1
|
Pritam M, Dutta S, Medicherla KM, Kumar R, Singh SP. Computational analysis of spike protein of SARS-CoV-2 (Omicron variant) for development of peptide-based therapeutics and diagnostics. J Biomol Struct Dyn 2024; 42:7321-7339. [PMID: 37498146 DOI: 10.1080/07391102.2023.2239932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
In the last few years, the worldwide population has suffered from the SARS-CoV-2 pandemic. The WHO dashboard indicated that around 504,079,039 people were infected and 6,204,155 died from COVID-19 caused by different variants of SARS-CoV-2. Recently, a new variant of SARS-CoV-2 (B.1.1.529) was reported by South Africa known as Omicron. The high transmissibility rate and resistance towards available anti-SARS-CoV-2 drugs/vaccines/monoclonal antibodies, make Omicron a variant of concern. Because of various mutations in spike protein, available diagnostic and therapeutic treatments are not reliable. Therefore, the present study explored the development of some therapeutic peptides that can inhibit the SARS-CoV-2 virus interaction with host ACE2 receptors and can also be used for diagnostic purposes. The screened linear B cell epitopes derived from receptor-binding domain of spike protein of Omicron variant were evaluated as peptide inhibitor/vaccine candidates through different bioinformatics tools including molecular docking and simulation to analyze the interaction between Omicron peptide and human ACE2 receptor. Overall, in-silico studies revealed that Omicron peptides OP1-P12, OP14, OP20, OP23, OP24, OP25, OP26, OP27, OP28, OP29, and OP30 have the potential to inhibit Omicron interaction with ACE2 receptor. Moreover, Omicron peptides OP20, OP22, OP23, OP24, OP25, OP26, OP27, and OP30 have shown potential antigenic and immunogenic properties that can be used in design and development vaccines against Omicron. Although the in-silico validation was performed by comparative analysis with the control peptide inhibitor, further validation through wet lab experimentation is required before its use as therapeutic peptides.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manisha Pritam
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Somenath Dutta
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Department of Bioinformatics, Pondicherry Central University, Puducherry, India
| | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
2
|
Dokuz S, Tasdurmazli S, Acar T, Duran GN, Ozdemir C, Ozbey U, Ozbil M, Karadayi S, Bayrak OF, Derman S, Chen JYS, Ozbek T. Evaluation of bacteriophage ϕ11 host recognition protein and its host-binding peptides for diagnosing/targeting Staphylococcus aureus infections. Int J Antimicrob Agents 2024; 64:107230. [PMID: 38824973 DOI: 10.1016/j.ijantimicag.2024.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Evaluating the potential of using both synthetic and biological products as targeting agents for the diagnosis, imaging, and treatment of infections due to particularly antibiotic-resistant pathogens is important for controlling infections. This study examined the interaction between Gp45, a receptor-binding protein of the ϕ11 lysogenic phage, and its host Staphylococcus aureus (S. aureus), a common cause of nosocomial infections. METHODS Using molecular dynamics and docking simulations, this study identified the peptides that bind to S. aureus wall teichoic acids via Gp45. It compared the binding affinity of Gp45 and the two highest-scoring peptide sequences (P1 and P3) and their scrambled forms using microscopy, spectroscopy, and ELISA. RESULTS It was found that rGp45 (recombinant Gp45) and chemically synthesised P1 had a higher binding affinity for S. aureus compared with all other peptides, except for Escherichia coli. Furthermore, rGp45 had a capture efficiency of > 86%; P1 had a capture efficiency of > 64%. CONCLUSION These findings suggest that receptor-binding proteins such as rGp45, which provide a critical initiation of the phage life cycle for host adsorption, might play an important role in the diagnosis, imaging, and targeting of bacterial infections. Studying such proteins could accordingly enable the development of effective strategies for controlling infections.
Collapse
Affiliation(s)
- Senanur Dokuz
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Semra Tasdurmazli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Tayfun Acar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Gizem Nur Duran
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Cilem Ozdemir
- Department of Medical Biology, Health Sciences Institution, Mugla Sitki Kocman University, Mugla, Turkey
| | - Utku Ozbey
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Mehmet Ozbil
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Sukriye Karadayi
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Altınbas University, Istanbul, Turkey
| | - Omer Faruk Bayrak
- Department of Medical Genetics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Serap Derman
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - John Yu-Shen Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tulin Ozbek
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|
3
|
Cavaco M, Pérez-Peinado C, Valle J, Silva RDM, Gano L, Correia JDG, Andreu D, Castanho MARB, Neves V. The use of a selective, nontoxic dual-acting peptide for breast cancer patients with brain metastasis. Biomed Pharmacother 2024; 174:116573. [PMID: 38613996 DOI: 10.1016/j.biopha.2024.116573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by the absence of commonly targeted receptors. Unspecific chemotherapy is currently the main therapeutic option, with poor results. Another major challenge is the frequent appearance of brain metastasis (BM) associated with a significant decrease in patient overall survival. The treatment of BM is even more challenging due to the presence of the blood-brain barrier (BBB). Here, we present a dual-acting peptide (PepH3-vCPP2319) designed to tackle TNBC/BM, in which a TNBC-specific anticancer peptide (ACP) motif (vCPP2319) is joined to a BBB peptide shuttle (BBBpS) motif (PepH3). PepH3-vCPP2319 demonstrated selectivity and efficiency in eliminating TNBC both in monolayers (IC50≈5.0 µM) and in spheroids (IC50≈25.0 µM), with no stringent toxicity toward noncancerous cell lines and red blood cells (RBCs). PepH3-vCPP2319 was also able to cross the BBB in vitro and penetrate the brain in vivo, and was stable in serum with a half-life above 120 min. Tumor cell-peptide interaction is fast, with quick peptide internalization via clathrin-mediated endocytosis without membrane disruption. Upon internalization, the peptide is detected in the nucleus and the cytoplasm, indicating a multi-targeted mechanism of action that ultimately induces irreversible cell damage and apoptosis. In conclusion, we have designed a dual-acting peptide capable of brain penetration and TNBC cell elimination, thus expanding the drug arsenal to fight this BC subtype and its BM.
Collapse
Affiliation(s)
- Marco Cavaco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal; Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, Dr. Aiguader 88, Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Clara Pérez-Peinado
- Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, Dr. Aiguader 88, Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Javier Valle
- Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, Dr. Aiguader 88, Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Ruben D M Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), LRS, Bobadela 2695-066, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), LRS, Bobadela 2695-066, Portugal; Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), LRS, Bobadela 2695-066, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), LRS, Bobadela 2695-066, Portugal; Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), LRS, Bobadela 2695-066, Portugal
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Medicine and Life Sciences, Pompeu Fabra University, Dr. Aiguader 88, Barcelona Biomedical Research Park, Barcelona 08003, Spain.
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
4
|
Zhang M, Wang J, Li C, Wu S, Liu W, Zhou C, Ma L. Cathelicidin AS-12W Derived from the Alligator sinensis and Its Antimicrobial Activity Against Drug-Resistant Gram-Negative Bacteria In Vitro and In Vivo. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10250-2. [PMID: 38587584 DOI: 10.1007/s12602-024-10250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Antimicrobial peptides (AMPs) have the potential to treat multidrug-resistant bacterial infections. Cathelicidins are a class of cationic antimicrobial peptides that are found in nearly all vertebrates. Herein, we determined the mature peptide region of Alligator sinensis cathelicidin by comparing its cathelicidin peptide sequence with those of other reptiles and designed nine peptide mutants based on the Alligator sinensis cathelicidin mature peptide. According to the antibacterial activity and cytotoxicity screening, the peptide AS-12W demonstrated broad-spectrum antibacterial activity and exhibited low erythrocyte hemolytic activity. In particular, AS-12W exhibited strong antibacterial activity and rapid bactericidal activity against carbapenem-resistant Pseudomonas aeruginosa in vitro. Additionally, AS-12W effectively removed carbapenem-resistant P. aeruginosa from blood and organs in vivo, leading to improved survival rates in septic mice. Furthermore, AS-12W exhibited good stability and tolerance to harsh conditions such as high heat, high salt, strong acid, and strong alkali, and it also displayed high stability toward trypsin and simulated gastric fluid (SGF). Moreover, AS-12W showed significant anti-inflammatory effects in vitro by inhibiting the production of proinflammatory factors induced by lipopolysaccharide (LPS). Due to its antibacterial mechanism against Escherichia coli, we found that this peptide could neutralize the negative charge on the surface of the bacteria and disrupt the integrity of the bacterial cell membrane. In addition, AS-12W has the ability to bind to the genomic DNA of bacteria and stimulate the production of reactive oxygen species (ROS) within bacteria, which is believed to be the reason for the good antibacterial activity of AS-12W. These results demonstrated that AS-12W exhibits remarkable antibacterial activity, particularly against carbapenem-resistant P. aeruginosa. Therefore, it is a potential candidate for antibacterial drug development.
Collapse
Affiliation(s)
- Meina Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jian Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chao Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Shaoju Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Changlin Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
5
|
Arasu MV, Al-Dhabi NA. Antibacterial activity of peptides and bio-safety evaluation: in vitro and in vivo studies against bacterial and fungal pathogens. J Infect Public Health 2023; 16:2031-2037. [PMID: 37890227 DOI: 10.1016/j.jiph.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 08/27/2023] [Accepted: 09/13/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Antimicrobial peptides are promising alternatives to antibiotics to treat bacterial and fungal infections, especially drug-resistant clinical pathogens. METHODS Antimicrobial peptides (AMPs) were synthesized and antimicrobial activity was assayed. The antibacterial mechanism, ATP production, ROS generation and molecular mechanism were determined. Biofilm inhibition assay was performed in planktonic bacterial cells and biofilm degradation assay was performed using mature biofilm. The synthesized AMP2 was subjected to in vitro and in vivo analysis to analyze the safety. RESULTS The synthesized peptides AMP1, AMP2, AMP3 and AMP4 exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria. The MIC values ranged from 1.5 ± 0.25-12.5 ± 1.25 µM and the MFC values range from 2.25 ± 0.12-25 ± 1.25 µM. F. solani showed fewer MFC values than other fungal strains. Time kill assay was performed and the AMP2 killed about 70 % of Acinetobacter baumannii at 1 × MIC concentration within 10 min incubation and killed 97 % of bacteria at 1 × MBC concentration within 15 min. The antimicrobial peptide AMP2 was highly effective against planktonic A. baumannii and L. monocytogenes. The tested AMP2 showed less toxicity to cell lines and Zebrafish. CONCLUSIONS Antimicrobial peptides have potential antimicrobial properties against Gram-positive and Gram-negative bacteria. The in silico studies of these antimicrobial peptides are useful for eradicating drug-resistant bacteria.
Collapse
Affiliation(s)
- Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Kravchenko SV, Domnin PA, Grishin SY, Vershinin NA, Gurina EV, Zakharova AA, Azev VN, Mustaeva LG, Gorbunova EY, Kobyakova MI, Surin AK, Fadeev RS, Ostroumova OS, Ermolaeva SA, Galzitskaya OV. Enhancing the Antimicrobial Properties of Peptides through Cell-Penetrating Peptide Conjugation: A Comprehensive Assessment. Int J Mol Sci 2023; 24:16723. [PMID: 38069046 PMCID: PMC10706425 DOI: 10.3390/ijms242316723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Combining antimicrobial peptides (AMPs) with cell-penetrating peptides (CPPs) has shown promise in boosting antimicrobial potency, especially against Gram-negative bacteria. We examined the CPP-AMP interaction with distinct bacterial types based on cell wall differences. Our investigation focused on AMPs incorporating penetratin CPP and dihybrid peptides containing both cell-penetrating TAT protein fragments from the human immunodeficiency virus and Antennapedia peptide (Antp). Assessment of the peptides TAT-AMP, AMP-Antp, and TAT-AMP-Antp revealed their potential against Gram-positive strains (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), and Bacillus cereus). Peptides TAT-AMP and AMP-Antp using an amyloidogenic AMP from S1 ribosomal protein Thermus thermophilus, at concentrations ranging from 3 to 12 μM, exhibited enhanced antimicrobial activity against B. cereus. TAT-AMP and TAT-AMP-Antp, using an amyloidogenic AMP from the S1 ribosomal protein Pseudomonas aeruginosa, at a concentration of 12 µM, demonstrated potent antimicrobial activity against S. aureus and MRSA. Notably, the TAT-AMP, at a concentration of 12 µM, effectively inhibited Escherichia coli (E. coli) growth and displayed antimicrobial effects similar to gentamicin after 15 h of incubation. Peptide characteristics determined antimicrobial activity against diverse strains. The study highlights the intricate relationship between peptide properties and antimicrobial potential. Mechanisms of AMP action are closely tied to bacterial cell wall attributes. Peptides with the TAT fragment exhibited enhanced antimicrobial activity against S. aureus, MRSA, and P. aeruginosa. Peptides containing only the Antp fragment displayed lower activity. None of the investigated peptides demonstrated cytotoxic or cytostatic effects on either BT-474 cells or human skin fibroblasts. In conclusion, CPP-AMPs offer promise against various bacterial strains, offering insights for targeted antimicrobial development.
Collapse
Affiliation(s)
- Sergey V. Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
| | - Pavel A. Domnin
- Biology Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Sergei Y. Grishin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Nikita A. Vershinin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
| | - Elena V. Gurina
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
| | - Anastasiia A. Zakharova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.A.Z.); (O.S.O.)
| | - Viacheslav N. Azev
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
| | - Leila G. Mustaeva
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
| | - Elena Y. Gorbunova
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
| | - Margarita I. Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, 630060 Novosibirsk, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Roman S. Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
| | - Olga S. Ostroumova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.A.Z.); (O.S.O.)
| | | | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
| |
Collapse
|
7
|
Dias S, Pinto SN, Silva-Herdade AS, Cavaco M, Neves V, Tavares L, Oliveira M, Andreu D, Coutinho A, Castanho MARB, Veiga AS. Quantitative Imaging of the Action of vCPP2319, an Antimicrobial Peptide from a Viral Scaffold, against Staphylococcus aureus Biofilms of a Clinical Isolate. ACS Infect Dis 2023; 9:1889-1900. [PMID: 37669146 PMCID: PMC10580319 DOI: 10.1021/acsinfecdis.3c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/07/2023]
Abstract
The formation of biofilms is a common virulence factor that makes bacterial infections difficult to treat and a major human health problem. Biofilms are bacterial communities embedded in a self-produced matrix of extracellular polymeric substances (EPS). In this work, we show that vCPP2319, a polycationic peptide derived from the capsid protein of Torque teno douroucouli virus, is active against preformed Staphylococcus aureus biofilms produced by both a reference strain and a clinical strain isolated from a diabetic foot infection, mainly by the killing of biofilm-embedded bacteria. The direct effect of vCPP2319 on bacterial cells was imaged using atomic force and confocal laser scanning microscopy, showing that the peptide induces morphological changes in bacterial cells and membrane disruption. Importantly, vCPP2319 exhibits low toxicity toward human cells and high stability in human serum. Since vCPP2319 has a limited effect on the biofilm EPS matrix itself, we explored a combined effect with α-amylase (EC 3.2.1.1), an EPS matrix-degrading enzyme. In fact, α-amylase decreases the density of S. aureus biofilms by 2.5-fold. Nonetheless, quantitative analysis of bioimaging data shows that vCPP2319 partially restores biofilm compactness after digestion of the polysaccharides, probably due to electrostatic cross-bridging of the matrix nucleic acids, which explains why α-amylase fails to improve the antibacterial action of the peptide.
Collapse
Affiliation(s)
- Susana
A. Dias
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sandra N. Pinto
- iBB-Institute
for Bioengineering and Biosciences and Associate Laboratory i4HB −
Institute for Health and Bioeconomy at Department of Bioengineering, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana S. Silva-Herdade
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marco Cavaco
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Vera Neves
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Luís Tavares
- CIISA
− Centro de Investigação Interdisciplinar em
Sanidade Animal, Faculdade de Medicina Veterinária, Universidade
de Lisboa, Av. da Universidade
Técnica, 1300-477 Lisboa, Portugal
- Laboratório
Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA
− Centro de Investigação Interdisciplinar em
Sanidade Animal, Faculdade de Medicina Veterinária, Universidade
de Lisboa, Av. da Universidade
Técnica, 1300-477 Lisboa, Portugal
- Laboratório
Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - David Andreu
- Department
of Medicine and Life Sciences, Pompeu Fabra
University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ana Coutinho
- iBB-Institute
for Bioengineering and Biosciences and Associate Laboratory i4HB −
Institute for Health and Bioeconomy at Department of Bioengineering, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Departamento
de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Miguel A. R. B. Castanho
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Salomé Veiga
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
8
|
Babar TK, Glare TR, Hampton JG, Hurst MRH, Narciso J, Sheen CR, Koch B. Linocin M18 protein from the insect pathogenic bacterium Brevibacillus laterosporus isolates. Appl Microbiol Biotechnol 2023; 107:4337-4353. [PMID: 37204448 PMCID: PMC10313851 DOI: 10.1007/s00253-023-12563-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/20/2023]
Abstract
Brevibacillus laterosporus (Bl) is a Gram-positive and spore-forming bacterium. Insect pathogenic strains have been characterised in New Zealand, and two isolates, Bl 1821L and Bl 1951, are under development for use in biopesticides. However, growth in culture is sometimes disrupted, affecting mass production. Based on previous work, it was hypothesised that Tectiviridae phages might be implicated. While investigating the cause of the disrupted growth, electron micrographs of crude lysates showed structural components of putative phages including capsid and tail-like structures. Sucrose density gradient purification yielded a putative self-killing protein of ~30 kDa. N-terminal sequencing of the ~30 kDa protein identified matches to a predicted 25 kDa hypothetical and a 31.4 kDa putative encapsulating protein homologs, with the genes encoding each protein adjacent in the genomes. BLASTp analysis of the homologs of 31.4 kDa amino acid sequences shared 98.6% amino acid identity to the Linocin M18 bacteriocin family protein of Brevibacterium sp. JNUCC-42. Bioinformatic tools including AMPA and CellPPD defined that the bactericidal potential originated from a putative encapsulating protein. Antagonistic activity of the ~30 kDa encapsulating protein of Bl 1821L and Bl 1951during growth in broth exhibited bacterial autolytic activity. LIVE/DEAD staining of Bl 1821L cells after treatment with the ~30 kDa encapsulating protein of Bl 1821L substantiated the findings by showing 58.8% cells with the compromised cell membranes as compared to 37.5% cells in the control. Furthermore, antibacterial activity of the identified proteins of Bl 1821L was validated through gene expression in a Gram-positive bacterium Bacillus subtilis WB800N. KEY POINTS: • Gene encoding the 31.4 kDa antibacterial Linocin M18 protein was identified • It defined the autocidal activity of Linocin M18 (encapsulating) protein • Identified the possible killing mechanism of the encapsulins.
Collapse
Affiliation(s)
- Tauseef K Babar
- Bio-Protection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand.
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60000, Pakistan.
| | - Travis R Glare
- Bio-Protection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| | - John G Hampton
- Bio-Protection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| | - Mark R H Hurst
- Resilient Agriculture, AgResearch, Lincoln Research Centre, Christchurch, New Zealand
| | - Josefina Narciso
- Bio-Protection Research Centre, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| | - Campbell R Sheen
- Protein Science and Engineering, Callaghan Innovation, Christchurch, New Zealand
| | - Barbara Koch
- Protein Science and Engineering, Callaghan Innovation, Christchurch, New Zealand
| |
Collapse
|
9
|
Development of a Novel Antibacterial Peptide, PAM-5, via Combination of Phage Display Selection and Computer-Assisted Modification. Biomolecules 2023; 13:biom13030466. [PMID: 36979401 PMCID: PMC10046784 DOI: 10.3390/biom13030466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Antibacterial peptides (ABPs) have been proposed as potential candidates for alternative antibacterial agents due to the extensive dissemination of antibiotic resistance. However, ABP isolation from natural resources can be tedious without consistent yield. Moreover, many natural ABPs are not developed for clinical application due to potential toxicity to mammalian cells. Therefore, the objective of this study was to develop a potent ABP with minimal toxicity via phage display selection followed by computer-assisted modification. Briefly, a 12-mer phage-displayed peptide library was used to isolate peptides that bound to the cell surface of Pseudomonas aeruginosa with high affinity. The affinity-selected peptide with the highest selection frequency was modified to PAM-5 (KWKWRPLKRKLVLRM) with enhanced antibacterial features by using an online peptide database. Using in vitro microbroth dilution assay, PAM-5 was shown to be active against a panel of Gram-negative bacteria and selected Gram-positive bacteria. Interestingly, the peptide was stable in human plasma by exhibiting a similar bactericidal effect via ex vivo assay. Scanning electron microscopy and SYTOX Green uptake assay revealed that PAM-5 was able to cause membrane disruption and permeabilization of the bacteria. Additionally, the peptide was also able to bind to bacterial DNA as demonstrated by gel retardation assay. In the time-kill assay, PAM-5 was shown to kill the bacteria rapidly in 10 min. More importantly, PAM-5 was non-cytotoxic to Vero cells and non-haemolytic to human erythrocytes at all concentrations tested for the antibacterial assays. Thus, this study showed that the combination of phage display screening and computer-assisted modification could be used to develop potent novel ABPs, and PAM-5 derived from these approaches is worth to be further elucidated for its potential clinical use.
Collapse
|
10
|
Ghaly G, Tallima H, Dabbish E, Badr ElDin N, Abd El-Rahman MK, Ibrahim MAA, Shoeib T. Anti-Cancer Peptides: Status and Future Prospects. Molecules 2023; 28:molecules28031148. [PMID: 36770815 PMCID: PMC9920184 DOI: 10.3390/molecules28031148] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The dramatic rise in cancer incidence, alongside treatment deficiencies, has elevated cancer to the second-leading cause of death globally. The increasing morbidity and mortality of this disease can be traced back to a number of causes, including treatment-related side effects, drug resistance, inadequate curative treatment and tumor relapse. Recently, anti-cancer bioactive peptides (ACPs) have emerged as a potential therapeutic choice within the pharmaceutical arsenal due to their high penetration, specificity and fewer side effects. In this contribution, we present a general overview of the literature concerning the conformational structures, modes of action and membrane interaction mechanisms of ACPs, as well as provide recent examples of their successful employment as targeting ligands in cancer treatment. The use of ACPs as a diagnostic tool is summarized, and their advantages in these applications are highlighted. This review expounds on the main approaches for peptide synthesis along with their reconstruction and modification needed to enhance their therapeutic effect. Computational approaches that could predict therapeutic efficacy and suggest ACP candidates for experimental studies are discussed. Future research prospects in this rapidly expanding area are also offered.
Collapse
Affiliation(s)
- Gehane Ghaly
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Hatem Tallima
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Eslam Dabbish
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Norhan Badr ElDin
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
| | - Mohamed K. Abd El-Rahman
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
- Correspondence:
| |
Collapse
|
11
|
Dias SA, Pinto SN, Silva-Herdade AS, Cheneval O, Craik DJ, Coutinho A, Castanho MARB, Henriques ST, Veiga AS. A designed cyclic analogue of gomesin has potent activity against Staphylococcus aureus biofilms. J Antimicrob Chemother 2022; 77:3256-3264. [PMID: 36171717 DOI: 10.1093/jac/dkac309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Infections caused by bacterial biofilms are very difficult to treat. The use of currently approved antibiotics even at high dosages often fails, making the treatment of these infections very challenging. Novel antimicrobial agents that use distinct mechanisms of action are urgently needed. OBJECTIVES To explore the use of [G1K,K8R]cGm, a designed cyclic analogue of the antimicrobial peptide gomesin, as an alternative approach to treat biofilm infections. METHODS We studied the activity of [G1K,K8R]cGm against biofilms of Staphylococcus aureus, a pathogen associated with several biofilm-related infections. A combination of atomic force and real-time confocal laser scanning microscopies was used to study the mechanism of action of the peptide. RESULTS The peptide demonstrated potent activity against 24 h-preformed biofilms through a concentration-dependent ability to kill biofilm-embedded cells. Mechanistic studies showed that [G1K,K8R]cGm causes morphological changes on bacterial cells and permeabilizes their membranes across the biofilm with a half-time of 65 min. We also tested an analogue of [G1K,K8R]cGm without disulphide bonds, and a linear unfolded analogue, and found both to be inactive. CONCLUSIONS The results suggest that the 3D structure of [G1K,K8R]cGm and its stabilization by disulphide bonds are essential for its antibacterial and antibiofilm activities. Moreover, our findings support the potential application of this stable cyclic antimicrobial peptide to fight bacterial biofilms.
Collapse
Affiliation(s)
- Susana A Dias
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz 1649-028 Lisboa, Portugal
| | - Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana S Silva-Herdade
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz 1649-028 Lisboa, Portugal
| | - Olivier Cheneval
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072 Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072 Australia
| | - Ana Coutinho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016 Lisboa, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz 1649-028 Lisboa, Portugal
| | - Sónia T Henriques
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072 Australia.,School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Brisbane, QLD, 4102 Australia
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz 1649-028 Lisboa, Portugal
| |
Collapse
|
12
|
Oliveira FD, Cavaco M, Figueira TN, Valle J, Neves V, Andreu D, Gaspar D, Castanho MARB. The antimetastatic breast cancer activity of the viral protein-derived peptide vCPP2319 as revealed by cellular biomechanics. FEBS J 2022; 289:1603-1624. [PMID: 34679257 PMCID: PMC9298314 DOI: 10.1111/febs.16247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 09/15/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
The incidence of metastatic breast cancer (MBC) is increasing and the therapeutic arsenal available to fight it is insufficient. Brain metastases, in particular, represent a major challenge for chemotherapy as the impermeable nature of the blood-brain barrier (BBB) prevents most drugs from targeting cells in the brain. For their ability to transpose biological membranes and transport a broad spectrum of bioactive cargoes, cell-penetrating peptides (CPPs) have been hailed as ideal candidates to deliver drugs across biological barriers. A more ambitious approach is to have the CPP as a drug itself, capable of both killing cancer cells and interacting with the blood/brain interface, therefore blocking the onset of brain metastases. vCPP2319, a viral protein-derived CPP, has both properties as it: (a) is selective toward human breast cancer cells (MDA-MB-231) and increases cell stiffness compared to breast epithelial cells (MCF 10A) hindering the progression of metastases; and (b) adsorbs at the surface of human brain endothelial cells potentially counteracting metastatic cells from reaching the brain. Overall, the results reveal the selective anticancer activity of the peptide vCPP2319, which is also able to reside at the blood-brain interface, therefore counteracting brain penetration by metastatic cancer cells.
Collapse
Affiliation(s)
- Filipa D. Oliveira
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaPortugal
| | - Marco Cavaco
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaPortugal
| | - Tiago N. Figueira
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaPortugal
| | - Javier Valle
- Department of Experimental and Health SciencesBarcelona Biomedical Research ParkPompeu Fabra UniversityBarcelonaSpain
| | - Vera Neves
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaPortugal
| | - David Andreu
- Department of Experimental and Health SciencesBarcelona Biomedical Research ParkPompeu Fabra UniversityBarcelonaSpain
| | - Diana Gaspar
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaPortugal
| | | |
Collapse
|
13
|
Gouveia A, Pinto D, Veiga H, Antunes W, Pinho MG, São-José C. Synthetic antimicrobial peptides as enhancers of the bacteriolytic action of staphylococcal phage endolysins. Sci Rep 2022; 12:1245. [PMID: 35075218 PMCID: PMC8786859 DOI: 10.1038/s41598-022-05361-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/10/2022] [Indexed: 01/09/2023] Open
Abstract
Bacteriophage endolysins degrade the bacterial cell wall and are therefore considered promising antimicrobial alternatives to fight pathogens resistant to conventional antibiotics. Gram-positive bacteria are usually considered easy targets to exogenously added endolysins, since their cell walls are not shielded by an outer membrane. However, in nutrient rich environments these bacteria can also tolerate endolysin attack if they keep an energized cytoplasmic membrane. Hence, we have hypothesized that the membrane depolarizing action of antimicrobial peptides (AMPs), another attractive class of alternative antibacterials, could be explored to overcome bacterial tolerance to endolysins and consequently improve their antibacterial potential. Accordingly, we show that under conditions supporting bacterial growth, Staphylococcus aureus becomes much more susceptible to the bacteriolytic action of endolysins if an AMP is also present. The bactericidal gain resulting from the AMP/endolysin combined action ranged from 1 to 3 logs for different S. aureus strains, which included drug-resistant clinical isolates. In presence of an AMP, as with a reduced content of cell wall teichoic acids, higher endolysin binding to cells is observed. However, our results indicate that this higher endolysin binding alone does not fully explain the higher susceptibility of S. aureus to lysis in these conditions. Other factors possibly contributing to the increased endolysin susceptibility in presence of an AMP are discussed.
Collapse
Affiliation(s)
- Ana Gouveia
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Daniela Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Helena Veiga
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Républica, 2780-157, Oeiras, Portugal
| | - Wilson Antunes
- Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Instituto Universitário Militar, Centro de Investigação da Academia Militar (CINAMIL), Av. Dr. Alfredo Bensaúde, 1849-012, Lisbon, Portugal
| | - Mariana G Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Républica, 2780-157, Oeiras, Portugal
| | - Carlos São-José
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
14
|
Sadiq IZ, Muhammad A, Mada SB, Ibrahim B, Umar UA. Biotherapeutic effect of cell-penetrating peptides against microbial agents: a review. Tissue Barriers 2021; 10:1995285. [PMID: 34694961 DOI: 10.1080/21688370.2021.1995285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Selective permeability of biological membranes represents a significant barrier to the delivery of therapeutic substances into both microorganisms and mammalian cells, restricting the access of drugs into intracellular pathogens. Cell-penetrating peptides usually 5-30 amino acids with the characteristic ability to penetrate biological membranes have emerged as promising antimicrobial agents for treating infections as well as an effective delivery modality for biological conjugates such as nucleic acids, drugs, vaccines, nanoparticles, and therapeutic antibodies. However, several factors such as antimicrobial resistance and poor drug delivery of the existing medications justify the urgent need for developing a new class of antimicrobials. Herein, we review cell-penetrating peptides (CPPs) used to treat microbial infections. Although these peptides are biologically active for infections, effective transduction into membranes and cargo transport, serum stability, and half-life must be improved for optimum functions and development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Sanusi Bello Mada
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Bashiru Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Umar Aliyu Umar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
15
|
Liu Y, She P, Xu L, Chen L, Li Y, Liu S, Li Z, Hussain Z, Wu Y. Antimicrobial, Antibiofilm, and Anti-persister Activities of Penfluridol Against Staphylococcus aureus. Front Microbiol 2021; 12:727692. [PMID: 34489917 PMCID: PMC8418195 DOI: 10.3389/fmicb.2021.727692] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus has increasingly attracted global attention as a major opportunistic human pathogen owing to the emergence of biofilms (BFs) and persisters that are known to increase its antibiotic resistance. However, there are still no effective antimicrobial agents in clinical settings. This study investigated the antimicrobial activity of penfluridol (PF), a long-acting antipsychotic drug, against S. aureus and its clinical isolates via drug repurposing. PF exhibited strong bactericidal activity against S. aureus, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 4–8 and 16–32 μg/ml, respectively. PF could significantly inhibit biofilm formation and eradicate 24 h preformed biofilms of S. aureus in a dose-dependent manner. Furthermore, PF could effectively kill methicillin-resistant S. aureus (MRSA) persister cells and demonstrated considerable efficacy in a mouse model of subcutaneous abscess, skin wound infection, and acute peritonitis caused by MRSA. Notably, PF exerted almost no hemolysis activity on human erythrocytes, with limited cytotoxicity and low tendency to cause resistance. Additionally, PF induced bacterial membrane permeability and ATP release and further caused membrane disruption, which may be the underlying antibacterial mechanism of PF. In summary, our findings suggest that PF has the potential to serve as a novel antimicrobial agent against S. aureus biofilm- or persister-related infections.
Collapse
Affiliation(s)
- Yaqian Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lanlan Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Chen
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zubair Hussain
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Hejtmánková A, Váňová J, Španielová H. Cell-penetrating peptides in the intracellular delivery of viral nanoparticles. VITAMINS AND HORMONES 2021; 117:47-76. [PMID: 34420585 DOI: 10.1016/bs.vh.2021.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-penetrating peptides (CPPs) are a promising tool for the intracellular delivery of cargo. Due to their ability to cross membranes while also cotransporting various cargoes, they offer great potential for biomedical applications. Several CPPs have been derived from viral proteins with natural roles in the viral replication cycle that require them to breach or fuse to cellular membranes. Additionally, the ability of viruses to cross membranes makes viruses and virus-based particles a convenient model for research on nanoparticle delivery and nanoparticle-mediated gene therapy. In this chapter, we aim to characterize CPPs derived from both structural and nonstructural viral proteins. Their function as enhancers of viral infection and transduction by viral nanoparticles as well as the main features of viral CPPs employed in intracellular cargo delivery are summarized to emphasize their potential use in nanomedicine.
Collapse
Affiliation(s)
- Alžběta Hejtmánková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Váňová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hana Španielová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry of the CAS, Prague, Czech Republic.
| |
Collapse
|
17
|
Pirtskhalava M, Vishnepolsky B, Grigolava M, Managadze G. Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane. Pharmaceuticals (Basel) 2021; 14:471. [PMID: 34067510 PMCID: PMC8156082 DOI: 10.3390/ph14050471] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are anti-infectives that have the potential to be used as a novel and untapped class of biotherapeutics. Modes of action of antimicrobial peptides include interaction with the cell envelope (cell wall, outer- and inner-membrane). A comprehensive understanding of the peculiarities of interaction of antimicrobial peptides with the cell envelope is necessary to perform a rational design of new biotherapeutics, against which working out resistance is hard for microbes. In order to enable de novo design with low cost and high throughput, in silico predictive models have to be invoked. To develop an efficient predictive model, a comprehensive understanding of the sequence-to-function relationship is required. This knowledge will allow us to encode amino acid sequences expressively and to adequately choose the accurate AMP classifier. A shared protective layer of microbial cells is the inner, plasmatic membrane. The interaction of AMP with a biological membrane (native and/or artificial) has been comprehensively studied. We provide a review of mechanisms and results of interactions of AMP with the cell membrane, relying on the survey of physicochemical, aggregative, and structural features of AMPs. The potency and mechanism of AMP action are presented in terms of amino acid compositions and distributions of the polar and apolar residues along the chain, that is, in terms of the physicochemical features of peptides such as hydrophobicity, hydrophilicity, and amphiphilicity. The survey of current data highlights topics that should be taken into account to come up with a comprehensive explanation of the mechanisms of action of AMP and to uncover the physicochemical faces of peptides, essential to perform their function. Many different approaches have been used to classify AMPs, including machine learning. The survey of knowledge on sequences, structures, and modes of actions of AMP allows concluding that only possessing comprehensive information on physicochemical features of AMPs enables us to develop accurate classifiers and create effective methods of prediction. Consequently, this knowledge is necessary for the development of design tools for peptide-based antibiotics.
Collapse
Affiliation(s)
- Malak Pirtskhalava
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi 0160, Georgia; (B.V.); (M.G.); (G.M.)
| | | | | | | |
Collapse
|
18
|
Felício MR, Silveira GGOS, Oshiro KGN, Meneguetti BT, Franco OL, Santos NC, Gonçalves S. Polyalanine peptide variations may have different mechanisms of action against multidrug-resistant bacterial pathogens. J Antimicrob Chemother 2021; 76:1174-1186. [PMID: 33501992 DOI: 10.1093/jac/dkaa560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/15/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The number of bacterial pathogens resistant to the currently available antibiotics has dramatically increased, with antimicrobial peptides (AMPs) being among the most promising potential new drugs. In this study, the applicability and mechanisms of action of Pa-MAP 2 and Pa-MAP 1.9, two AMPs synthetically designed based on a natural AMP template, were evaluated. METHODS Pa-MAP 2 and Pa-MAP 1.9 were tested against a clinically isolated multidrug-resistant (MDR) Escherichia coli strain. Biophysical approaches were used to evaluate the preference of both peptides for specific lipid membranes, and bacterial surface changes imaged by atomic force microscopy (AFM). The efficacy of both peptides was assessed both in vitro and in vivo. RESULTS Experimental results showed that both peptides have antimicrobial activity against the E. coli MDR strain. Zeta potential and surface plasmon resonance assays showed that they interact extensively with negatively charged membranes, changing from a random coil structure, when free in solution, to an α-helical structure after membrane interaction. The antibacterial efficacy was evaluated in vitro, by several techniques, and in vivo, using a wound infection model, showing a concentration-dependent antibacterial effect. Different membrane properties were evaluated to understand the mechanism underlying peptide action, showing that both promote destabilization of the bacterial surface, as imaged by AFM, and change properties such as membrane surface and dipole potential. CONCLUSIONS Despite their similarity, data indicate that the mechanisms of action of the peptides are different, with Pa-MAP 1.9 being more effective than Pa-MAP 2. These results highlight their potential use as antimicrobial agents against MDR bacteria.
Collapse
Affiliation(s)
- Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Gislaine G O S Silveira
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
| | - Beatriz T Meneguetti
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
19
|
Benfield AH, Henriques ST. Mode-of-Action of Antimicrobial Peptides: Membrane Disruption vs. Intracellular Mechanisms. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:610997. [PMID: 35047892 PMCID: PMC8757789 DOI: 10.3389/fmedt.2020.610997] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022] Open
Abstract
Antimicrobial peptides are an attractive alternative to traditional antibiotics, due to their physicochemical properties, activity toward a broad spectrum of bacteria, and mode-of-actions distinct from those used by current antibiotics. In general, antimicrobial peptides kill bacteria by either disrupting their membrane, or by entering inside bacterial cells to interact with intracellular components. Characterization of their mode-of-action is essential to improve their activity, avoid resistance in bacterial pathogens, and accelerate their use as therapeutics. Here we review experimental biophysical tools that can be employed with model membranes and bacterial cells to characterize the mode-of-action of antimicrobial peptides.
Collapse
|
20
|
Cavaco M, Pérez-Peinado C, Valle J, Silva RDM, Correia JDG, Andreu D, Castanho MARB, Neves V. To What Extent Do Fluorophores Bias the Biological Activity of Peptides? A Practical Approach Using Membrane-Active Peptides as Models. Front Bioeng Biotechnol 2020; 8:552035. [PMID: 33015016 PMCID: PMC7509492 DOI: 10.3389/fbioe.2020.552035] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/18/2020] [Indexed: 12/25/2022] Open
Abstract
The characterization of biologically active peptides relies heavily on the study of their efficacy, toxicity, mechanism of action, cellular uptake, or intracellular location, using both in vitro and in vivo studies. These studies frequently depend on the use of fluorescence-based techniques. Since most peptides are not intrinsically fluorescent, they are conjugated to a fluorophore. The conjugation may interfere with peptide properties, thus biasing the results. The selection of the most suitable fluorophore is highly relevant. Here, a comprehensive study with blood-brain barrier (BBB) peptide shuttles (PepH3 and PepNeg) and antimicrobial peptides (AMPs) (vCPP2319 and Ctn[15-34]), tested as anticancer peptides (ACPs), having different fluorophores, namely 5(6)-carboxyfluorescein (CF), rhodamine B (RhB), quasar 570 (Q570), or tide fluor 3 (TF3) attached is presented. The goal is the evaluation of the impact of the selected fluorophores on peptide performance, applying routinely used techniques to assess cytotoxicity/toxicity, secondary structure, BBB translocation, and cellular internalization. Our results show that some fluorophores significantly modulate peptide activity when compared with unlabeled peptides, being more noticeable in hydrophobic and charged fluorophores. This study highlights the need for a careful experimental design for fluorescently labeled molecules, such as peptides.
Collapse
Affiliation(s)
- Marco Cavaco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Clara Pérez-Peinado
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Javier Valle
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Rúben D. M. Silva
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - David Andreu
- Proteomics and Protein Chemistry Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Hammond K, Ryadnov MG, Hoogenboom BW. Atomic force microscopy to elucidate how peptides disrupt membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183447. [PMID: 32835656 DOI: 10.1016/j.bbamem.2020.183447] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
Abstract
Atomic force microscopy is an increasingly attractive tool to study how peptides disrupt membranes. Often performed on reconstituted lipid bilayers, it provides access to time and length scales that allow dynamic investigations with nanometre resolution. Over the last decade, AFM studies have enabled visualisation of membrane disruption mechanisms by antimicrobial or host defence peptides, including peptides that target malignant cells and biofilms. Moreover, the emergence of high-speed modalities of the technique broadens the scope of investigations to antimicrobial kinetics as well as the imaging of peptide action on live cells in real time. This review describes how methodological advances in AFM facilitate new insights into membrane disruption mechanisms.
Collapse
Affiliation(s)
- Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; Department of Physics, King's College London, Strand Lane, London WC2R 2LS, UK.
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Physics & Astronomy, University College London, London WC1E 6BT, UK.
| |
Collapse
|
22
|
Pinto SN, Dias SA, Cruz AF, Mil-Homens D, Fernandes F, Valle J, Andreu D, Prieto M, Castanho MARB, Coutinho A, Veiga AS. The mechanism of action of pepR, a viral-derived peptide, against Staphylococcus aureus biofilms. J Antimicrob Chemother 2020; 74:2617-2625. [PMID: 31127270 PMCID: PMC6736180 DOI: 10.1093/jac/dkz223] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/06/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To investigate the mechanism of action at the molecular level of pepR, a multifunctional peptide derived from the Dengue virus capsid protein, against Staphylococcus aureus biofilms. METHODS Biofilm mass, metabolic activity and viability were quantified using conventional microbiology techniques, while fluorescence imaging methods, including a real-time calcein release assay, were employed to investigate the kinetics of pepR activity at different biofilm depths. RESULTS Using flow cytometry-based assays, we showed that pepR is able to prevent staphylococcal biofilm formation due to a fast killing of planktonic bacteria, which in turn resulted from a peptide-induced increase in the permeability of the bacterial membranes. The activity of pepR against pre-formed biofilms was evaluated through the application of a quantitative live/dead confocal laser scanning microscopy (CLSM) assay. The results show that the bactericidal activity of pepR on pre-formed biofilms is dose and depth dependent. A CLSM-based assay of calcein release from biofilm-embedded bacteria was further developed to indirectly assess the diffusion and membrane permeabilization properties of pepR throughout the biofilm. A slower diffusion and delayed activity of the peptide at deeper layers of the biofilm were quantified. CONCLUSIONS Overall, our results show that the activity of pepR on pre-formed biofilms is controlled by its diffusion along the biofilm layers, an effect that can be counteracted by an additional administration of peptide. Our study sheds new light on the antibiofilm mechanism of action of antimicrobial peptides, particularly the importance of their diffusion properties through the biofilm matrix on their activity.
Collapse
Affiliation(s)
- Sandra N Pinto
- Centro de Química-Física Molecular e IN, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais Lisboa, Portugal.,iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais Lisboa, Portugal
| | - Susana A Dias
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa, Portugal
| | - Ana F Cruz
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa, Portugal
| | - Dalila Mil-Homens
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais Lisboa, Portugal
| | - Fabio Fernandes
- Centro de Química-Física Molecular e IN, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais Lisboa, Portugal.,iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais Lisboa, Portugal
| | - Javier Valle
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Manuel Prieto
- Centro de Química-Física Molecular e IN, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais Lisboa, Portugal.,iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais Lisboa, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa, Portugal
| | - Ana Coutinho
- Centro de Química-Física Molecular e IN, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais Lisboa, Portugal.,iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande Lisboa, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa, Portugal
| |
Collapse
|
23
|
Aroeira RI, A R B Castanho M. Can citation metrics predict the true impact of scientific papers? FEBS J 2020; 287:2440-2448. [PMID: 32162466 DOI: 10.1111/febs.15255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/20/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
Bibliometric quantification is frequently used as metrics for the evaluation of the scientific performance of researchers and institutions. The researchers' merit is usually assessed by the analysis of quantitative parameters such as the number of publications, the impact factor of journals, the total number of citations, or the h-index, although the limitations in translating these indicators into the impact of the outcome of scientific production are a matter of harsh criticism. To assess, based on factual evidences, the validity of traditional bibliometric analyses to conclude on the impact of papers to advance the state of the art, we carried out an innovative methodology on selected publications (test set). This methodology is based on identifying those citations of the test set papers that truly embed the methods, concepts, or hypotheses to build new knowledge and formulate conclusions. The results show that the percentage of citations that reflect the real impact of the papers of the test set has an average value of 12.4% of total citations and is not related to the impact factor of the journal where the test set papers were published. In conclusion, our analysis demonstrates factually, using experimental data, the total failure of using quantitative bulk citation analyses to conclude on the scientific impact of publications. Only a careful analysis of how the work described in papers was embedded on the subsequent work and/or conclusions of others can tell about the real contribution of a published work to the development of new knowledge and advancement of science.
Collapse
Affiliation(s)
- Rita I Aroeira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Portugal
| |
Collapse
|
24
|
Islam MN, Aksu B, Güncü M, Gallei M, Tulu M, Eren T. Amphiphilic water soluble cationic ring opening metathesis copolymer as an antibacterial agent. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Muhammad Nazrul Islam
- Faculty of Science and Arts, Department of ChemistryYildiz Technical University Esenler, Istanbul Turkey
| | - Burak Aksu
- Faculty of Medicine, Department of Medical MicrobiologyMarmara University Maltepe, Istanbul Turkey
| | - Mehmet Güncü
- Faculty of Medicine, Department of Medical MicrobiologyMarmara University Maltepe, Istanbul Turkey
| | - Markus Gallei
- Department of Organic and Macromolecular ChemistrySaarland University Saarbrucken Germany
| | - Metin Tulu
- Faculty of Science and Arts, Department of ChemistryYildiz Technical University Esenler, Istanbul Turkey
| | - Tarik Eren
- Faculty of Science and Arts, Department of ChemistryYildiz Technical University Esenler, Istanbul Turkey
| |
Collapse
|
25
|
She P, Li S, Zhou L, Luo Z, Liao J, Xu L, Zeng X, Chen T, Liu Y, Wu Y. Insights into idarubicin antimicrobial activity against methicillin-resistant Staphylococcus aureus. Virulence 2020; 11:636-651. [PMID: 32423280 PMCID: PMC7549941 DOI: 10.1080/21505594.2020.1770493] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/02/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND MRSA is a major concern in community settings and in health care. The emergence of biofilms and persister cells substantially increases its antimicrobial resistance. It is very urgent to develop new antimicrobials to solve this problem. OBJECTIVE Idarubicin was profiled to assess its antimicrobial effects in vitro and in vivo, and the underlying mechanisms. METHODS We investigated the antimicrobial effects of idarubicin against MRSA by time-kill analysis. The antibiofilm efficacy of idarubicin was assessed by crystal violet and XTT staining, followed by laser confocal microscopy observation. The mechanisms underlying the antimicrobial effects were studied by transmission electron microscopy, all-atom molecular dynamic simulations, SYTOX staining, surface plasma resonance, and DNA gyrase inhibition assay. Further, we addressed the antimicrobial efficacy in wound and subcutaneous abscess infection in vivo. RESULTS Idarubicin kills MRSA cells by disrupting the lipid bilayers and interrupting the DNA topoisomerase IIA subunits, and idarubicin shows synergistic antimicrobial effects with fosfomycin. Through synergy with a single dose treatment fosfomycin and the addition of the cell protector amifostine, the cytotoxicity and cardiotoxicity of idarubicin were significantly reduced without affecting its antimicrobial effects. Idarubicin alone or in combination with fosfomycin exhibited considerable efficacy in a subcutaneous abscess mouse model of MRSA infection. In addition, idarubicin also showed a low probability of causing resistance and good postantibiotic effects. CONCLUSIONS Idarubicin and its analogs have the potential to become a new class of antimicrobials for the treatment of MRSA-related infections.
Collapse
Affiliation(s)
- Pengfei She
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, R.P. China
| | - Shijia Li
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, R.P. China
| | - Linying Zhou
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, R.P. China
| | - Zhen Luo
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, R.P. China
| | - Jinfeng Liao
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, R.P. China
| | - Lanlan Xu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, R.P. China
| | - Xianghai Zeng
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, R.P. China
| | - Ti Chen
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, R.P. China
| | - Yaqian Liu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, R.P. China
| | - Yong Wu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, R.P. China
| |
Collapse
|
26
|
Synthesis of PEGylated methotrexate conjugated with a novel CPP6, in sillico structural insights and activity in MCF-7 cells. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Shwaiki LN, Arendt EK, Lynch KM, Thery TLC. Inhibitory effect of four novel synthetic peptides on food spoilage yeasts. Int J Food Microbiol 2019; 300:43-52. [PMID: 31035250 DOI: 10.1016/j.ijfoodmicro.2019.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/31/2022]
Abstract
The spoilage of foods caused by the growth of undesirable yeast species is a problem in the food industry. Yeast species such as Zygosaccharomyces bailii, Zygosaccharomyces rouxii, Debaryomyces hansenii, Kluyveromyces lactis and Saccharomyces cerevisiae have been encountered in foods such as high sugar products, fruit juices, wine, mayonnaise, chocolate and soft drinks. The demand for new methods of preservations has increased because of the negative association attached to chemical preservatives. The sequence of a novel short peptide (KKFFRAWWAPRFLK-NH2) was modified to generate three versions of this original peptide. These peptides were tested for the inhibition of the yeasts mentioned above, allowing for the better understanding of their residue modifications. The range of the minimum inhibitory concentration was between 25 and 200 μg/mL. Zygosaccharomyces bailii was the most sensitive strain to the peptides, while Zygosaccharomyces rouxii was the most resistant. Membrane permeabilisation was found to be responsible for yeast inhibition at a level which was a two-fold increase of the MIC (400 μg/mL). The possibility of the production of reactive oxygen species was also assessed but was not recognised as a factor involved for the peptides' mode of action. Their stability in different environments was also tested, focusing on high salt, pH and thermal stability. The newly designed peptides showed good antifungal activity against some common food spoilage yeasts and has been proven effective in the application in Fanta Orange. These efficient novel peptides represent a new source of food preservation that can be used as an alternative for current controversial preservatives used in the food industry.
Collapse
Affiliation(s)
- Laila N Shwaiki
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Kieran M Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Thibaut L C Thery
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
28
|
Gull S, Shamim N, Minhas F. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides. Comput Biol Med 2019; 107:172-181. [DOI: 10.1016/j.compbiomed.2019.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
|
29
|
Huynh E, Akhtar N, Li J. Efficient Production of Recombinant Protegrin-1 From Pichia pastoris, and Its Antimicrobial and in vitro Cell Migration Activity. Front Microbiol 2018; 9:2300. [PMID: 30319593 PMCID: PMC6170612 DOI: 10.3389/fmicb.2018.02300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 09/10/2018] [Indexed: 01/08/2023] Open
Abstract
Protegrin (PG) belongs to the antimicrobial peptide cathelicidin family. To date, five protegrin sequences have been identified in pigs, PG-1 to PG-5. Of these, PG-1 exhibits potent antimicrobial activity against a broad range of antibiotic-resistant microorganisms as well as viruses. However, the other potential role(s) of PG beyond antimicrobial has largely been unexplored. The aim of this study was to use nonpathogenic yeast Pichia pastoris to express antimicrobially active recombinant protegrin (rPG-1). Additionally, the effect of PG-1 on cell migration and proliferation was also examined in vitro using pig intestinal epithelial cells as a model. Highest level of rPG-1 (104 ± 11 μg/mL) was detected at 24 h in fermentation culture medium. Similar to rPG-1, 0.8 ± 0.10 g/L of proform PG-1 (rProPG-1) and 0.2 ± 0.02 g/L of the PG-1 cathelin domain (rCath) was detected in fermentation culture medium. Resulting recombinant PG-1 and cleaved rProPG-1 exerted antimicrobial activity against Escherichia coli DH5α at the same level as chemically synthesized PG-1. Enhanced cell migration was observed (p < 0.05) in groups treated with rProPG-1, rCath, and rPG-1 compared to the control. Furthermore, rPG-1 was stable at temperatures ranging from 25°C to 80°C. In summary, biologically active recombinant protegrin in its pro-, cathelin-, and mature- forms were successfully expressed in P. pastoris suggesting potential feasibility for future therapeutic applications.
Collapse
Affiliation(s)
- Evanna Huynh
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
30
|
Carvalho PM, Felício MR, Santos NC, Gonçalves S, Domingues MM. Application of Light Scattering Techniques to Nanoparticle Characterization and Development. Front Chem 2018; 6:237. [PMID: 29988578 PMCID: PMC6026678 DOI: 10.3389/fchem.2018.00237] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
Over the years, the scientific importance of nanoparticles for biomedical applications has increased. The high stability and biocompatibility, together with the low toxicity of the nanoparticles developed lead to their use as targeted drug delivery systems, bioimaging systems, and biosensors. The wide range of nanoparticles size, from 10 nm to 1 μm, as well as their optical properties, allow them to be studied using microscopy and spectroscopy techniques. In order to be effectively used, the physicochemical properties of nanoparticle formulations need to be taken into account, namely, particle size, surface charge distribution, surface derivatization and/or loading capacity, and related interactions. These properties need to be optimized considering the final nanoparticle intended biodistribution and target. In this review, we cover light scattering based techniques, namely dynamic light scattering and zeta-potential, used for the physicochemical characterization of nanoparticles. Dynamic light scattering is used to measure nanoparticles size, but also to evaluate their stability over time in suspension, at different pH and temperature conditions. Zeta-potential is used to characterize nanoparticles surface charge, obtaining information about their stability and surface interaction with other molecules. In this review, we focus on nanoparticle characterization and application in infection, cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Patrícia M Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marco M Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
31
|
Gomes B, Augusto MT, Felício MR, Hollmann A, Franco OL, Gonçalves S, Santos NC. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv 2018; 36:415-429. [PMID: 29330093 DOI: 10.1016/j.biotechadv.2018.01.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/13/2017] [Accepted: 01/06/2018] [Indexed: 12/25/2022]
Abstract
Infectious diseases are one of the main causes of human morbidity and mortality. In the last few decades, pathogenic microorganisms' resistance to conventional drugs has been increasing, and it is now pinpointed as a major worldwide health concern. The need to search for new therapeutic options, as well as improved treatment outcomes, has therefore increased significantly, with biologically active peptides representing a new alternative. A substantial research effort is being dedicated towards their development, especially due to improved biocompatibility and target selectivity. However, the inherent limitations of peptide drugs are restricting their application. In this review, we summarize the current status of peptide drug development, focusing on antiviral and antimicrobial peptide activities, highlighting the design improvements needed, and those already being used, to overcome the drawbacks of the therapeutic application of biologically active peptides.
Collapse
Affiliation(s)
- Bárbara Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marcelo T Augusto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Axel Hollmann
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires, Argentina; Laboratory of Biointerfaces and Biomimetic Systems, CITSE, National University of Santiago del Estero-CONICET, Santiago del Estero, Argentina
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
32
|
Pérez-Peinado C, Dias SA, Domingues MM, Benfield AH, Freire JM, Rádis-Baptista G, Gaspar D, Castanho MARB, Craik DJ, Henriques ST, Veiga AS, Andreu D. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15-34), antimicrobial peptides from rattlesnake venom. J Biol Chem 2017; 293:1536-1549. [PMID: 29255091 DOI: 10.1074/jbc.ra117.000125] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Crotalicidin (Ctn), a cathelicidin-related peptide from the venom of a South American rattlesnake, possesses potent antimicrobial, antitumor, and antifungal properties. Previously, we have shown that its C-terminal fragment, Ctn(15-34), retains the antimicrobial and antitumor activities but is less toxic to healthy cells and has improved serum stability. Here, we investigated the mechanisms of action of Ctn and Ctn(15-34) against Gram-negative bacteria. Both peptides were bactericidal, killing ∼90% of Escherichia coli and Pseudomonas aeruginosa cells within 90-120 and 5-30 min, respectively. Studies of ζ potential at the bacterial cell membrane suggested that both peptides accumulate at and neutralize negative charges on the bacterial surface. Flow cytometry experiments confirmed that both peptides permeabilize the bacterial cell membrane but suggested slightly different mechanisms of action. Ctn(15-34) permeabilized the membrane immediately upon addition to the cells, whereas Ctn had a lag phase before inducing membrane damage and exhibited more complex cell-killing activity, probably because of two different modes of membrane permeabilization. Using surface plasmon resonance and leakage assays with model vesicles, we confirmed that Ctn(15-34) binds to and disrupts lipid membranes and also observed that Ctn(15-34) has a preference for vesicles that mimic bacterial or tumor cell membranes. Atomic force microscopy visualized the effect of these peptides on bacterial cells, and confocal microscopy confirmed their localization on the bacterial surface. Our studies shed light onto the antimicrobial mechanisms of Ctn and Ctn(15-34), suggesting Ctn(15-34) as a promising lead for development as an antibacterial/antitumor agent.
Collapse
Affiliation(s)
- Clara Pérez-Peinado
- From the Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Susana Almeida Dias
- the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Marco M Domingues
- the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Aurélie H Benfield
- the Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - João Miguel Freire
- the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.,the Department of Virology, Institut Pasteur, 75724 Paris, France, and
| | - Gandhi Rádis-Baptista
- From the Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.,the Laboratory of Biochemistry and Biotechnology, Institute for Marine Science, Federal University of Ceará, 60165-081 Fortaleza, CE, Brazil
| | - Diana Gaspar
- the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Miguel A R B Castanho
- the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - David J Craik
- the Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Sónia Troeira Henriques
- the Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia,
| | - Ana Salomé Veiga
- the Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal,
| | - David Andreu
- From the Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, 08003 Barcelona, Spain,
| |
Collapse
|
33
|
Breach: Host Membrane Penetration and Entry by Nonenveloped Viruses. Trends Microbiol 2017; 26:525-537. [PMID: 29079499 DOI: 10.1016/j.tim.2017.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 11/22/2022]
Abstract
Disruption of host membranes by nonenveloped viruses, which allows the nucleocapsid or genome to enter the cytosol, is a mechanistically diverse process. Although the membrane-penetrating agents are usually small, hydrophobic or amphipathic peptides deployed from the capsid interior during entry, their manner of membrane interaction varies substantially. In this review, we discuss recent data about the molecular pathways for externalization of viral peptides amidst conformational alterations in the capsid, as well as mechanisms of membrane penetration, which is influenced by structural features of the peptides themselves as well as physicochemical properties of membranes, and other host factors. The membrane-penetrating components of nonenveloped viruses constitute an interesting class of cell-penetrating peptides, and may have potential therapeutic value for gene transfer.
Collapse
|