1
|
Hota S, Kumar M. ErpY-like Protein Interaction with Host Thrombin and Fibrinogen Intervenes the Plasma Coagulation through Extrinsic and Intrinsic Pathways. ACS Infect Dis 2024; 10:3256-3272. [PMID: 39231002 DOI: 10.1021/acsinfecdis.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The survival and proliferation of pathogenic Leptospira within a host are complex phenomena that require careful consideration. The ErpY-like lipoprotein, found on the outer membrane surface of Leptospira, plays a crucial role in enhancing the bacterium's pathogenicity. The rErpY-like protein, in its recombinant form, contributes significantly to spirochete virulence by interacting with various host factors, including host complement regulators. This interaction facilitates the bacterium's evasion of the host complement system, thereby augmenting its overall pathogenicity. The rErpY-like protein exhibits a robust binding affinity to soluble fibrinogen, a vital component of the host coagulation system. In this study, we demonstrate that the rErpY-like protein intervenes in the clotting process of the platelet-poor citrated plasma of bovines and humans in a concentration-dependent manner. It significantly reduces clot density, alters the viscoelastic properties of the clot, and diminishes the average clotting rate in plasma. Furthermore, the ErpY-like protein inhibits thrombin-catalyzed fibrin formation in a dose-dependent manner and exhibits saturable binding to thrombin, suggesting its significant role in leptospiral infection. These findings provide compelling evidence for the anticoagulant effect of the ErpY-like lipoprotein and its significant role in leptospiral infection.
Collapse
Affiliation(s)
- Saswat Hota
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
2
|
Silva GM, Berto DH, Lima CA, Waitman KB, Lima CFG, Prezoto BC, Vieira ML, Rocha MMT, Gonçalves LRC, Andrade SA. Synergistic effect of serine protease inhibitors and a bothropic antivenom in reducing local hemorrhage and coagulopathy caused by Bothrops jararaca venom. Toxicon 2021; 199:87-93. [PMID: 34126124 DOI: 10.1016/j.toxicon.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 01/11/2023]
Abstract
Snakebite accidents are a public health problem that affects the whole world, causing thousands of deaths and amputations each year. In Brazil, snakebite envenomations are caused mostly by snakes from the Bothrops genus. The local symptoms are characterized by pain, swelling, ecchymosis, and hemorrhages. Systemic disturbances can lead to necrosis and amputations. The present treatment consists of intravenous administration of bothropic antivenom, which is capable of reversing most of the systemic symptoms, while presenting limitations to treat the local effects, such as hemorrhage and to neutralize the snake venom serine protease (SVSP). In this context, we aimed to evaluate the activity of selective serine protease inhibitors (pepC and pepB) in combination with the bothropic antivenom in vivo. Further, we assessed their possible synergistic effect in the treatment of coagulopathy and hemorrhage induced by Bothrops jararaca venom. For this, we evaluated the in vivo activity in mouse models of local hemorrhage and a series of in vitro hemostasis assays. Our results showed that pepC and pepB, when combinated with the antivenom, increase its protective activity in vivo and decrease the hemostatic disturbances in vitro with high selectivity, possibly by inhibiting botropic proteases. These data suggest that the addition of serine protease inhibitor to the antivenom can improve its overall potential.
Collapse
Affiliation(s)
- G M Silva
- Laboratory of Pain and Signaling - Butantan Institute, São Paulo, Brazil.
| | - D H Berto
- Laboratory of Pain and Signaling - Butantan Institute, São Paulo, Brazil
| | - C A Lima
- Laboratory of Pain and Signaling - Butantan Institute, São Paulo, Brazil
| | - K B Waitman
- Laboratory of Pain and Signaling - Butantan Institute, São Paulo, Brazil
| | - C F G Lima
- Laboratory of Pain and Signaling - Butantan Institute, São Paulo, Brazil
| | - B C Prezoto
- Laboratory of Pharmacology - Butantan Institute, São Paulo, Brazil
| | - M L Vieira
- Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - M M T Rocha
- Laboratory of Herpetology - Butantan Institute, São Paulo, Brazil
| | - L R C Gonçalves
- Laboratory of Pathophysiology - Butantan Institute, São Paulo, Brazil
| | - S A Andrade
- Laboratory of Pain and Signaling - Butantan Institute, São Paulo, Brazil
| |
Collapse
|
3
|
Haake DA, Matsunaga J. Leptospiral Immunoglobulin-Like Domain Proteins: Roles in Virulence and Immunity. Front Immunol 2021; 11:579907. [PMID: 33488581 PMCID: PMC7821625 DOI: 10.3389/fimmu.2020.579907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/05/2020] [Indexed: 02/03/2023] Open
Abstract
The virulence mechanisms required for infection and evasion of immunity by pathogenic Leptospira species remain poorly understood. A number of L. interrogans surface proteins have been discovered, lying at the interface between the pathogen and host. Among these proteins, the functional properties of the Lig (leptospiral immunoglobulin-like domain) proteins have been examined most thoroughly. LigA, LigB, and LigC contain a series of, 13, 12, and 12 closely related domains, respectively, each containing a bacterial immunoglobulin (Big) -like fold. The multidomain region forms a mostly elongated structure that exposes a large surface area. Leptospires wield the Lig proteins to promote interactions with a range of specific host proteins, including those that aid evasion of innate immune mechanisms. These diverse binding events mediate adhesion of L. interrogans to the extracellular matrix, inhibit hemostasis, and inactivate key complement proteins. These interactions may help L. interrogans overcome the physical, hematological, and immunological barriers that would otherwise prevent the spirochete from establishing a systemic infection. Despite significant differences in the affinities of the LigA and LigB proteins for host targets, their functions overlap during lethal infection of hamsters; virulence is lost only when both ligA and ligB transcription is knocked down simultaneously. Lig proteins have been shown to be promising vaccine antigens through evaluation of a variety of different adjuvant strategies. This review serves to summarize current knowledge of Lig protein roles in virulence and immunity and to identify directions needed to better understand the precise functions of the Lig proteins during infection.
Collapse
Affiliation(s)
- David A. Haake
- Division of Infectious Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Departments of Medicine, and Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - James Matsunaga
- Research Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Vieira ML, Nascimento ALTO. Virulent Leptospira interrogans Induce Cytotoxic Effects in Human Platelets in vitro Through Direct Interactions. Front Microbiol 2020; 11:572972. [PMID: 33117318 PMCID: PMC7552899 DOI: 10.3389/fmicb.2020.572972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
Leptospirosis is a prevalent zoonotic disease, caused by bacteria of the genus Leptospira. Leptospirosis frequently leads to hemostatic disturbances, and the severe cases are marked by hemorrhages and low platelet number in circulation, which is associated with the patients’ poor outcomes. Nevertheless, Leptospira-platelet interactions remain poorly explored. In this study, we performed a series of in vitro experiments evaluating whether leptospires induce human platelet aggregation, activation, and morphological changes. Platelets were incubated with virulent L. interrogans and the platelet outcomes were assessed by aggregometry, flow cytometry, and scanning and transmission electron microscopy. Our results show that leptospires alone do not induce platelet aggregation and activation, and induce platelet cytotoxic effects instead, by clearly inducing platelet disruption and detachment. We show for the first time that virulent leptospires do interact directly with platelets, an event that could trigger pathophysiological effects during the infection. This study might serve as a basis for the development of novel treatments for the disease.
Collapse
Affiliation(s)
- Monica Larucci Vieira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Laboratório de Desenvolvimento de Vacinas, Butantan Institute, São Paulo, Brazil
| | | |
Collapse
|
5
|
Passalia FJ, Carvalho E, Heinemann MB, Vieira ML, Nascimento ALTO. The Leptospira interrogans LIC10774 is a multifunctional surface protein that binds calcium and interacts with host components. Microbiol Res 2020; 235:126470. [PMID: 32247916 DOI: 10.1016/j.micres.2020.126470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023]
Abstract
Leptospirosis is a global re-emerging zoonosis, caused by pathogenic bacteria of the genus Leptospira. Humans are infected mainly through contact with contaminated water or soil. The understanding of the molecular mechanisms of leptospirosis through the characterization of unknown outer membrane proteins may contribute to the development of new treatments, diagnostic methods and vaccines. We have identified using bioinformatics analysis a protein that is encoded by the gene LIC10774, predicted to be localized at the leptospiral outer membrane and exhibit beta-roll folding. Surface exposure was confirmed by flow cytometry, ELISA and immunofluorescence-based confocal microscopy. Through circular dichroism spectroscopy and hydrophobic dye binding we have shown that rLIC10774 binds calcium ions, which imposes changes to secondary and tertiary structures. The recombinant protein was capable of binding to several host extracellular matrix and serum components. Therefore, we describe LIC10774 as a calcium-binding protein exposed in the outer surface of pathogenic leptospires with possible multifunctional roles in adhesion to host tissues, evasion of the immune system and participation in dissemination processes during leptospirosis. In addition, we hypothesize that the calcium binding is important for temperature-dependent functional roles during leptospirosis.
Collapse
Affiliation(s)
- Felipe José Passalia
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, 05503-900, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900, São Paulo, Brazil
| | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, 05503-900, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Brazil
| | - Mônica Larucci Vieira
- Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| | - Ana Lucia T O Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, 05503-900, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900, São Paulo, Brazil.
| |
Collapse
|
6
|
Vieira ML, Herwald H, Nascimento ALTO. The interplay between host haemostatic systems and Leptospira spp. infections. Crit Rev Microbiol 2020; 46:121-135. [PMID: 32141788 DOI: 10.1080/1040841x.2020.1735299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hemostasis is a defence mechanism that protects the integrity of the vascular system and is comprised of the coagulation cascade, fibrinolysis, platelet aggregation, and vascular endothelium. Besides the primary function in preserving the vascular integrity, the haemostatic system cooperates with immune and inflammatory processes to eliminate invading pathogens during microbial infections. Under pathological manifestations, hemostasis must therefore interact in a coordinated manner with inflammatory responses and immune reactions. Several pathogens can modulate these host-derived countermeasures by specifically targeting certain haemostatic components for their own benefit. Thus, the ability to modulate host defence systems has to be considered as an essential bacterial virulence mechanism. Complications that bacterial pathogens can induce are therefore often the consequence of evoked host responses. A comprehensive understanding of the molecular mechanisms triggered in infectious processes may help to develop prophylactic methods and novel therapies for the patients suffering from a particular infectious disease. This review aims to provide a critical updated compiling of recent studies on how the pathogenic Leptospira can interact with and manipulate the host haemostatic systems and the consequences for leptospirosis pathogenesis.
Collapse
Affiliation(s)
- Monica L Vieira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Heiko Herwald
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | | |
Collapse
|
7
|
Passalia FJ, Heinemann MB, de Andrade SA, Nascimento ALTO, Vieira ML. Leptospira interrogans Bat proteins impair host hemostasis by fibrinogen cleavage and platelet aggregation inhibition. Med Microbiol Immunol 2020; 209:201-213. [PMID: 32078713 DOI: 10.1007/s00430-020-00664-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 01/21/2023]
Abstract
Leptospirosis is a worldwide spread zoonosis, caused by pathogenic Leptospira. Evidences suggest that compromised hemostasis might be involved in the leptospirosis pathophysiology. In the genome of L. interrogans serovar Copenhageni, we found two genes coding for proteins which comprise von Willebrand factor (VWF) A domains (BatA and BatB). As VWF A domains exhibit multiple binding sites which contributes to human VWF hemostatic functions, we hypothesized that the L. interrogans BatA and BatB proteins could be involved in the hemostatic impairment during leptospirosis. We have cloned, expressed in Escherichia coli, and purified recombinant BatA and BatB. The influence of recombinant BatA and BatB on different in vitro hemostatic assays evaluating the enzymatic activity, platelet aggregation and fibrinogen integrity was investigated. We describe BatB as a new serine protease which is able to cleave thrombin chromogenic substrate, fibrin, fibrinogen, gelatin and casein; while BatA is active only towards fibrinogen. BatA and BatB interfere with the platelet aggregation induced by VWF/ristocetin and thrombin. Our results suggest an important role of the L. interrogans serovar Copenhageni Bat proteins in the hemostasis dysfunction observed during leptospirosis and contribute to the understanding of the leptospirosis pathophysiological mechanisms.
Collapse
Affiliation(s)
- Felipe José Passalia
- Lab. Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Lab. de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ana Lucia T O Nascimento
- Lab. Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mônica Larucci Vieira
- Lab. Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Roumpou A, Papaioannou I, Lampropoulos C. Weil's disease with haemoptysis and acute respiratory distress syndrome. BMJ Case Rep 2019; 12:12/5/e229350. [PMID: 31151976 DOI: 10.1136/bcr-2019-229350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A 35-year-old male patient reached the emergency department after an episode of massive haemoptysis a few hours ago. Fever and dyspnea were mentioned to be present the last 5 days. His medical history included only malaria, successfully treated 2 years ago. Clinical examination revealed high fever, jaundice, cyanosis, tachypnea and bilateral rales on pulmonary auscultation. Laboratory investigation showed high erythrocyte sedimentation rate and C reactive protein, leucocytosis, anaemia, mild thrombocytopaenia, renal impairment, hyperbilirubinaemia and abnormal liver function tests; arterial blood gas analysis showed respiratory alkalosis with severe hypoxia. Thoracic X-ray revealed bilateral pulmonary infiltrates, whereas abdominal and heart ultrasound detected hepatomegaly and small pericardial infusion, respectively. The diagnosis of leptospirosis along with acute respiratory distress syndrome was confirmed by positive IgM Leptospira antibodies. Empirical treatment with triple antibiotic therapy and corticosteroids was applied. The patient was discharged after 1 week, without any symptoms and with almost normal laboratory tests.
Collapse
|