1
|
Yavari-Bafghi M, Rezaei Somee M, Amoozegar MA, Dastgheib SMM, Shavandi M. Genome-resolved analyses of oligotrophic groundwater microbial communities along phenol pollution in a continuous-flow biodegradation model system. Front Microbiol 2023; 14:1147162. [PMID: 37065124 PMCID: PMC10090433 DOI: 10.3389/fmicb.2023.1147162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Groundwater pollution is one of the major environmental concerns. The entrance of pollutants into the oligotrophic groundwater ecosystems alters native microbial community structure and metabolism. This study investigated the application of innovative Small Bioreactor Chambers and CaO2 nanoparticles for phenol removal within continuous-flow sand-packed columns for 6 months. Scanning electron microscopy and confocal laser scanning microscopy analysis were conducted to indicate the impact of attached biofilm on sand surfaces in bioremediation columns. Then, the influence of each method on the microbial biodiversity of the column’s groundwater was investigated by next-generation sequencing of the 16S rRNA gene. The results indicated that the simultaneous application of biostimulation and bioaugmentation completely eliminated phenol during the first 42 days. However, 80.2% of phenol remained in the natural bioremediation column at the end of the experiment. Microbial diversity was decreased by CaO2 injection while order-level groups known for phenol degradation such as Rhodobacterales and Xanthomonadales dominated in biostimulation columns. Genome-resolved comparative analyses of oligotrophic groundwater prokaryotic communities revealed that Burkholderiales, Micrococcales, and Cytophagales were the dominant members of the pristine groundwater. Six-month exposure of groundwater to phenol shifted the microbial population towards increasing the heterotrophic members of Desulfobacterales, Pseudomonadales, and Xanthomonadales with the degradation potential of phenol and other hydrocarbons.
Collapse
Affiliation(s)
- Maryam Yavari-Bafghi
- Extremophiles Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Rezaei Somee
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Mohammad Ali Amoozegar,
| | - Seyed Mohammad Mehdi Dastgheib
- Microbiology and Biotechnology Group, Environment and Biotechnology Research Division, Research Institute of Petroleum Industry, Tehran, Iran
| | - Mahmoud Shavandi
- Microbiology and Biotechnology Group, Environment and Biotechnology Research Division, Research Institute of Petroleum Industry, Tehran, Iran
- *Correspondence: Mahmoud Shavandi,
| |
Collapse
|
2
|
Wang B, Kuang S, Shao H, Wang L, Wang H. Anaerobic-petroleum degrading bacteria: Diversity and biotechnological applications for improving coastal soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112646. [PMID: 34399124 DOI: 10.1016/j.ecoenv.2021.112646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Due to the industrial emissions and accidental spills, the critical material for modern industrial society petroleum pollution causes severe ecological damage. The prosperous oil exploitation and transportation causes the recalcitrant, hazardous, and carcinogenic sludge widespread in the coastal wetlands. The costly physicochemical-based remediation remains the secondary and inadequate treatment for the derivatives along with the tailings. Anaerobic microbial petroleum degrading biotechnology has received extensive attention for its cost acceptable, eco-friendly, and fewer health hazards. As a result of the advances in biotechnology and microbiology, the anaerobic oil-degrading bacteria have been well developing to achieve the same remediation effects with lower operating costs. This review summarizes the advantages and potential scenarios of the anaerobic degrading bacteria, such as sulfate-reducing bacteria, denitrifying bacteria, and metal-reducing bacteria in the coastal area decomposing the alkanes, alkenes, aromatic hydrocarbons, polycyclic aromatic, and related derivatives. In the future, a complete theoretical basis of microbiological biotechnology, molecular biology, and electrochemistry is necessary to make efficient and environmental-friendly use of anaerobic degradation bacteria to mineralize oil sludge organic wastes.
Collapse
Affiliation(s)
- Bingchen Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Hongbo Shao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Institute of Agriculture Resources and Environment, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing 210014, PR China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224002, China.
| | - Lei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Huihui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
3
|
Rezaei Somee M, Dastgheib SMM, Shavandi M, Ghanbari Maman L, Kavousi K, Amoozegar MA, Mehrshad M. Distinct microbial community along the chronic oil pollution continuum of the Persian Gulf converge with oil spill accidents. Sci Rep 2021; 11:11316. [PMID: 34059729 PMCID: PMC8166890 DOI: 10.1038/s41598-021-90735-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
The Persian Gulf, hosting ca. 48% of the world's oil reserves, has been chronically exposed to natural oil seepage. Oil spill studies show a shift in microbial community composition in response to oil pollution; however, the influence of chronic oil exposure on the microbial community remains unknown. We performed genome-resolved comparative analyses of the water and sediment samples along Persian Gulf's pollution continuum (Strait of Hormuz, Asalouyeh, and Khark Island). Continuous exposure to trace amounts of pollution primed the intrinsic and rare marine oil-degrading microbes such as Oceanospirillales, Flavobacteriales, Alteromonadales, and Rhodobacterales to bloom in response to oil pollution in Asalouyeh and Khark samples. Comparative analysis of the Persian Gulf samples with 106 oil-polluted marine samples reveals that the hydrocarbon type, exposure time, and sediment depth are the main determinants of microbial response to pollution. High aliphatic content of the pollution enriched for Oceanospirillales, Alteromonadales, and Pseudomonadales whereas, Alteromonadales, Cellvibrionales, Flavobacteriales, and Rhodobacterales dominate polyaromatic polluted samples. In chronic exposure and oil spill events, the community composition converges towards higher dominance of oil-degrading constituents while promoting the division of labor for successful bioremediation.
Collapse
Affiliation(s)
- Maryam Rezaei Somee
- grid.46072.370000 0004 0612 7950Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Seyed Mohammad Mehdi Dastgheib
- grid.419140.90000 0001 0690 0331Biotechnology and Microbiology Research Group, Research Institute of Petroleum Industry, Tehran, Iran
| | - Mahmoud Shavandi
- grid.419140.90000 0001 0690 0331Biotechnology and Microbiology Research Group, Research Institute of Petroleum Industry, Tehran, Iran
| | - Leila Ghanbari Maman
- grid.46072.370000 0004 0612 7950Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Kaveh Kavousi
- grid.46072.370000 0004 0612 7950Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Ali Amoozegar
- grid.46072.370000 0004 0612 7950Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maliheh Mehrshad
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Zhang C, Meckenstock RU, Weng S, Wei G, Hubert CRJ, Wang JH, Dong X. Marine sediments harbor diverse archaea and bacteria with the potential for anaerobic hydrocarbon degradation via fumarate addition. FEMS Microbiol Ecol 2021; 97:6171024. [PMID: 33720296 DOI: 10.1093/femsec/fiab045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
Marine sediments can contain large amounts of alkanes and methylated aromatic hydrocarbons that are introduced by natural processes or anthropogenic activities. These compounds can be biodegraded by anaerobic microorganisms via enzymatic addition of fumarate. However, the identity and ecological roles of a significant fraction of hydrocarbon degraders containing fumarate-adding enzymes (FAE) in various marine sediments remains unknown. By combining phylogenetic reconstructions, protein homolog modelling, and functional profiling of publicly available metagenomes and genomes, 61 draft bacterial and archaeal genomes encoding anaerobic hydrocarbon degradation via fumarate addition were obtained. Besides Desulfobacterota (previously known as Deltaproteobacteria) that are well-known to catalyze these reactions, Chloroflexi are dominant FAE-encoding bacteria in hydrocarbon-impacted sediments, potentially coupling sulfate reduction or fermentation to anaerobic hydrocarbon degradation. Among Archaea, besides Archaeoglobi previously shown to have this capability, genomes of Heimdallarchaeota, Lokiarchaeota, Thorarchaeota and Thermoplasmata also suggest fermentative hydrocarbon degradation using archaea-type FAE. These bacterial and archaeal hydrocarbon degraders occur in a wide range of marine sediments, including high abundances of FAE-encoding Asgard archaea associated with natural seeps and subseafloor ecosystems. Our results expand the knowledge of diverse archaeal and bacterial lineages engaged in anaerobic degradation of alkanes and methylated aromatic hydrocarbons.
Collapse
Affiliation(s)
- Chuwen Zhang
- School of Marine Sciences, Sun Yat-Sen University, 2 Daxue Road, Xiangzhou District, Zhuhai 519082, China
| | - Rainer U Meckenstock
- Environmental Microbiology and Biotechnology, University Duisburg-Essen, Universitätsstrasse 5, Essen 45141, Germany
| | - Shengze Weng
- School of Marine Sciences, Sun Yat-Sen University, 2 Daxue Road, Xiangzhou District, Zhuhai 519082, China
| | - Guangshan Wei
- School of Marine Sciences, Sun Yat-Sen University, 2 Daxue Road, Xiangzhou District, Zhuhai 519082, China.,Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Siming District, Xiamen 361005, China
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N1N4, Canada
| | - Jiang-Hai Wang
- School of Marine Sciences, Sun Yat-Sen University, 2 Daxue Road, Xiangzhou District, Zhuhai 519082, China
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, 2 Daxue Road, Xiangzhou District, Zhuhai 519082, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 2 Daxue Road, XiangZhou District, Zhuhai 519000, China
| |
Collapse
|
5
|
Liu Q, Tang J, Liu X, Song B, Zhen M, Ashbolt NJ. Vertical response of microbial community and degrading genes to petroleum hydrocarbon contamination in saline alkaline soil. J Environ Sci (China) 2019; 81:80-92. [PMID: 30975332 DOI: 10.1016/j.jes.2019.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
A column microcosm was conducted by amending crude oil into Dagang Oilfield soil to simulate the bioremediation process. The dynamic change of microbial communities and metabolic genes in vertical depth soil from 0 to 80 cm were characterized to evaluate the petroleum degradation potential of indigenous microorganism. The influence of environmental variables on the microbial responds to petroleum contamination were analyzed. Degradation extent of 42.45% of n-alkanes (C8-C40) and 34.61% of 16ΣPAH were reached after 22 weeks. Relative abundance of alkB, nah, and phe gene showed about 10-fold increment in different depth of soil layers. Result of HTS profiles demonstrated that Pseudomonas, Marinobacter and Lactococcus were the major petroleum-degrading bacteria in 0-30 and 30-60 cm depth of soils. Fusarium and Aspergillus were the dominant oil-degrading fungi in the 0-60 cm depth of soils. In 60-80 cm deep soil, anaerobic bacteria such as Bacteroidetes, Lactococcus, and Alcanivorax played important roles in petroleum degradation. Redundancy analysis (RDA) and correlation analysis demonstrated that petroleum hydrocarbons (PHs) as well as soil salinity, clay content, and anaerobic conditions were the dominant effect factors on microbial community compositions in 0-30, 30-60, and 60-80 cm depth of soils, respectively.
Collapse
Affiliation(s)
- Qinglong Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China..
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin 300071, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, China.
| | - Xiaomei Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Benru Song
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Meinan Zhen
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Nicholas J Ashbolt
- School of Public Health, University of Alberta, Edmonton, Alberta T6G 2G7, Canada
| |
Collapse
|
6
|
Roy A, Sar P, Sarkar J, Dutta A, Sarkar P, Gupta A, Mohapatra B, Pal S, Kazy SK. Petroleum hydrocarbon rich oil refinery sludge of North-East India harbours anaerobic, fermentative, sulfate-reducing, syntrophic and methanogenic microbial populations. BMC Microbiol 2018; 18:151. [PMID: 30348104 PMCID: PMC6198496 DOI: 10.1186/s12866-018-1275-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022] Open
Abstract
Background Sustainable management of voluminous and hazardous oily sludge produced by petroleum refineries remains a challenging problem worldwide. Characterization of microbial communities of petroleum contaminated sites has been considered as the essential prerequisite for implementation of suitable bioremediation strategies. Three petroleum refinery sludge samples from North Eastern India were analyzed using next-generation sequencing technology to explore the diversity and functional potential of inhabitant microorganisms and scope for their on-site bioremediation. Results All sludge samples were hydrocarbon rich, anaerobic and reduced with sulfate as major anion and several heavy metals. High throughput sequencing of V3-16S rRNA genes from sludge metagenomes revealed dominance of strictly anaerobic, fermentative, thermophilic, sulfate-reducing bacteria affiliated to Coprothermobacter, Fervidobacterium, Treponema, Syntrophus, Thermodesulfovibrio, Anaerolinea, Syntrophobacter, Anaerostipes, Anaerobaculum, etc., which have been well known for hydrocarbon degradation. Relatively higher proportions of archaea were detected by qPCR. Archaeal 16S rRNA gene sequences showed presence of methanogenic Methanobacterium, Methanosaeta, Thermoplasmatales, etc. Detection of known hydrocarbon utilizing aerobic/facultative anaerobic (Mycobacterium, Pseudomonas, Longilinea, Geobacter, etc.), nitrate reducing (Gordonia, Novosphigobium, etc.) and nitrogen fixing (Azovibrio, Rhodobacter, etc.) bacteria suggested niche specific guilds with aerobic, facultative anaerobic and strict anaerobic populations. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predicted putative genetic repertoire of sludge microbiomes and their potential for hydrocarbon degradation; lipid-, nitrogen-, sulfur- and methane- metabolism. Methyl coenzyme M reductase A (mcrA) and dissimilatory sulfite reductase beta-subunit (dsrB) genes phylogeny confirmed methanogenic and sulfate-reducing activities within sludge environment endowed by hydrogenotrophic methanogens and sulfate-reducing Deltaproteobacteria and Firmicutes members. Conclusion Refinery sludge microbiomes were comprised of hydrocarbon degrading, fermentative, sulfate-reducing, syntrophic, nitrogen fixing and methanogenic microorganisms, which were in accordance with the prevailing physicochemical nature of the samples. Analysis of functional biomarker genes ascertained the activities of methanogenic and sulfate-reducing organisms within sludge environment. Overall data provided better insights on microbial diversity and activity in oil contaminated environment, which could be exploited suitably for in situ bioremediation of refinery sludge. Electronic supplementary material The online version of this article (10.1186/s12866-018-1275-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ajoy Roy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713 209, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Jayeeta Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Avishek Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India.,School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Poulomi Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Abhishek Gupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Balaram Mohapatra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721 302, India
| | - Siddhartha Pal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713 209, India
| | - Sufia K Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713 209, India.
| |
Collapse
|
7
|
Lu X, Wang H, Ma F, Zhao G, Wang S. Improved process performance of the acidification phase in a two-stage anaerobic digestion of complex organic waste: Effects of an iron oxide-zeolite additive. BIORESOURCE TECHNOLOGY 2018; 262:169-176. [PMID: 29705608 DOI: 10.1016/j.biortech.2018.04.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Improvement of the acidification phase is an attractive alternative to break through the rate-limiting step in the two-phase anaerobic digestion of complex organic wastes. An additive named iron oxide-zeolite was introduced into the acidification phase at mesophilic and room temperature. By virtue of the additive supplemented, significantly improved hydrolysis/fermentation in regard to higher soluble chemical oxygen demand (sCOD) concentration (21.53-27.30%) and better lignocellulosic degradation at both temperatures has been obtained. Furthermore, an optimized volatile fatty acid formation type (more favorable acetate and less undesired propionate) has been achieved. The favorable environment of the acidogenic effluent facilitated the subsequent methanogenesis. The increased microbial community abundances of some hydrolytic, acetogenic and cellulolytic bacteria may provide the explanation on the promoted hydrolysis/acidogenesis. The results in this study suggested that supplementation of the iron oxide-zeolite into the acidification phase is a valuable alternative to improve hydrolysis/acidogenesis of the complex substrates.
Collapse
Affiliation(s)
- Xiaofei Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haidong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Guang Zhao
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Liaoning 121001, China
| | - Shiwei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Mishra S, Wefers P, Schmidt M, Knittel K, Krüger M, Stagars MH, Treude T. Hydrocarbon Degradation in Caspian Sea Sediment Cores Subjected to Simulated Petroleum Seepage in a Newly Designed Sediment-Oil-Flow-Through System. Front Microbiol 2017; 8:763. [PMID: 28503172 PMCID: PMC5409261 DOI: 10.3389/fmicb.2017.00763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/12/2017] [Indexed: 11/24/2022] Open
Abstract
The microbial community response to petroleum seepage was investigated in a whole round sediment core (16 cm length) collected nearby natural hydrocarbon seepage structures in the Caspian Sea, using a newly developed Sediment-Oil-Flow-Through (SOFT) system. Distinct redox zones established and migrated vertically in the core during the 190 days-long simulated petroleum seepage. Methanogenic petroleum degradation was indicated by an increase in methane concentration from 8 μM in an untreated core compared to 2300 μM in the lower sulfate-free zone of the SOFT core at the end of the experiment, accompanied by a respective decrease in the δ13C signal of methane from -33.7 to -49.5‰. The involvement of methanogens in petroleum degradation was further confirmed by methane production in enrichment cultures from SOFT sediment after the addition of hexadecane, methylnapthalene, toluene, and ethylbenzene. Petroleum degradation coupled to sulfate reduction was indicated by the increase of integrated sulfate reduction rates from 2.8 SO42-m-2 day-1 in untreated cores to 5.7 mmol SO42-m-2 day-1 in the SOFT core at the end of the experiment, accompanied by a respective accumulation of sulfide from 30 to 447 μM. Volatile hydrocarbons (C2–C6 n-alkanes) passed through the methanogenic zone mostly unchanged and were depleted within the sulfate-reducing zone. The amount of heavier n-alkanes (C10–C38) decreased step-wise toward the top of the sediment core and a preferential degradation of shorter (<C14) and longer chain n-alkanes (>C30) was seen during the seepage. This study illustrates, to the best of our knowledge, for the first time the development of methanogenic petroleum degradation and the succession of benthic microbial processes during petroleum passage in a whole round sediment core.
Collapse
Affiliation(s)
- Sonakshi Mishra
- GEOMAR Helmholtz Center for Ocean Research KielKiel, Germany
| | - Peggy Wefers
- GEOMAR Helmholtz Center for Ocean Research KielKiel, Germany
| | - Mark Schmidt
- GEOMAR Helmholtz Center for Ocean Research KielKiel, Germany
| | - Katrin Knittel
- Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Martin Krüger
- Federal Institute for Geosciences and Natural ResourcesHannover, Germany
| | | | - Tina Treude
- GEOMAR Helmholtz Center for Ocean Research KielKiel, Germany.,Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, Los AngelesCA, USA.,Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los AngelesCA, USA
| |
Collapse
|