1
|
Guo X, Li Y, Song G, Zhao L, Wang J. Adaptation of Archaeal Communities to Summer Hypoxia in the Sediment of Bohai Sea. Ecol Evol 2025; 15:e70768. [PMID: 39781248 PMCID: PMC11707553 DOI: 10.1002/ece3.70768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/12/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Understanding the adaptation of archaea to hypoxia is essential for deciphering the functions and mechanisms of microbes when suffering environmental changes. However, the dynamics and responses of archaea to the sedimentary hypoxia in Bohai Sea are still unclear. In this study, the diversity, composition, and distribution of archaeal community in sediment along an inshore-offshore transect across the oxygen-depleted area in the Bohai Sea were investigated in June, July, and August of 2021 by employing high-throughput sequencing of 16S rRNA gene. Results indicated that the archaeal communities were dominated by Thermoproteota (80.61%), Asgardarchaeota (8.70%), and Thermoplasmatota (5.27%). Dissolved oxygen (DO) and NO3 - were the two key factors shaping the distribution of archaeal communities, accounting for 49.5% and 38.3% of the total variabilities (p < 0.05), respectively. With the intensity of oxygen depletion, the diversity of archaeal communities increased significantly. Microbial networks revealed that Bathyarchaeia played a key role in interacting with both bacteria and other archaeal groups. Furthermore, adaptions to hypoxia of archaea were also displayed by variation in relative abundance of the predicted ecological functions and the metabolic pathways. The enrichment of specific nitrogen transformation enzymes showed the potential for nitrogen fixation and removal, which might contribute to the balance of N budget and thus facilitate the ecological restoration under eutrophication in Bohai Sea. Our results provided a new picture on ecological and metabolic adaptions to hypoxia by archaea, which will be beneficial to further investigations in extreme environments both theoretically and practically.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life ScienceTianjin Normal UniversityTianjinChina
| | - Yanying Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life ScienceTianjin Normal UniversityTianjinChina
| | - Guisheng Song
- School of Marine Science and TechnologyTianjin UniversityTianjinChina
| | - Liang Zhao
- College of Marine and Environmental SciencesTianjin University of Science and TechnologyTianjinChina
| | - Jing Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life ScienceTianjin Normal UniversityTianjinChina
| |
Collapse
|
2
|
Barosa B, Ferrillo A, Selci M, Giardina M, Bastianoni A, Correggia M, di Iorio L, Bernardi G, Cascone M, Capuozzo R, Intoccia M, Price R, Vetriani C, Cordone A, Giovannelli D. Mapping the microbial diversity associated with different geochemical regimes in the shallow-water hydrothermal vents of the Aeolian archipelago, Italy. Front Microbiol 2023; 14:1134114. [PMID: 37637107 PMCID: PMC10452888 DOI: 10.3389/fmicb.2023.1134114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Shallow-water hydrothermal vents are unique marine environments ubiquitous along the coast of volcanically active regions of the planet. In contrast to their deep-sea counterparts, primary production at shallow-water vents relies on both photoautotrophy and chemoautotrophy. Such processes are supported by a range of geochemical regimes driven by different geological settings. The Aeolian archipelago, located in the southern Tyrrhenian sea, is characterized by intense hydrothermal activity and harbors some of the best sampled shallow-water vents of the Mediterranean Sea. Despite this, the correlation between microbial diversity, geochemical regimes and geological settings of the different volcanic islands of the archipelago is largely unknown. Here, we report the microbial diversity associated with six distinct shallow-water hydrothermal vents of the Aeolian Islands using a combination of 16S rRNA amplicon sequencing along with physicochemical and geochemical measurements. Samples were collected from biofilms, fluids and sediments from shallow vents on the islands of Lipari, Panarea, Salina, and Vulcano. Two new shallow vent locations are described here for the first time. Our results show the presence of diverse microbial communities consistent in their composition with the local geochemical regimes. The shallow water vents of the Aeolian Islands harbor highly diverse microbial community and should be included in future conservation efforts.
Collapse
Affiliation(s)
- Bernardo Barosa
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | | | - Matteo Selci
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Marco Giardina
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Alessia Bastianoni
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Monica Correggia
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Luciano di Iorio
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | | | - Martina Cascone
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Rosaria Capuozzo
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Michele Intoccia
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Roy Price
- School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Costantino Vetriani
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
| | - Angelina Cordone
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
- Istituto per le Risorse Biologiche e Biotecnologiche Marine, Consiglio Nazionale Delle Ricerche, CNR-IRBIM, Ancona, Italy
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Tokyo, Japan
- Marine Chemistry and Geochemistry Department–Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| |
Collapse
|
3
|
Bourhane Z, Cagnon C, Castañeda C, Rodríguez-Ochoa R, Álvaro-Fuentes J, Cravo-Laureau C, Duran R. Vertical organization of microbial communities in Salineta hypersaline wetland, Spain. Front Microbiol 2023; 14:869907. [PMID: 36778872 PMCID: PMC9911865 DOI: 10.3389/fmicb.2023.869907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Microbial communities inhabiting hypersaline wetlands, well adapted to the environmental fluctuations due to flooding and desiccation events, play a key role in the biogeochemical cycles, ensuring ecosystem service. To better understand the ecosystem functioning, we studied soil microbial communities of Salineta wetland (NE Spain) in dry and wet seasons in three different landscape stations representing situations characteristic of ephemeral saline lakes: S1 soil usually submerged, S2 soil intermittently flooded, and S3 soil with halophytes. Microbial community composition was determined according to different redox layers by 16S rRNA gene barcoding. We observed reversed redox gradient, negative at the surface and positive in depth, which was identified by PERMANOVA as the main factor explaining microbial distribution. The Pseudomonadota, Gemmatimonadota, Bacteroidota, Desulfobacterota, and Halobacteriota phyla were dominant in all stations. Linear discriminant analysis effect size (LEfSe) revealed that the upper soil surface layer was characterized by the predominance of operational taxonomic units (OTUs) affiliated to strictly or facultative anaerobic halophilic bacteria and archaea while the subsurface soil layer was dominated by an OTU affiliated to Roseibaca, an aerobic alkali-tolerant bacterium. In addition, the potential functional capabilities, inferred by PICRUSt2 analysis, involved in carbon, nitrogen, and sulfur cycles were similar in all samples, irrespective of the redox stratification, suggesting functional redundancy. Our findings show microbial community changes according to water flooding conditions, which represent useful information for biomonitoring and management of these wetlands whose extreme aridity and salinity conditions are exposed to irreversible changes due to human activities.
Collapse
Affiliation(s)
- Zeina Bourhane
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Christine Cagnon
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Rafael Rodríguez-Ochoa
- Departamento de Medio Ambiente y Ciencias del Suelo, Universidad de Lleida, Lleida, Spain
| | | | | | - Robert Duran
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
4
|
Thomas SC, Payne D, Tamadonfar KO, Seymour CO, Jiao JY, Murugapiran SK, Lai D, Lau R, Bowen BP, Silva LP, Louie KB, Huntemann M, Clum A, Spunde A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Chen IM, Stamatis D, Reddy TBK, O'Malley R, Daum C, Shapiro N, Ivanova N, Kyrpides NC, Woyke T, Eloe-Fadrosh E, Hamilton TL, Dijkstra P, Dodsworth JA, Northen TR, Li WJ, Hedlund BP. Genomics, Exometabolomics, and Metabolic Probing Reveal Conserved Proteolytic Metabolism of Thermoflexus hugenholtzii and Three Candidate Species From China and Japan. Front Microbiol 2021; 12:632731. [PMID: 34017316 PMCID: PMC8129789 DOI: 10.3389/fmicb.2021.632731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/02/2021] [Indexed: 01/21/2023] Open
Abstract
Thermoflexus hugenholtzii JAD2T, the only cultured representative of the Chloroflexota order Thermoflexales, is abundant in Great Boiling Spring (GBS), NV, United States, and close relatives inhabit geothermal systems globally. However, no defined medium exists for T. hugenholtzii JAD2T and no single carbon source is known to support its growth, leaving key knowledge gaps in its metabolism and nutritional needs. Here, we report comparative genomic analysis of the draft genome of T. hugenholtzii JAD2T and eight closely related metagenome-assembled genomes (MAGs) from geothermal sites in China, Japan, and the United States, representing “Candidatus Thermoflexus japonica,” “Candidatus Thermoflexus tengchongensis,” and “Candidatus Thermoflexus sinensis.” Genomics was integrated with targeted exometabolomics and 13C metabolic probing of T. hugenholtzii. The Thermoflexus genomes each code for complete central carbon metabolic pathways and an unusually high abundance and diversity of peptidases, particularly Metallo- and Serine peptidase families, along with ABC transporters for peptides and some amino acids. The T. hugenholtzii JAD2T exometabolome provided evidence of extracellular proteolytic activity based on the accumulation of free amino acids. However, several neutral and polar amino acids appear not to be utilized, based on their accumulation in the medium and the lack of annotated transporters. Adenine and adenosine were scavenged, and thymine and nicotinic acid were released, suggesting interdependency with other organisms in situ. Metabolic probing of T. hugenholtzii JAD2T using 13C-labeled compounds provided evidence of oxidation of glucose, pyruvate, cysteine, and citrate, and functioning glycolytic, tricarboxylic acid (TCA), and oxidative pentose-phosphate pathways (PPPs). However, differential use of position-specific 13C-labeled compounds showed that glycolysis and the TCA cycle were uncoupled. Thus, despite the high abundance of Thermoflexus in sediments of some geothermal systems, they appear to be highly focused on chemoorganotrophy, particularly protein degradation, and may interact extensively with other microorganisms in situ.
Collapse
Affiliation(s)
- Scott C Thomas
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Devon Payne
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Kevin O Tamadonfar
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jian-Yu Jiao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Senthil K Murugapiran
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States.,Department of Plant and Microbial Biology, The BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Dengxun Lai
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Rebecca Lau
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Benjamin P Bowen
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Leslie P Silva
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Katherine B Louie
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Marcel Huntemann
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Alicia Clum
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Alex Spunde
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Manoj Pillay
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Krishnaveni Palaniappan
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Neha Varghese
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Natalia Mikhailova
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - I-Min Chen
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Dimitrios Stamatis
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - T B K Reddy
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Ronan O'Malley
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Chris Daum
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nicole Shapiro
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Natalia Ivanova
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nikos C Kyrpides
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Tanja Woyke
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Emiley Eloe-Fadrosh
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Trinity L Hamilton
- Department of Plant and Microbial Biology, The BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Paul Dijkstra
- Department of Biological Sciences, Center of Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, United States
| | - Trent R Northen
- The Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Wen-Jun Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States.,Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
5
|
Klatt JM, Gomez-Saez GV, Meyer S, Ristova PP, Yilmaz P, Granitsiotis MS, Macalady JL, Lavik G, Polerecky L, Bühring SI. Versatile cyanobacteria control the timing and extent of sulfide production in a Proterozoic analog microbial mat. THE ISME JOURNAL 2020; 14:3024-3037. [PMID: 32770117 PMCID: PMC7784965 DOI: 10.1038/s41396-020-0734-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 11/15/2022]
Abstract
Cyanobacterial mats were hotspots of biogeochemical cycling during the Precambrian. However, mechanisms that controlled O2 release by these ecosystems are poorly understood. In an analog to Proterozoic coastal ecosystems, the Frasassi sulfidic springs mats, we studied the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis (OP and AP) in versatile cyanobacteria, and interactions with sulfur reducing bacteria (SRB). Using microsensors and stable isotope probing we found that dissolved organic carbon (DOC) released by OP fuels sulfide production, likely by a specialized SRB population. Increased sulfide fluxes were only stimulated after the cyanobacteria switched from AP to OP. O2 production triggered migration of large sulfur-oxidizing bacteria from the surface to underneath the cyanobacterial layer. The resultant sulfide shield tempered AP and allowed OP to occur for a longer duration over a diel cycle. The lack of cyanobacterial DOC supply to SRB during AP therefore maximized O2 export. This mechanism is unique to benthic ecosystems because transitions between metabolisms occur on the same time scale as solute transport to functionally distinct layers, with the rearrangement of the system by migration of microorganisms exaggerating the effect. Overall, cyanobacterial versatility disrupts the synergistic relationship between sulfide production and AP, and thus enhances diel O2 production.
Collapse
Affiliation(s)
- Judith M Klatt
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Gonzalo V Gomez-Saez
- Hydrothermal Geomicrobiology, MARUM, University of Bremen, Bremen, Germany
- Alfred Wegener Institute-Helmholtz Centre for Polar and Marine Sciences, Bremerhaven, Germany
| | - Steffi Meyer
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
- Thünen Institute of Baltic Sea Fisheries, Thünen Institute, Rostock, Germany
| | - Petra Pop Ristova
- Hydrothermal Geomicrobiology, MARUM, University of Bremen, Bremen, Germany
| | - Pelin Yilmaz
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Michael S Granitsiotis
- Research Unit Environmental Genomics, Helmholtz Zentrum Munich, Munich, Germany
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
- DOE, Joint Genome Institute, Lawerence Berkeley National Lab, Berkeley, CA, USA
| | | | - Gaute Lavik
- Biogeochemistry Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Lubos Polerecky
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
- Department of Earth Sciences-Geochemistry, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Solveig I Bühring
- Hydrothermal Geomicrobiology, MARUM, University of Bremen, Bremen, Germany
| |
Collapse
|
6
|
Manyumwa CV, Emameh RZ, Tastan Bishop Ö. Alpha-Carbonic Anhydrases from Hydrothermal Vent Sources as Potential Carbon Dioxide Sequestration Agents: In Silico Sequence, Structure and Dynamics Analyses. Int J Mol Sci 2020; 21:E8066. [PMID: 33138066 PMCID: PMC7662607 DOI: 10.3390/ijms21218066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
With the increase in CO2 emissions worldwide and its dire effects, there is a need to reduce CO2 concentrations in the atmosphere. Alpha-carbonic anhydrases (α-CAs) have been identified as suitable sequestration agents. This study reports the sequence and structural analysis of 15 α-CAs from bacteria, originating from hydrothermal vent systems. Structural analysis of the multimers enabled the identification of hotspot and interface residues. Molecular dynamics simulations of the homo-multimers were performed at 300 K, 363 K, 393 K and 423 K to unearth potentially thermostable α-CAs. Average betweenness centrality (BC) calculations confirmed the relevance of some hotspot and interface residues. The key residues responsible for dimer thermostability were identified by comparing fluctuating interfaces with stable ones, and were part of conserved motifs. Crucial long-lived hydrogen bond networks were observed around residues with high BC values. Dynamic cross correlation fortified the relevance of oligomerization of these proteins, thus the importance of simulating them in their multimeric forms. A consensus of the simulation analyses used in this study suggested high thermostability for the α-CA from Nitratiruptor tergarcus. Overall, our novel findings enhance the potential of biotechnology applications through the discovery of alternative thermostable CO2 sequestration agents and their potential protein design.
Collapse
Affiliation(s)
- Colleen Varaidzo Manyumwa
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6140, South Africa;
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran;
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6140, South Africa;
| |
Collapse
|
7
|
Vasquez‐Cardenas D, Meysman FJR, Boschker HTS. A Cross-System Comparison of Dark Carbon Fixation in Coastal Sediments. GLOBAL BIOGEOCHEMICAL CYCLES 2020; 34:e2019GB006298. [PMID: 32713991 PMCID: PMC7375125 DOI: 10.1029/2019gb006298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/09/2020] [Accepted: 01/24/2020] [Indexed: 05/22/2023]
Abstract
Dark carbon fixation (DCF) by chemoautotrophic microorganisms can sustain food webs in the seafloor by local production of organic matter independent of photosynthesis. The process has received considerable attention in deep sea systems, such as hydrothermal vents, but the regulation, depth distribution, and global importance of coastal sedimentary DCF have not been systematically investigated. Here we surveyed eight coastal sediments by means of stable isotope probing (13C-DIC) combined with bacterial biomarkers (phospholipid-derived fatty acids) and compiled additional rates from literature into a global database. DCF rates in coastal sediments range from 0.07 to 36.30 mmol C m-2 day-1, and there is a linear relation between DCF and water depth. The CO2 fixation ratio (DCF/CO2 respired) also shows a trend with water depth, decreasing from 0.09 in nearshore environments to 0.04 in continental shelf sediments. Five types of depth distributions of chemoautotrophic activity are identified based on the mode of pore water transport (advective, bioturbated, and diffusive) and the dominant pathway of microbial sulfur oxidation. Extrapolated to the global coastal ocean, we estimate a DCF rate of 0.04 to 0.06 Pg C year-1, which is less than previous estimates based on indirect measurements (0.15 Pg C year-1), but remains substantially higher than the global DCF rate at deep sea hydrothermal vents (0.001-0.002 Pg C year-1).
Collapse
Affiliation(s)
| | - Filip J. R. Meysman
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
- Department of BiologyUniversity of AntwerpAntwerpBelgium
| | - Henricus T. S. Boschker
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
- Department of BiologyUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
8
|
Li Y, Tang K, Zhang L, Zhao Z, Xie X, Chen CTA, Wang D, Jiao N, Zhang Y. Coupled Carbon, Sulfur, and Nitrogen Cycles Mediated by Microorganisms in the Water Column of a Shallow-Water Hydrothermal Ecosystem. Front Microbiol 2018; 9:2718. [PMID: 30555427 PMCID: PMC6282030 DOI: 10.3389/fmicb.2018.02718] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Shallow-water hydrothermal vent ecosystems are distinctly different from deep-sea vents, as other than geothermal, sunlight is one of their primary sources of energy, so their resulting microbial communities differ to some extent. Yet compared with deep-sea systems, less is known about the active microbial community in shallow-water ecosystems. Thus, we studied the community compositions, their metabolic pathways, and possible coupling of microbially driven biogeochemical cycles in a shallow-water hydrothermal vent system off Kueishantao Islet, Taiwan, using high-throughput 16S rRNA sequences and metatranscriptome analyses. Gammaproteobacteria and Epsilonbacteraeota were the major active bacterial groups in the 16S rRNA libraries and the metatranscriptomes, and involved in the carbon, sulfur, and nitrogen metabolic pathways. As core players, Thiomicrospira, Thiomicrorhabdus, Thiothrix, Sulfurovum, and Arcobacter derived energy from the oxidation of reduced sulfur compounds and fixed dissolved inorganic carbon (DIC) by the Calvin-Benson-Bassham (CBB) or reverse tricarboxylic acid cycles. Sox-dependent and reverse sulfate reduction were the main pathways of energy generation, and probably coupled to denitrification by providing electrons to nitrate and nitrite. Sulfur-reducing Nautiliaceae members, accounting for a small proportion in the community, obtained energy by the oxidation of hydrogen, which also supplies metabolic energy for some sulfur-oxidizing bacteria. In addition, ammonia and nitrite oxidation is another type of energy generation in this hydrothermal system, with marker gene sequences belonging to Thaumarchaeota/Crenarchaeota and Nitrospina, respectively, and ammonia and nitrite oxidation was likely coupled to denitrification by providing substrate for nitrate and nitrite reduction to nitric oxide. Moreover, unlike the deep-sea systems, cyanobacteria may also actively participate in major metabolic pathways. This study helps us to better understand biogeochemical processes mediated by microorganisms and possible coupling of the carbon, sulfur, and nitrogen cycles in these unique ecosystems.
Collapse
Affiliation(s)
- Yufang Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lianbao Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zihao Zhao
- Department of Limnology and Bio-Oceanography, University of Vienna, Vienna, Austria
| | - Xiabing Xie
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | | | - Deli Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Linking Uncultivated Microbial Populations and Benthic Carbon Turnover by Using Quantitative Stable Isotope Probing. Appl Environ Microbiol 2018; 84:AEM.01083-18. [PMID: 29980553 PMCID: PMC6122004 DOI: 10.1128/aem.01083-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/28/2018] [Indexed: 11/20/2022] Open
Abstract
Little is known about the ecological role of uncultivated microbial populations in carbon turnover in benthic environments. To better understand this, we used quantitative stable isotope probing (qSIP) to quantify the abundance of diverse, specific groups of uncultivated bacteria and archaea involved in autotrophy and heterotrophy in a benthic lacustrine habitat. Our results provide quantitative evidence for active heterotrophic and autotrophic metabolism of several poorly understood microbial groups, thus demonstrating their relevance for carbon turnover in benthic settings. Archaeal ammonia oxidizers were significant drivers of in situ “dark” primary production supporting the growth of heterotrophic bacteria. These findings expand our understanding of the microbial populations within benthic food webs and the role of uncultivated microbes in benthic carbon turnover. Benthic environments harbor highly diverse and complex microbial communities that control carbon fluxes, but the role of specific uncultivated microbial groups in organic matter turnover is poorly understood. In this study, quantitative DNA stable isotope probing (DNA-qSIP) was used for the first time to link uncultivated populations of bacteria and archaea to carbon turnover in lacustrine surface sediments. After 1-week incubations in the dark with [13C]bicarbonate, DNA-qSIP showed that ammonia-oxidizing archaea (AOA) were the dominant active chemolithoautotrophs involved in the production of new organic matter. Natural 13C-labeled organic matter was then obtained by incubating sediments in the dark for 2.5 months with [13C]bicarbonate, followed by extraction and concentration of high-molecular-weight (HMW) (>50-kDa) organic matter. qSIP showed that the labeled organic matter was turned over within 1 week by 823 microbial populations (operational taxonomic units [OTUs]) affiliated primarily with heterotrophic Proteobacteria, Chloroflexi, Verrucomicrobia, and Bacteroidetes. However, several OTUs affiliated with the candidate microbial taxa Latescibacteria, Omnitrophica, Aminicentantes, Cloacimonates, AC1, Bathyarchaeota, and Woesearchaeota, groups known only from genomic signatures, also contributed to biomass turnover. Of these 823 labeled OTUs, 52% (primarily affiliated with Proteobacteria) also became labeled in 1-week incubations with [13C]bicarbonate, indicating that they turned over carbon faster than OTUs that were labeled only in incubations with 13C-labeled HMW organic matter. These taxa consisted primarily of uncultivated populations within the Firmicutes, Bacteroidetes, Verrucomicrobia, and Chloroflexi, highlighting their ecological importance. Our study helps define the role of several poorly understood, uncultivated microbial groups in the turnover of benthic carbon derived from “dark” primary production. IMPORTANCE Little is known about the ecological role of uncultivated microbial populations in carbon turnover in benthic environments. To better understand this, we used quantitative stable isotope probing (qSIP) to quantify the abundance of diverse, specific groups of uncultivated bacteria and archaea involved in autotrophy and heterotrophy in a benthic lacustrine habitat. Our results provide quantitative evidence for active heterotrophic and autotrophic metabolism of several poorly understood microbial groups, thus demonstrating their relevance for carbon turnover in benthic settings. Archaeal ammonia oxidizers were significant drivers of in situ “dark” primary production supporting the growth of heterotrophic bacteria. These findings expand our understanding of the microbial populations within benthic food webs and the role of uncultivated microbes in benthic carbon turnover.
Collapse
|
10
|
Pop Ristova P, Pichler T, Friedrich MW, Bühring SI. Bacterial Diversity and Biogeochemistry of Two Marine Shallow-Water Hydrothermal Systems off Dominica (Lesser Antilles). Front Microbiol 2017; 8:2400. [PMID: 29255454 PMCID: PMC5722836 DOI: 10.3389/fmicb.2017.02400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Abstract
Shallow-water hydrothermal systems represent extreme environments with unique biogeochemistry and high biological productivity, at which autotrophic microorganisms use both light and chemical energy for the production of biomass. Microbial communities of these ecosystems are metabolically diverse and possess the capacity to transform a large range of chemical compounds. Yet, little is known about their diversity or factors shaping their structure or how they compare to coastal sediments not impacted by hydrothermalism. To this end, we have used automated ribosomal intergenic spacer analysis (ARISA) and high-throughput Illumina sequencing combined with porewater geochemical analysis to investigate microbial communities along geochemical gradients in two shallow-water hydrothermal systems off the island of Dominica (Lesser Antilles). At both sites, venting of hydrothermal fluids substantially altered the porewater geochemistry by enriching it with silica, iron and dissolved inorganic carbon, resulting in island-like habitats with distinct biogeochemistry. The magnitude of fluid flow and difference in sediment grain size, which impedes mixing of the fluids with seawater, were correlated with the observed differences in the porewater geochemistry between the two sites. Concomitantly, individual sites harbored microbial communities with a significantly different community structure. These differences could be statistically linked to variations in the porewater geochemistry and the hydrothermal fluids. The two shallow-water hydrothermal systems of Dominica harbored bacterial communities with high taxonomical and metabolic diversity, predominated by heterotrophic microorganisms associated with the Gammaproteobacterial genera Pseudomonas and Pseudoalteromonas, indicating the importance of heterotrophic processes. Overall, this study shows that shallow-water hydrothermal systems contribute substantially to the biogeochemical heterogeneity and bacterial diversity of coastal sediments.
Collapse
Affiliation(s)
- Petra Pop Ristova
- Hydrothermal Geomicrobiology Group, MARUM - Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Thomas Pichler
- Geochemistry and Hydrogeology, University of Bremen, Bremen, Germany
| | - Michael W. Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Solveig I. Bühring
- Hydrothermal Geomicrobiology Group, MARUM - Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
11
|
Callac N, Posth NR, Rattray JE, Yamoah KKY, Wiech A, Ivarsson M, Hemmingsson C, Kilias SP, Argyraki A, Broman C, Skogby H, Smittenberg RH, Fru EC. Modes of carbon fixation in an arsenic and CO 2-rich shallow hydrothermal ecosystem. Sci Rep 2017; 7:14708. [PMID: 29089625 PMCID: PMC5665909 DOI: 10.1038/s41598-017-13910-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/29/2017] [Indexed: 01/01/2023] Open
Abstract
The seafloor sediments of Spathi Bay, Milos Island, Greece, are part of the largest arsenic-CO2-rich shallow submarine hydrothermal ecosystem on Earth. Here, white and brown deposits cap chemically distinct sediments with varying hydrothermal influence. All sediments contain abundant genes for autotrophic carbon fixation used in the Calvin-Benson-Bassham (CBB) and reverse tricaboxylic acid (rTCA) cycles. Both forms of RuBisCO, together with ATP citrate lyase genes in the rTCA cycle, increase with distance from the active hydrothermal centres and decrease with sediment depth. Clustering of RuBisCO Form II with a highly prevalent Zetaproteobacteria 16S rRNA gene density infers that iron-oxidizing bacteria contribute significantly to the sediment CBB cycle gene content. Three clusters form from different microbial guilds, each one encompassing one gene involved in CO2 fixation, aside from sulfate reduction. Our study suggests that the microbially mediated CBB cycle drives carbon fixation in the Spathi Bay sediments that are characterized by diffuse hydrothermal activity, high CO2, As emissions and chemically reduced fluids. This study highlights the breadth of conditions influencing the biogeochemistry in shallow CO2-rich hydrothermal systems and the importance of coupling highly specific process indicators to elucidate the complexity of carbon cycling in these ecosystems.
Collapse
Affiliation(s)
- Nolwenn Callac
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden.
| | - Nicole R Posth
- Nordcee, Department of Biology-University of Southern Denmark Campusvej 55, 5230, Odense M, Denmark.,Department of Geosciences and Natural Resource Management - IGN University of Copenhagen, Øster Voldgade, 10 1350, København K, Denmark
| | - Jayne E Rattray
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden
| | - Kweku K Y Yamoah
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden
| | - Alan Wiech
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden
| | - Magnus Ivarsson
- Department of Palaeobiology and Nordic Center for Earth Evolution, Swedish Museum of Natural History, Stockholm, Sweden
| | - Christoffer Hemmingsson
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden
| | - Stephanos P Kilias
- Department of Geology and Geoenvironment, Section of Economic Geology and Geochemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 157 84, Athens, Greece
| | - Ariadne Argyraki
- Department of Geology and Geoenvironment, Section of Economic Geology and Geochemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 157 84, Athens, Greece
| | - Curt Broman
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden
| | - Henrik Skogby
- Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden
| | - Rienk H Smittenberg
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden
| | - Ernest Chi Fru
- Stockholm University, Department of Geological Sciences and Bolin Centre for Climate Research, SE-106 91, Stockholm, Sweden. .,School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom.
| |
Collapse
|