrate (AABA). The metabolic processes that lead to the biosynthesis of this compound are unknown. In this study, 10 P. acidilactici, including FAM18098 and nine Pediococcus pentosaceus strains, were screened for their ability to produce AABA. All P. acidilactici strains produced AABA, whereas the P. pentosaceus strains did not. The genomes of the pediococcal strains were sequenced and searched for genes encoding aminotransferases to test the hypothesis that AABA could result from the transamination of α-ketobutyrate. A GenBank and KEGG database search revealed the presence of a species-specific aminotransferase in P. acidilactici. The gene was cloned and its gene product was produced as a His-tagged fusion protein in Escherichia coli to determine the substrate specificity of this enzyme. The purified recombinant protein showed aminotransferase activity at pH 5.5. It catalyzed the transfer of the amino group from leucine, methionine, AABA, alanine, cysteine, and phenylalanine to the amino group acceptor α-ketoglutarate. Αlpha-ketobutyrate could replace α-ketoglutarate as an amino group acceptor. In this case, AABA was produced at significantly higher levels than glutamate. The results of this study show that P. acidilactici possesses a novel aminotransferase that might play a role in cheese biochemistry and has the potential to be used in biotechnological processes for the production of AABA.
Collapse
Affiliation(s)
- Alexander Wenger
- Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland.,Department of Biology, University of Fribourg, Rue Albert-Gockel 3, 1700, Fribourg, Switzerland
| | - Remo S Schmidt
- Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | - Reto Portmann
- Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | | | - Elisabeth Eugster
- Bern University of Applied Sciences, School of Agricultural, Forest, and Food Sciences HAFL, Länggasse 85, 3052, Zollikofen, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Rue Albert-Gockel 3, 1700, Fribourg, Switzerland
| | - Stefan Irmler
- Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland.
| |
Collapse
|
17
|
Engineering bacterial symbionts of nematodes improves their biocontrol potential to counter the western corn rootworm. Nat Biotechnol 2020; 38:600-608. [PMID: 32066956 DOI: 10.1038/s41587-020-0419-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/10/2020] [Indexed: 01/18/2023]
Abstract
The western corn rootworm (WCR) decimates maize crops worldwide. One potential way to control this pest is treatment with entomopathogenic nematodes (EPNs) that harbor bacterial symbionts that are pathogenic to insects. However, WCR larvae sequester benzoxazinoid secondary metabolites that are produced by maize and use them to increase their resistance to the nematodes and their symbionts. Here we report that experimental evolution and selection for bacterial symbionts that are resistant to benzoxazinoids improve the ability of a nematode-symbiont pair to kill WCR larvae. We isolated five Photorhabdus symbionts from different nematodes and increased their benzoxazinoid resistance through experimental evolution. Benzoxazinoid resistance evolved through multiple mechanisms, including a mutation in the aquaporin-like channel gene aqpZ. We reintroduced benzoxazinoid-resistant Photorhabdus strains into their original EPN hosts and identified one nematode-symbiont pair that was able to kill benzoxazinoid-sequestering WCR larvae more efficiently. Our results suggest that modification of bacterial symbionts might provide a generalizable strategy to improve biocontrol of agricultural pests.
Collapse
|
18
|
John Ho LS, Fogel R, Limson JL. Generation and screening of histamine-specific aptamers for application in a novel impedimetric aptamer-based sensor. Talanta 2020; 208:120474. [DOI: 10.1016/j.talanta.2019.120474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 01/29/2023]
|
19
|
Tofalo R, Perpetuini G, Battistelli N, Pepe A, Ianni A, Martino G, Suzzi G. Accumulation γ-Aminobutyric Acid and Biogenic Amines in a Traditional Raw Milk Ewe's Cheese. Foods 2019; 8:E401. [PMID: 31510033 PMCID: PMC6770426 DOI: 10.3390/foods8090401] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/31/2019] [Accepted: 09/05/2019] [Indexed: 02/05/2023] Open
Abstract
The influence of calf (R1), kid (R2) and pig (R3) rennets on microbiota, biogenic amines (BAs) and γ-aminobutyric acid (GABA) accumulation in raw milk ewe's cheeses was evaluated. Cheeses were investigated at different ripening times for their microbial composition, free amino acids (FAAs), BAs and GABA content. Moreover, the expression of tyrosine (tdc) and histidine (hdc) decarboxylases genes was evaluated by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). Microbial counts showed similar values in all samples. Pig rennet were cheeses were characterized by higher proteolysis and the highest values of BAs. The BAs detected were putrescine, cadaverine and tyramine, while histamine was absent. qRT-PCR confirmed this data, in fact hdc gene was not upregulated, while tdc gene expression increased over time in agreement with the increasing content of tyramine and the highest fold changes were detected in R3 cheeses. GABA showed the highest concentration in R2 cheeses reaching a value of 672 mg/kg. These results showed that the accumulation of BAs and GABA in Pecorino di Farindola is influenced by ripening time and type of coagulant. Further studies are required to develop starter cultures to reduce BAs content and improve health characteristics of raw milk ewe's cheeses.
Collapse
Affiliation(s)
- Rosanna Tofalo
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Giorgia Perpetuini
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Noemi Battistelli
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Alessia Pepe
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Andrea Ianni
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Giuseppe Martino
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Giovanna Suzzi
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| |
Collapse
|
20
|
|
21
|
Barbieri F, Montanari C, Gardini F, Tabanelli G. Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods 2019; 8:E17. [PMID: 30621071 PMCID: PMC6351943 DOI: 10.3390/foods8010017] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Lactic acid bacteria (LAB) are considered as the main biogenic amine (BA) producers in fermented foods. These compounds derive from amino acid decarboxylation through microbial activities and can cause toxic effects on humans, with symptoms (headache, heart palpitations, vomiting, diarrhea) depending also on individual sensitivity. Many studies have focused on the aminobiogenic potential of LAB associated with fermented foods, taking into consideration the conditions affecting BA accumulation and enzymes/genes involved in the biosynthetic mechanisms. This review describes in detail the different LAB (used as starter cultures to improve technological and sensorial properties, as well as those naturally occurring during ripening or in spontaneous fermentations) able to produce BAs in model or in real systems. The groups considered were enterococci, lactobacilli, streptococci, lactococci, pediococci, oenococci and, as minor producers, LAB belonging to Leuconostoc and Weissella genus. A deeper knowledge of this issue is important because decarboxylase activities are often related to strains rather than to species or genera. Moreover, this information can help to improve the selection of strains for further applications as starter or bioprotective cultures, in order to obtain high quality foods with reduced BA content.
Collapse
Affiliation(s)
- Federica Barbieri
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
| | - Chiara Montanari
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
| | - Fausto Gardini
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy.
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy.
| |
Collapse
|
22
|
Carrot Juice Fermentations as Man-Made Microbial Ecosystems Dominated by Lactic Acid Bacteria. Appl Environ Microbiol 2018; 84:AEM.00134-18. [PMID: 29654180 PMCID: PMC5981062 DOI: 10.1128/aem.00134-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022] Open
Abstract
Spontaneous vegetable fermentations, with their rich flavors and postulated health benefits, are regaining popularity. However, their microbiology is still poorly understood, therefore raising concerns about food safety. In addition, such spontaneous fermentations form interesting cases of man-made microbial ecosystems. Here, samples from 38 carrot juice fermentations were collected through a citizen science initiative, in addition to three laboratory fermentations. Culturing showed that Enterobacteriaceae were outcompeted by lactic acid bacteria (LAB) between 3 and 13 days of fermentation. Metabolite-target analysis showed that lactic acid and mannitol were highly produced, as well as the biogenic amine cadaverine. High-throughput 16S rRNA gene sequencing revealed that mainly species of Leuconostoc and Lactobacillus (as identified by 8 and 20 amplicon sequence variants [ASVs], respectively) mediated the fermentations in subsequent order. The analyses at the DNA level still detected a high number of Enterobacteriaceae, but their relative abundance was low when RNA-based sequencing was performed to detect presumptive metabolically active bacterial cells. In addition, this method greatly reduced host read contamination. Phylogenetic placement indicated a high LAB diversity, with ASVs from nine different phylogenetic groups of the Lactobacillus genus complex. However, fermentation experiments with isolates showed that only strains belonging to the most prevalent phylogenetic groups preserved the fermentation dynamics. The carrot juice fermentation thus forms a robust man-made microbial ecosystem suitable for studies on LAB diversity and niche specificity. IMPORTANCE The usage of fermented food products by professional chefs is steadily growing worldwide. Meanwhile, this interest has also increased at the household level. However, many of these artisanal food products remain understudied. Here, an extensive microbial analysis was performed of spontaneous fermented carrot juices which are used as nonalcoholic alternatives for wine in a Belgian Michelin star restaurant. Samples were collected through an active citizen science approach with 38 participants, in addition to three laboratory fermentations. Identification of the main microbial players revealed that mainly species of Leuconostoc and Lactobacillus mediated the fermentations in subsequent order. In addition, a high diversity of lactic acid bacteria was found; however, fermentation experiments with isolates showed that only strains belonging to the most prevalent lactic acid bacteria preserved the fermentation dynamics. Finally, this study showed that the usage of RNA-based 16S rRNA amplicon sequencing greatly reduces host read contamination.
Collapse
|
23
|
Abstract
Fermented sausages are highly treasured traditional foods. A large number of distinct sausages with different properties are produced using widely different recipes and manufacturing processes. Over the last years, eating fermented sausages has been associated with potential health hazards due to their high contents of saturated fats, high NaCl content, presence of nitrite and its degradation products such as nitrosamines, and use of smoking which can lead to formation of toxic compounds such as polycyclic aromatic hydrocarbons. Here we review the recent literature regarding possible health effects of the ingredients used in fermented sausages. We also go through attempts to improve the sausages by lowering the content of saturated fats by replacing them with unsaturated fats, reducing the NaCl concentration by partly replacing it with KCl, and the use of selected starter cultures with desirable properties. In addition, we review the food pathogenic microorganisms relevant for fermented sausages(Escherichia coli,Salmonella enterica,Staphylococcus aureus,Listeria monocytogenes,Clostridium botulinum, andToxoplasma gondii)and processing and postprocessing strategies to inhibit their growth and reduce their presence in the products.
Collapse
|