1
|
Vansia R, Smadi M, Phelan J, Wang A, Bilodeau GJ, Pernal SF, Guarna MM, Rott M, Griffiths JS. Viral Diversity in Mixed Tree Fruit Production Systems Determined through Bee-Mediated Pollen Collection. Viruses 2024; 16:1614. [PMID: 39459947 PMCID: PMC11512397 DOI: 10.3390/v16101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Commercially cultivated Prunus species are commonly grown in adjacent or mixed orchards and can be infected with unique or commonly shared viruses. Apple (Malus domestica), another member of the Rosacea and distantly related to Prunus, can share the same growing regions and common pathogens. Pollen can be a major route for virus transmission, and analysis of the pollen virome in tree fruit orchards can provide insights into these virus pathogen complexes from mixed production sites. Commercial honey bee (Apis mellifera) pollination is essential for improved fruit sets and yields in tree fruit production systems. To better understand the pollen-associated virome in tree fruits, metagenomics-based detection of plant viruses was employed on bee and pollen samples collected at four time points during the peak bloom period of apricot, cherry, peach, and apple trees at one orchard site. Twenty-one unique viruses were detected in samples collected during tree fruit blooms, including prune dwarf virus (PDV) and prunus necrotic ringspot virus (PNRSV) (Genus Ilarvirus, family Bromoviridae), Secoviridae family members tomato ringspot virus (genus Nepovirus), tobacco ringspot virus (genus Nepovirus), prunus virus F (genus Fabavirus), and Betaflexiviridae family member cherry virus A (CVA; genus Capillovirus). Viruses were also identified in composite leaf and flower samples to compare the pollen virome with the virome associated with vegetative tissues. At all four time points, a greater diversity of viruses was detected in the bee and pollen samples. Finally, the nucleotide sequence diversity of the coat protein regions of CVA, PDV, and PNRSV was profiled from this site, demonstrating a wide range of sequence diversity in pollen samples from this site. These results demonstrate the benefits of area-wide monitoring through bee pollination activities and provide new insights into the diversity of viruses in tree fruit pollination ecosystems.
Collapse
Affiliation(s)
- Raj Vansia
- Agriculture and Agri-Food Canada, London Research and Development Centre, Vineland Research Station, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Malek Smadi
- Agriculture and Agri-Food Canada, London Research and Development Centre, Vineland Research Station, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada
- Department of Biology, Waterloo University, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - James Phelan
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, 8801 East Saanich Rd, North Saanich, BC V8L 1H3, Canada
| | - Aiming Wang
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St, London, ON N5V 4T3, Canada
| | - Guillaume J. Bilodeau
- Canadian Food Inspection Agency, Ottawa Plant Laboratory, 3851 Fallowfield Rd, Ottawa, ON K2J 4S1, Canada
| | - Stephen F. Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, AB T0H 0C0, Canada
| | - M. Marta Guarna
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, AB T0H 0C0, Canada
| | - Michael Rott
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, 8801 East Saanich Rd, North Saanich, BC V8L 1H3, Canada
| | - Jonathan S. Griffiths
- Agriculture and Agri-Food Canada, London Research and Development Centre, Vineland Research Station, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
2
|
Matić S, Myrta A. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for In-Field Detection of American Plum Line Pattern Virus. Viruses 2024; 16:1572. [PMID: 39459906 PMCID: PMC11512406 DOI: 10.3390/v16101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
American plum line pattern virus (APLPV) is the most infrequently reported Ilarvirus infecting stone fruit trees and is of sufficient severity to be classified as an EPPO quarantine A1 pathogen. In late spring, yellow line pattern symptoms were observed on leaves in a few flowering cherries (Prunus serrulata Lindl.) grown in a public garden in Northwest Italy. RNA extracts from twenty flowering cherries were submitted to Ilarvirus multiplex and APLPV-specific RT-PCR assays already reported or developed in this study. One flowering cherry (T22) with mixed prunus necrotic ringspot virus (PNRSV) and prune dwarf virus (PDV) infection also showed infection with APLPV. Blastn analysis of PCR products of the full coat protein (CP) and movement protein (MP) genes obtained from flowering cherry T22 showed 98.23% and 98.34% nucleotide identity with reference APLPV isolate NC_003453.1 from the USA. Then, a LAMP-specific assay was designed to facilitate the fast and low-cost identification of this virus either in the laboratory or directly in the field. The developed assay allowed not only the confirmation of APLPV (PSer22IT isolate) infection in the T22 flowering cherry but also the identification of APLPV in an asymptomatic flowering cherry tree (TL1). The LAMP assay successfully worked with crude flowering cherry extracts, obtained after manually shaking a single plant extract in the ELISA extraction buffer for 3-5 min. The developed rapid, specific and economic LAMP assay was able to detect APLPV using crude plant extracts rather that RNA preparation in less than 20 min, making it suitable for in-field detection. Moreover, the LAMP assay proved to be more sensitive in APLPV detection in flowering cherry compared to the specific one-step RT-PCR assay. The new LAMP assay will permit the estimation of APLPV geographic spread in the territory, paying particular attention to surrounding gardens and propagated flowering cherries in ornamental nurseries.
Collapse
Affiliation(s)
- Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada delle Cacce 73, 10135 Turin, Italy
| | - Arben Myrta
- Certis Belchim BV, Stadsplateau 16, 3521 AZ Utrecht, The Netherlands;
| |
Collapse
|
3
|
Roy SD, Ramasamy S, Obbineni JM. An evaluation of nucleic acid-based molecular methods for the detection of plant viruses: a systematic review. Virusdisease 2024; 35:357-376. [PMID: 39071869 PMCID: PMC11269559 DOI: 10.1007/s13337-024-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/15/2024] [Indexed: 07/30/2024] Open
Abstract
Precise and timely diagnosis of plant viruses is a prerequisite for the implementation of efficient management strategies, considering factors like globalization of trade and climate change facilitating the spread of viruses that lead to agriculture yield losses of billions yearly worldwide. Symptomatic diagnosis alone may not be reliable due to the diverse symptoms and confusion with plant abiotic stresses. It is crucial to detect plant viruses accurately and reliably and do so with little time. A complete understanding of the various detection methods is necessary to achieve this. Enzyme-linked immunosorbent assay (ELISA), has become more popular as a method for detecting viruses but faces limitations such as antibody availability, cost, sample volume, and time. Advanced techniques like polymerase chain reaction (PCR) have surpassed ELISA with its various sensitive variants. Over the last decade, nucleic acid-based molecular methods have gained popularity and have quickly replaced other techniques, such as serological techniques for detecting plant viruses due to their specificity and accuracy. Hence, this review enables the reader to understand the strengths and weaknesses of each molecular technique starting with PCR and its variations, along with various isothermal amplification followed by DNA microarrays, and next-generation sequencing (NGS). As a result of the development of new technologies, NGS is becoming more and more accessible and cheaper, and it looks possible that this approach will replace others as a favoured approach for carrying out regular diagnosis. NGS is also becoming the method of choice for identifying novel viruses. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00863-0.
Collapse
Affiliation(s)
- Subha Deep Roy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | | | - Jagan M. Obbineni
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
4
|
Smadi M, Lee E, Phelan J, Wang A, Bilodeau GJ, Pernal SF, Guarna MM, Rott M, Griffiths JS. Plant virus diversity in bee and pollen samples from apple ( Malus domestica) and sweet cherry ( Prunus avium) agroecosystems. FRONTIERS IN PLANT SCIENCE 2024; 15:1335281. [PMID: 38444533 PMCID: PMC10913894 DOI: 10.3389/fpls.2024.1335281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/05/2024] [Indexed: 03/07/2024]
Abstract
Introduction Honey bee (Apis mellifera) pollination is widely used in tree fruit production systems to improve fruit set and yield. Many plant viruses can be associated with pollen or transmitted through pollination, and can be detected through bee pollination activities. Honey bees visit multiple plants and flowers in one foraging trip, essentially sampling small amounts of pollen from a wide area. Here we report metagenomics-based area-wide monitoring of plant viruses in cherry (Prunus avium) and apple (Malus domestica) orchards in Creston Valley, British Columbia, Canada, through bee-mediated pollen sampling. Methods Plant viruses were identified in total RNA extracted from bee and pollen samples, and compared with profiles from double stranded RNA extracted from leaf and flower tissues. CVA, PDV, PNRSV, and PVF coat protein nucleotide sequences were aligned and compared for phylogenetic analysis. Results A wide array of plant viruses were identified in both systems, with cherry virus A (CVA), prune dwarf virus (PDV), prunus necrotic ringspot virus (PNRSV), and prunus virus F (PVF) most commonly detected. Citrus concave gum associated virus and apple stem grooving virus were only identified in samples collected during apple bloom, demonstrating changing viral profiles from the same site over time. Different profiles of viruses were identified in bee and pollen samples compared to leaf and flower samples reflective of pollen transmission affinity of individual viruses. Phylogenetic and pairwise analysis of the coat protein regions of the four most commonly detected viruses showed unique patterns of nucleotide sequence diversity, which could have implications in their evolution and management approaches. Coat protein sequences of CVA and PVF were broadly diverse with multiple distinct phylogroups identified, while PNRSV and PDV were more conserved. Conclusion The pollen virome in fruit production systems is incredibly diverse, with CVA, PDV, PNRSV, and PVF widely prevalent in this region. Bee-mediated monitoring in agricultural systems is a powerful approach to study viral diversity and can be used to guide more targeted management approaches.
Collapse
Affiliation(s)
- Malek Smadi
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Eunseo Lee
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - James Phelan
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, North Saanich, BC, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | | | - Stephen F. Pernal
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada
| | - M. Marta Guarna
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada
- Department of Computer Science, University of Victoria, Victoria, BC, Canada
| | - Mike Rott
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, North Saanich, BC, Canada
| | - Jonathan S. Griffiths
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
5
|
Wu Q, Kinoti WM, Habili N, Tyerman SD, Rinaldo A, Constable FE. Genetic Diversity of Grapevine Virus A in Three Australian Vineyards Using Amplicon High Throughput Sequencing (Amplicon-HTS). Viruses 2023; 16:42. [PMID: 38257742 PMCID: PMC10819895 DOI: 10.3390/v16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Shiraz disease (SD) is one of the most destructive viral diseases of grapevines in Australia and is known to cause significant economic loss to local growers. Grapevine virus A (GVA) was reported to be the key pathogen associated with this disease. This study aimed to better understand the diversity of GVA variants both within and between individual SD and grapevine leafroll disease (LRD) affected grapevines located at vineyards in South Australia. Amplicon high throughput sequencing (Amplicon-HTS) combined with median-joining networks (MJNs) was used to analyze the variability in specific gene regions of GVA variants. Several GVAII variant groups contain samples from both vineyards studied, suggesting that these GVAII variants were from a common origin. Variant groups analyzed by MJNs using the overall data set denote that there may be a possible relationship between variant groups of GVA and the geographical location of the grapevines.
Collapse
Affiliation(s)
- Qi Wu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Wycliff M. Kinoti
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - Nuredin Habili
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
| | - Amy Rinaldo
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Fiona E. Constable
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
6
|
Lee E, Vansia R, Phelan J, Lofano A, Smith A, Wang A, Bilodeau GJ, Pernal SF, Guarna MM, Rott M, Griffiths JS. Area Wide Monitoring of Plant and Honey Bee ( Apis mellifera) Viruses in Blueberry ( Vaccinium corymbosum) Agroecosystems Facilitated by Honey Bee Pollination. Viruses 2023; 15:v15051209. [PMID: 37243295 DOI: 10.3390/v15051209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Healthy agroecosystems are dependent on a complex web of factors and inter-species interactions. Flowers are hubs for pathogen transmission, including the horizontal or vertical transmission of plant-viruses and the horizontal transmission of bee-viruses. Pollination by the European honey bee (Apis mellifera) is critical for industrial fruit production, but bees can also vector viruses and other pathogens between individuals. Here, we utilized commercial honey bee pollination services in blueberry (Vaccinium corymbosum) farms for a metagenomics-based bee and plant virus monitoring system. Following RNA sequencing, viruses were identified by mapping reads to a reference sequence database through the bioinformatics portal Virtool. In total, 29 unique plant viral species were found at two blueberry farms in British Columbia (BC). Nine viruses were identified at one site in Ontario (ON), five of which were not identified in BC. Ilarviruses blueberry shock virus (BlShV) and prune dwarf virus (PDV) were the most frequently detected viruses in BC but absent in ON, while nepoviruses tomato ringspot virus and tobacco ringspot virus were common in ON but absent in BC. BlShV coat protein (CP) nucleotide sequences were nearly identical in all samples, while PDV CP sequences were more diverse, suggesting multiple strains of PDV circulating at this site. Ten bee-infecting viruses were identified, with black queen cell virus frequently detected in ON and BC. Area-wide bee-mediated pathogen monitoring can provide new insights into the diversity of viruses present in, and the health of, bee-pollination ecosystems. This approach can be limited by a short sampling season, biased towards pollen-transmitted viruses, and the plant material collected by bees can be very diverse. This can obscure the origin of some viruses, but bee-mediated virus monitoring can be an effective preliminary monitoring approach.
Collapse
Affiliation(s)
- Eunseo Lee
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada
| | - Raj Vansia
- London Research and Development Centre, Agriculture and Agri-Food Canada, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - James Phelan
- Sidney Laboratory, Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Rd., North Saanich, BC V8L 1H3, Canada
| | - Andrea Lofano
- London Research and Development Centre, Agriculture and Agri-Food Canada, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada
| | - Adam Smith
- Sidney Laboratory, Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Rd., North Saanich, BC V8L 1H3, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | - Guillaume J Bilodeau
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, 3851 Fallowfield Rd., Ottawa, ON K2J 4S1, Canada
| | - Stephen F Pernal
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, P.O. Box 29, Beaverlodge, AB T0H 0C0, Canada
| | - M Marta Guarna
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, P.O. Box 29, Beaverlodge, AB T0H 0C0, Canada
| | - Michael Rott
- Sidney Laboratory, Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Rd., North Saanich, BC V8L 1H3, Canada
| | - Jonathan S Griffiths
- London Research and Development Centre, Agriculture and Agri-Food Canada, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
7
|
Noorani MS, Baig MS, Khan JA, Pravej A. Whole genome characterization and diagnostics of prunus necrotic ringspot virus (PNRSV) infecting apricot in India. Sci Rep 2023; 13:4393. [PMID: 36928763 PMCID: PMC10020458 DOI: 10.1038/s41598-023-31172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Prunus necrotic ringspot virus (PNRSV) is a pathogen that infects Prunus species worldwide, causing major economic losses. Using one and two-step RT-PCR and multiplex RT-PCR, the whole genome of the PNRSV-infecting apricot was obtained and described in this study. Computational approaches were used to investigate the participation of several regulatory motifs and domains of the Replicase1, Replicase2, MP, and CP. A single degenerated reverse and three forward oligo primers were used to amplify PNRSV's tripartite genome. The size of RNA1 was 3.332 kb, RNA2 was 2.591 kb, and RNA3 was 1.952 kb, according to the sequencing analysis. The Sequence Demarcation Tool analysis determined a percentage pair-wise identity ranging between 91 and 99% for RNA1 and 2, and 87-98% for RNA3. Interestingly, the phylogenetic analysis revealed that closely related RNA1, RNA2, and RNA3 sequences of PNRSV strains from various geographical regions of the world are classified into distinct clades or groups. This is the first report on the characterization of the whole genome of PNRSV from India, which provides the cornerstone for further studies on the molecular evolution of this virus. This study will assist in molecular diagnostics and management of the diseases caused by PNRSV.
Collapse
Affiliation(s)
- Md Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard (A Deemed-to-Be University), New Delhi, India.
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India.
| | - Mirza Sarwar Baig
- Department of Molecular Medicine, School of Interdisciplinary Sciences, Jamia Hamdard (A Deemed-to-Be University), New Delhi, India
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Jawaid Ahmad Khan
- Plant Virus Laboratory, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Alam Pravej
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University (PSAU), 11942, Alkharj, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Costa LC, Atha B, Hu X, Lamour K, Yang Y, O’Connell M, McFarland C, Foster JA, Hurtado-Gonzales OP. High-throughput detection of a large set of viruses and viroids of pome and stone fruit trees by multiplex PCR-based amplicon sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:1072768. [PMID: 36578329 PMCID: PMC9791224 DOI: 10.3389/fpls.2022.1072768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A comprehensive diagnostic method of known plant viruses and viroids is necessary to provide an accurate phytosanitary status of fruit trees. However, most widely used detection methods have a small limit on either the number of targeted viruses/viroids or the number of samples to be evaluated at a time, hampering the ability to rapidly scale up the test capacity. Here we report that by combining the power of high multiplexing PCR (499 primer pairs) of small amplicons (120-135bp), targeting 27 viruses and 7 viroids of fruit trees, followed by a single high-throughput sequencing (HTS) run, we accurately diagnosed the viruses and viroids on as many as 123 pome and stone fruit tree samples. We compared the accuracy, sensitivity, and reproducibility of this approach and contrast it with other detection methods including HTS of total RNA (RNA-Seq) and individual RT-qPCR for every fruit tree virus or viroid under the study. We argue that this robust and high-throughput cost-effective diagnostic tool will enhance the viral/viroid knowledge of fruit trees while increasing the capacity for large scale diagnostics. This approach can also be adopted for the detection of multiple viruses and viroids in other crops.
Collapse
Affiliation(s)
- Larissa Carvalho Costa
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Benjamin Atha
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Xiaojun Hu
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Yu Yang
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Mary O’Connell
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Clint McFarland
- Plant Protection and Quarantine - Field Operations, Animal and Plant Health Inspection Service, United States Department of Agriculture, Raleigh, NC, United States
| | - Joseph A. Foster
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Oscar P. Hurtado-Gonzales
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
9
|
Maina S, Zheng L, Rodoni BC. Targeted Genome Sequencing (TG-Seq) Approaches to Detect Plant Viruses. Viruses 2021; 13:583. [PMID: 33808381 PMCID: PMC8066983 DOI: 10.3390/v13040583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 12/18/2022] Open
Abstract
Globally, high-throughput sequencing (HTS) has been used for virus detection in germplasm certification programs. However, sequencing costs have impeded its implementation as a routine diagnostic certification tool. In this study, the targeted genome sequencing (TG-Seq) approach was developed to simultaneously detect multiple (four) viral species of; Pea early browning virus (PEBV), Cucumber mosaic virus (CMV), Bean yellow mosaic virus (BYMV) and Pea seedborne mosaic virus (PSbMV). TG-Seq detected all the expected viral amplicons within multiplex PCR (mPCR) reactions. In contrast, the expected PCR amplicons were not detected by gel electrophoresis (GE). For example, for CMV, GE only detected RNA1 and RNA2 while TG-Seq detected all the three RNA components of CMV. In an mPCR to amplify all four viruses, TG-Seq readily detected each virus with more than 732,277 sequence reads mapping to each amplicon. In addition, TG-Seq also detected all four amplicons within a 10-8 serial dilution that were not detectable by GE. Our current findings reveal that the TG-Seq approach offers significant potential and is a highly sensitive targeted approach for detecting multiple plant viruses within a given biological sample. This is the first study describing direct HTS of plant virus mPCR products. These findings have major implications for grain germplasm healthy certification programs and biosecurity management in relation to pathogen entry into Australia and elsewhere.
Collapse
Affiliation(s)
- Solomon Maina
- Microbial Sciences, Pests & Diseases, Agriculture Victoria, 110 Natimuk Road, Horsham, Victoria 3400, Australia
- Australian Grains Genebank, Agriculture Victoria, 110 Natimuk Road, Horsham, Victoria 3400, Australia
| | - Linda Zheng
- Microbial Sciences, Pests & Diseases, Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia; (L.Z.); (B.C.R.)
| | - Brendan C. Rodoni
- Microbial Sciences, Pests & Diseases, Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia; (L.Z.); (B.C.R.)
- School of Applied Systems Biology (SASB), La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
10
|
Current Developments and Challenges in Plant Viral Diagnostics: A Systematic Review. Viruses 2021; 13:v13030412. [PMID: 33807625 PMCID: PMC7999175 DOI: 10.3390/v13030412] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022] Open
Abstract
Plant viral diseases are the foremost threat to sustainable agriculture, leading to several billion dollars in losses every year. Many viruses infecting several crops have been described in the literature; however, new infectious viruses are emerging frequently through outbreaks. For the effective treatment and prevention of viral diseases, there is great demand for new techniques that can provide accurate identification on the causative agents. With the advancements in biochemical and molecular biology techniques, several diagnostic methods with improved sensitivity and specificity for the detection of prevalent and/or unknown plant viruses are being continuously developed. Currently, serological and nucleic acid methods are the most widely used for plant viral diagnosis. Nucleic acid-based techniques that amplify target DNA/RNA have been evolved with many variants. However, there is growing interest in developing techniques that can be based in real-time and thus facilitate in-field diagnosis. Next-generation sequencing (NGS)-based innovative methods have shown great potential to detect multiple viruses simultaneously; however, such techniques are in the preliminary stages in plant viral disease diagnostics. This review discusses the recent progress in the use of NGS-based techniques for the detection, diagnosis, and identification of plant viral diseases. New portable devices and technologies that could provide real-time analyses in a relatively short period of time are prime important for in-field diagnostics. Current development and application of such tools and techniques along with their potential limitations in plant virology are likewise discussed in detail.
Collapse
|
11
|
Fields B, Moeskjaer S, Friman VP, Andersen SU, Young JPW. MAUI-seq: Metabarcoding using amplicons with unique molecular identifiers to improve error correction. Mol Ecol Resour 2020; 21:703-720. [PMID: 33171018 DOI: 10.1111/1755-0998.13294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
Sequencing and PCR errors are a major challenge when characterizing genetic diversity using high-throughput amplicon sequencing (HTAS). We have developed a multiplexed HTAS method, MAUI-seq, which uses unique molecular identifiers (UMIs) to improve error correction by exploiting variation among sequences associated with a single UMI. Erroneous sequences are recognized because, across the data set, they are over-represented among the minor sequences associated with UMIs. We show that two main advantages of this approach are efficient elimination of chimeric and other erroneous reads, outperforming dada2 and unoise3, and the ability to confidently recognize genuine alleles that are present at low abundance or resemble chimeras. The method provides sensitive and flexible profiling of diversity and is readily adaptable to most HTAS applications, including microbial 16S rRNA profiling and metabarcoding of environmental DNA.
Collapse
Affiliation(s)
| | - Sara Moeskjaer
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
12
|
Mackie J, Higgins E, Chambers GA, Tesoriero L, Aldaoud R, Kelly G, Kinoti WM, Rodoni BC, Constable FE. Genome Analysis of Melon Necrotic Spot Virus Incursions and Seed Interceptions in Australia. PLANT DISEASE 2020; 104:1969-1978. [PMID: 32484421 DOI: 10.1094/pdis-04-19-0846-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Melon necrotic spot virus (MNSV) was detected in field-grown Cucumis melo (rockmelon) and Citrullus lanatus (watermelon) plants in the Sunraysia district of New South Wales and Victoria, Australia, in 2012, 2013, and 2016, and in two watermelon seed lots tested at the Australian border in 2016. High-throughput sequencing was used to generate near full-length genomes of six isolates detected during the incursions and seed testing. Phylogenetic analysis of the genomes suggests that there have been at least two incursions of MNSV into Australia and none of the field isolates were the same as the isolates detected in seeds. The analysis indicated that one watermelon field sample (L10), the Victorian rockmelon field sample, and two seed interception samples may have European origins. The results showed that two isolates (L8 and L9) from watermelon were divergent from the type MNSV strain (MNSV-GA, D12536.2) and had 99% nucleotide identity to two MNSV isolates from human stool collected in the United States (KY124135.1, KY124136.1). These isolates also had high nucleotide pairwise identity (96%) to a partial sequence from a Spanish MNSV isolate (KT962848.1). The analysis supported the identification of three previously described MNSV genotype groups: EU-LA, Japan melon, and Japan watermelon. To account for the greater diversity of hosts and geographic regions of the MNSV isolates used in this study, it is suggested that the genotype groups EU-LA, Japan melon, and Japan watermelon be renamed to groups I, II, and III, respectively. The divergent isolates L8 and L9 from this study and the stool isolates from the United States formed a fourth genotype group, group IV. Soil collected from the site of the Victorian rockmelon MNSV outbreak was found to contain viable MNSV and the virus vector, a chytrid fungus, Olpidium bornovanus (Sahtiyanci) Karling, 18 months after the initial MNSV detection. This is a first report of O. bornovanus from soil sampled from an MNSV-contaminated site in Australia.
Collapse
Affiliation(s)
- Joanne Mackie
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Ellena Higgins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Grant A Chambers
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Len Tesoriero
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Ramez Aldaoud
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Geoff Kelly
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Wycliff M Kinoti
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Brendan C Rodoni
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| | - Fiona E Constable
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Bundoora, Victoria 3083, Australia
| |
Collapse
|
13
|
Kinoti WM, Nancarrow N, Dann A, Rodoni BC, Constable FE. Updating the Quarantine Status of Prunus Infecting Viruses in Australia. Viruses 2020; 12:v12020246. [PMID: 32102210 PMCID: PMC7077234 DOI: 10.3390/v12020246] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
One hundred Prunus trees, including almond (P. dulcis), apricot (P. armeniaca), nectarine (P. persica var. nucipersica), peach (P. persica), plum (P. domestica), purple leaf plum (P. cerasifera) and sweet cherry (P. avium), were selected from growing regions Australia-wide and tested for the presence of 34 viruses and three viroids using species-specific reverse transcription-polymerase chain reaction (RT-PCR) or polymerase chain reaction (PCR) tests. In addition, the samples were tested using some virus family or genus-based RT-PCR tests. The following viruses were detected: Apple chlorotic leaf spot virus (ACLSV) (13/100), Apple mosaic virus (ApMV) (1/100), Cherry green ring mottle virus (CGRMV) (4/100), Cherry necrotic rusty mottle virus (CNRMV) (2/100), Cherry virus A (CVA) (14/100), Little cherry virus 2 (LChV2) (3/100), Plum bark necrosis stem pitting associated virus (PBNSPaV) (4/100), Prune dwarf virus (PDV) (3/100), Prunus necrotic ringspot virus (PNRSV) (52/100), Hop stunt viroid (HSVd) (9/100) and Peach latent mosaic viroid (PLMVd) (6/100). The results showed that PNRSV is widespread in Prunus trees in Australia. Metagenomic high-throughput sequencing (HTS) and bioinformatics analysis were used to characterise the genomes of some viruses that were detected by RT-PCR tests and Apricot latent virus (ApLV), Apricot vein clearing associated virus (AVCaV), Asian Prunus Virus 2 (APV2) and Nectarine stem pitting-associated virus (NSPaV) were also detected. This is the first report of ApLV, APV2, CGRMV, CNRNV, LChV1, LChV2, NSPaV and PBNSPaV occurring in Australia. It is also the first report of ASGV infecting Prunus species in Australia, although it is known to infect other plant species including pome fruit and citrus.
Collapse
Affiliation(s)
- Wycliff M. Kinoti
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- Correspondence:
| | | | - Alison Dann
- Plant Biosecurity and Diagnostic Branch, Bioisecurity Tasmania, Hobart, TAS 7001, Australia
| | - Brendan C. Rodoni
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Fiona E. Constable
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| |
Collapse
|
14
|
Wright AA, Cross AR, Harper SJ. A bushel of viruses: Identification of seventeen novel putative viruses by RNA-seq in six apple trees. PLoS One 2020; 15:e0227669. [PMID: 31929569 PMCID: PMC6957168 DOI: 10.1371/journal.pone.0227669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/26/2019] [Indexed: 11/17/2022] Open
Abstract
Apple decline in Washington state has been increasing in incidence, particularly on Honeycrisp trees grown on G.935 rootstock. In this disease the trees exhibit dieback with necrosis at the graft union and in the rootstock. The cause of this disease remains unknown. To identify viral candidates, RNA-seq was performed on six trees: four trees exhibiting decline and two healthy trees. Across the samples, eight known viruses and Apple hammerhead viroid were detected, however none appear to be specifically associated with the disease. A BLASTx analysis of the RNA-seq data was performed to identify novel viruses that might be associated with apple decline. Seventeen novel putative viruses were detected, including an ilarvirus, two tombus-like viruses, a barna-like virus, a picorna-like virus, three ourmia-like viruses, three partiti-like viruses, and two narna-like viruses. Four additional viruses could not be classified. Three of the viruses appeared to be missing key genes, suggesting they may be dependent upon helper viruses for their function. Others showed a specific tropism, being detected only in the roots or only in the leaves. While, like the known apple viruses, none were consistently associated with diseased trees, it is possible these viruses may have a synergistic effect when co-infecting that could contribute to disease. Or the presence of these viruses may weaken the trees for some other factor that ultimately causes decline. Additional research will be needed to determine how these novel viruses contribute to apple decline.
Collapse
Affiliation(s)
- Alice A Wright
- Department of Plant Pathology, Washington State University, Prosser, WA, United States of America
| | - Alex R Cross
- Department of Plant Pathology, Washington State University, Prosser, WA, United States of America
| | - Scott J Harper
- Department of Plant Pathology, Washington State University, Prosser, WA, United States of America
| |
Collapse
|
15
|
Bragard C, Dehnen-Schmutz K, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Finelli F, Winter S, Bosco D, Chiumenti M, Di Serio F, Kaluski T, Minafra A, Rubino L. Pest categorisation of non-EU viruses and viroids of Prunus L. EFSA J 2019; 17:e05735. [PMID: 32626421 PMCID: PMC7009144 DOI: 10.2903/j.efsa.2019.5735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Following a request from the EU Commission, the Panel on Plant Health addressed the pest categorisation of the viruses and viroids of Prunus L. determined as being either non-EU or of undetermined standing in a previous EFSA opinion. These infectious agents belong to different genera and are heterogeneous in their biology. With the exclusion of Ilarvirus S1 and Ilarvirus S2, for which very limited information exists, the pest categorisation was completed for 26 viruses and 1 viroid having acknowledged identities and available detection methods. All these viruses are efficiently transmitted by vegetative plant propagation techniques, with plants for planting representing the major pathway for long-distance dispersal and thus considered as the major pathway for entry. Depending on the virus, additional pathway(s) can also be Prunus seeds, pollen and/or vector(s). Most of the viruses categorised here are known to infect only one or few plant genera, but some of them have a wide host range, thus extending the possible entry pathways. Apple scar skin viroid, American plum line pattern virus, cherry mottle leaf virus, cherry rasp leaf virus, cherry rosette virus, cherry rusty mottle-associated virus, cherry twisted leaf-associated virus, peach enation virus, peach mosaic virus, peach rosette mosaic virus, tobacco ringspot virus and tomato ringspot virus meet all the criteria evaluated by EFSA to qualify as potential Union quarantine pests (QPs). With the exception of impact in the EU territory, on which the Panel was unable to conclude, apricot vein clearing virus, Asian prunus virus 1, Asian prunus virus 2, Asian prunus virus 3, Caucasus prunus virus, cherry virus B, Mume virus A, nectarine stem pitting-associated virus, nectarine virus M, peach chlorotic mottle virus, peach leaf pitting-associated virus, peach virus D, prunus virus F and prunus virus T satisfy all the other criteria to be considered as potential Union QPs. Prunus geminivirus A does not meet the criterion of having negative impact in the EU. For several viruses, especially those recently discovered, the categorisation is associated with high uncertainties mainly because of the absence of data on their biology, distribution and impact. Since this opinion addresses specifically the non-EU viruses, in general these viruses do not meet the criteria assessed by EFSA to qualify as potential Union regulated non-quarantine pests.
Collapse
|
16
|
Bragard C, Dehnen-Schmutz K, Gonthier P, Jacques MA, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, der Werf WV, Vicent Civera A, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Winter S, Chiumenti M, Di Serio F, Kaluski T, Minafra A, Rubino L. List of non-EU viruses and viroids of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J 2019; 17:e05501. [PMID: 32626418 PMCID: PMC7009187 DOI: 10.2903/j.efsa.2019.5501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Panel on Plant Health performed a listing of non-EU viruses and viroids (reported hereinafter as viruses) of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. A systematic literature review identified 197 viruses infecting one or more of the host genera under consideration. Viruses were allocated into three categories (i) 86 non-EU viruses, known to occur only outside the EU or having only limited presence in the EU (i.e. reported in only one or few Member States (MSs), known to have restricted distribution, outbreaks), (ii) 97 viruses excluded at this stage from further categorisation efforts because they have significant presence in the EU (i.e. only reported so far from the EU or known to occur or be widespread in some MSs or frequently reported in the EU), (iii) 14 viruses with undetermined standing for which available information did not readily allow to allocate to one or the other of the two above groups. Comments provided by MSs during consultation phases were integrated in the opinion. The main knowledge gaps and uncertainties of this listing concern (i) the geographic distribution and prevalence of the viruses analysed, in particular when they were recently described; (ii) the taxonomy and biological status of a number of poorly characterised viruses; (iii) the host status of particular plant genera in relation to some viruses. The viruses considered as non-EU and those with undetermined standing will be categorised in the next steps to answer a specific mandate from the Commission to develop pest categorisations for non-EU viruses. This list does not imply a prejudice on future needs for a pest categorisation for other viruses which are excluded from the current categorisation efforts.
Collapse
|
17
|
Hao X, Zhang W, Zhao F, Liu Y, Qian W, Wang Y, Wang L, Zeng J, Yang Y, Wang X. Discovery of Plant Viruses From Tea Plant ( Camellia sinensis (L.) O. Kuntze) by Metagenomic Sequencing. Front Microbiol 2018; 9:2175. [PMID: 30254625 PMCID: PMC6141721 DOI: 10.3389/fmicb.2018.02175] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
The tea plant (Camellia sinensis (L.) O. Kuntze) is an economically important woody species. In this study, we collected 26 tea plant samples with typical discoloration symptoms from different tea gardens and performed metagenomic analysis based on next-generation sequencing. Homology annotation and PCR sequencing validation finally identified seven kinds of plant viruses from tea plant. Based on abundance distribution analysis, the two most abundant plant viruses were highlighted. Genetic characterization suggested that they are two novel virus species with relatively high homology to Blueberry necrotic ring blotch virus and American plum line pattern virus. We named the newly discovered viruses tea plant necrotic ring blotch virus (TPNRBV) and tea plant line pattern virus (TPLPV). Evolutionary relationship analysis indicated that TPNRBV and TPLPV should be grouped into the Blunervirus and the Ilarvirus genera, respectively. TPLPV might have same genome activation process with known ilarviruses based on sequence analysis. Moreover, specific primers for both viruses detection were designed and validated. The symptoms and ultrastructure of TPNRBV infected leaves were first recorded. Virus detections in the symptomatic and asymptomatic tissues from field plants showing tea plant necrotic ring blotch disease suggest that TPNRBV has a systemic movement feature. In summary, we first identified seven kinds of putative plant viruses by metagenomic analysis and report two novel viruses being latent pathogens to tea plant. The results will advance our understanding of tea plant virology and have significance for the genetic breeding of tea plants in the future.
Collapse
Affiliation(s)
- Xinyuan Hao
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Weifu Zhang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Fumei Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ying Liu
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Wenjun Qian
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yuchun Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Lu Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jianming Zeng
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinchao Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
18
|
Maliogka VI, Minafra A, Saldarelli P, Ruiz-García AB, Glasa M, Katis N, Olmos A. Recent Advances on Detection and Characterization of Fruit Tree Viruses Using High-Throughput Sequencing Technologies. Viruses 2018; 10:E436. [PMID: 30126105 PMCID: PMC6116224 DOI: 10.3390/v10080436] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches. A high number of new viruses have been described in the last 5 years, some of them exhibiting novel genomic features that have led to the proposal of the creation of new genera, and the revision of the current virus taxonomy status. Interestingly, several of the newly identified viruses belong to virus genera previously unknown to infect fruit tree species (e.g., Fabavirus, Luteovirus) a fact that challenges our perspective of plant viruses in general. Finally, applied methodologies, including the use of different molecules as templates, as well as advantages and disadvantages and future directions of HTS in fruit tree virology are discussed.
Collapse
Affiliation(s)
- Varvara I Maliogka
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Angelantonio Minafra
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy.
| | - Pasquale Saldarelli
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126 Bari, Italy.
| | - Ana B Ruiz-García
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain.
| | - Miroslav Glasa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovak Republic.
| | - Nikolaos Katis
- Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Antonio Olmos
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia, Spain.
| |
Collapse
|
19
|
The Incidence and Genetic Diversity of Apple Mosaic Virus (ApMV) and Prune Dwarf Virus (PDV) in Prunus Species in Australia. Viruses 2018; 10:v10030136. [PMID: 29562672 PMCID: PMC5869529 DOI: 10.3390/v10030136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/14/2018] [Accepted: 03/17/2018] [Indexed: 01/17/2023] Open
Abstract
Apple mosaic virus (ApMV) and prune dwarf virus (PDV) are amongst the most common viruses infecting Prunus species worldwide but their incidence and genetic diversity in Australia is not known. In a survey of 127 Prunus tree samples collected from five states in Australia, ApMV and PDV occurred in 4 (3%) and 13 (10%) of the trees respectively. High-throughput sequencing (HTS) of amplicons from partial conserved regions of RNA1, RNA2, and RNA3, encoding the methyltransferase (MT), RNA-dependent RNA polymerase (RdRp), and the coat protein (CP) genes respectively, of ApMV and PDV was used to determine the genetic diversity of the Australian isolates of each virus. Phylogenetic comparison of Australian ApMV and PDV amplicon HTS variants and full length genomes of both viruses with isolates occurring in other countries identified genetic strains of each virus occurring in Australia. A single Australian Prunus infecting ApMV genetic strain was identified as all ApMV isolates sequence variants formed a single phylogenetic group in each of RNA1, RNA2, and RNA3. Two Australian PDV genetic strains were identified based on the combination of observed phylogenetic groups in each of RNA1, RNA2, and RNA3 and one Prunus tree had both strains. The accuracy of amplicon sequence variants phylogenetic analysis based on segments of each virus RNA were confirmed by phylogenetic analysis of full length genome sequences of Australian ApMV and PDV isolates and all published ApMV and PDV genomes from other countries.
Collapse
|