1
|
Pezzino G, Calabrò A, Drommi F, Campana S, Cavaliere R, Bonaccorsi I, Carrega P, Zammuto V, Rizzo MG, Gugliandolo C, Ferlazzo G, De Pasquale C. EPS T14 from Bacillus licheniformis Prevents Infection of Human Nasal Epithelial Cells by Respiratory Viruses. Immunotargets Ther 2024; 13:487-499. [PMID: 39364227 PMCID: PMC11446858 DOI: 10.2147/itt.s470319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/21/2024] [Indexed: 10/05/2024] Open
Abstract
Background Respiratory viral infections are a leading cause of severe diseases and mortality; therefore, novel treatments effective for their prevention are highly requested. Here, we identified a broad-spectrum antiviral activity of a natural exopolysaccharide, EPS T14, purified from a marine thermotolerant strain of Bacillus licheniformis strain T14. Methods The effects on human normal nasal epithelial cells (HNEpCs) following treatment with EPS T14 was evaluated at different time points and with increasing concentration of compound. To assess the antiviral properties, viability of HNEpCs treated with EPS T14 was analysed following infection with different respiratory viruses. Results Neither toxicity nor pro-inflammatory properties were observed in vitro on HNEpCs treated with EPS T14 up to high concentrations, thus ensuring its safety. Cell culture-based assays revealed that treatment of HNEpCs with EPS T14 (used at 400ug/mL) results in efficient prevention of cell infection by different respiratory viruses through physically hindering the entry of the viruses via cell surface receptors. Interestingly, in addition to this prophylactic antiviral activity, EPS T14 also shows a long-lasting efficacy by inhibiting viral spread in the cell culture. Finally, combination of EPS T14 with a hypertonic saline solution shows a synergistic antiviral activity. Conclusion EPS T14 can exert both prophylactic and therapeutic antiviral activity by blocking viral attachment to cellular receptors and could therefore represent a promising antiviral agent for preventing infections by different respiratory viruses.
Collapse
Affiliation(s)
- Gaetana Pezzino
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
| | - Alessia Calabrò
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
| | - Fabiana Drommi
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
| | - Stefania Campana
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
| | - Riccardo Cavaliere
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
- Division of Clinical Pathology, University Hospital Policlinico G. Martino, Messina, Italy
| | - Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
| | - Vincenzo Zammuto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- ATHENA Green Solutions S.r.l., Messina, Italy
| | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Guido Ferlazzo
- Department of Experimental Medicine (DIMES), University of Genoa, Genova, Italy
- Unit of Experimental Pathology and Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department Human Pathology ”G. Barresi”, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Sadeghi M, Haghshenas B, Nami Y. Bifidobacterium exopolysaccharides: new insights into engineering strategies, physicochemical functions, and immunomodulatory effects on host health. Front Microbiol 2024; 15:1396308. [PMID: 38770019 PMCID: PMC11103016 DOI: 10.3389/fmicb.2024.1396308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Bifidobacteria are a prominent type of bacteria that have garnered significant research attention for their exceptional probiotic properties and capacity to produce exopolysaccharides (EPSs). These compounds exhibit diverse physical, chemical, and biological characteristics, prompting numerous investigations into their potential applications. Researchers have noted their beneficial effects as immune modulators within the host's body across various industries. Extensive research has been conducted on the immunomodulatory effects of bifidobacteria-derived EPSs, with emerging engineering strategies aimed at enhancing their immune-modulating capabilities. Understanding the structure, physicochemical properties, and biological activities of these compounds is crucial for their effective utilization across different industries. Our review encompassed numerous studies exploring Bifidobacterium and its metabolites, including EPSs, across various sectors, drawing from diverse databases. The distinctive properties of EPSs have spurred investigations into their applications, revealing their potential to bolster the immune system, combat inflammation, and treat various ailments. Additionally, these compounds possess antioxidant and antimicrobial properties, making them suitable for incorporation into a range of products spanning food, health, and medicine.
Collapse
Affiliation(s)
- Mahsa Sadeghi
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| |
Collapse
|
3
|
Rebaza-Cardenas TD, Silva-Cajaleón K, Sabater C, Delgado S, Montes-Villanueva ND, Ruas-Madiedo P. "Masato de Yuca" and "Chicha de Siete Semillas" Two Traditional Vegetable Fermented Beverages from Peru as Source for the Isolation of Potential Probiotic Bacteria. Probiotics Antimicrob Proteins 2023; 15:300-311. [PMID: 34453308 PMCID: PMC10024669 DOI: 10.1007/s12602-021-09836-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
In this work, two Peruvian beverages "Masato de Yuca," typical of the Amazonian communities made from cassava (Manihot esculenta), and "Chicha de Siete Semillas," made from different cereal, pseudo-cereal, and legume flours, were explored for the isolation of lactic acid bacteria after obtaining the permission of local authorities following Nagoya protocol. From an initial number of 33 isolates, 16 strains with different RAPD- and REP-PCR genetic profiles were obtained. In Chicha, all strains were Lactiplantibacillus plantarum (formerly Lactobacillus plantarum), whereas in Masato, in addition to this species, Limosilactobacillus fermentum (formerly Lactobacillus fermentum), Pediococcus acidilactici, and Weissella confusa were also identified. Correlation analysis carried out with their carbohydrate fermentation patterns and enzymatic profiles allowed a clustering of the lactobacilli separated from the other genera. Finally, the 16 strains were submitted to a static in vitro digestion (INFOGEST model) that simulated the gastrointestinal transit. Besides, their ability to adhere to the human epithelial intestinal cell line HT29 was also determined. Following both procedures, the best probiotic candidate was Lac. plantarum Ch13, a robust strain able to better face the challenging conditions of the gastrointestinal tract and showing higher adhesion ability to the intestinal epithelium in comparison with the commercial probiotic strain 299v. In order to characterize its benefit for human health, this Ch13 strain will be deeply studied in further works.
Collapse
Affiliation(s)
- Teresa D Rebaza-Cardenas
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Facultad de Ingeniería Agraria, Universidad Católica Sedes Sapientiae (UCSS), Lima, Peru
| | - Kenneth Silva-Cajaleón
- Facultad de Ingeniería Agraria, Universidad Católica Sedes Sapientiae (UCSS), Lima, Peru
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Oviedo, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Oviedo, Spain
| | | | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.
- Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Oviedo, Spain.
| |
Collapse
|
4
|
Duboux S, Van Wijchen M, Kleerebezem M. The Possible Link Between Manufacturing and Probiotic Efficacy; a Molecular Point of View on Bifidobacterium. Front Microbiol 2022; 12:812536. [PMID: 35003044 PMCID: PMC8741271 DOI: 10.3389/fmicb.2021.812536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Probiotics for food or supplement use have been studied in numerous clinical trials, addressing a broad variety of diseases, and conditions. However, discrepancies were observed in the clinical outcomes stemming from the use of lactobacillaceae and bifidobacteria strains. These differences are often attributed to variations in the clinical trial protocol like trial design, included target population, probiotic dosage, or outcome parameters measured. However, a contribution of the methods used to produce the live bioactive ingredients should not be neglected as a possible additional factor in the observed clinical outcome variations. It is well established that manufacturing conditions play a role in determining the survival and viability of probiotics, but much less is known about their influence on the probiotic molecular composition and functionality. In this review, we briefly summarize the evidence obtained for Lacticaseibacillus rhamnosus GG and Lactiplantibacillus plantarum WCFS1, highlighting that expression and presence of probiotic niche factor (NF) and/or effector molecules (EM) may be altered during production of those two well-characterized lactobacillaceae probiotic strains. Subsequently, we summarize in more depth what is the present state of knowledge about bifidobacterial probiotic NF and EM; how their expression may be modified by manufacturing related environmental factors and how that may affect their biological activity in the host. This review highlights the importance of gathering knowledge on probiotic NF and EM, to validate them as surrogate markers of probiotic functionality. We further propose that monitoring of validated NF and/or EM during production and/or in the final preparation could complement viable count assessments that are currently applied in industry. Overall, we suggest that implementation of molecular level quality controls (i.e., based on validated NF and EM), could provide mode of action based in vitro tests contributing to better control the health-promoting reliability of probiotic products.
Collapse
Affiliation(s)
- Stéphane Duboux
- Nestlé Research, Lausanne, Switzerland.,Host-Microbe Interactomics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Myrthe Van Wijchen
- Nestlé Research, Lausanne, Switzerland.,Host-Microbe Interactomics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
5
|
Gorreja F, Walker WA. The potential role of adherence factors in probiotic function in the gastrointestinal tract of adults and pediatrics: a narrative review of experimental and human studies. Gut Microbes 2022; 14:2149214. [PMID: 36469568 PMCID: PMC9728474 DOI: 10.1080/19490976.2022.2149214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Numerous studies point to the important role of probiotic bacteria in gastrointestinal health. Probiotics act through mechanisms affecting enteric pathogens, epithelial barrier function, immune signaling, and conditioning of indigenous microbiota. Once administered, probiotics reach the gastrointestinal tract and interact with the host through bacterial surface molecules, here called adhesion factors, which are either strain- or specie-specific. Probiotic adhesion, through structural adhesion factors, is a mechanism that facilitates persistence within the gastrointestinal tract and triggers the initial host responses. Thus, an understanding of specific probiotic adhesion mechanisms could predict how specific probiotic strains elicit benefits and the potential of adherence factors as a proxy to predict probiotic function. This review summarizes the present understanding of probiotic adherence in the gastrointestinal tract. It highlights the bacterial adhesion structure types, their molecular communication with the host and the consequent impact on intestinal diseases in both adult and pediatric populations. Finally, we discuss knockout/isolation studies as direct evidence for adhesion factors conferring anti-inflammatory and pathogen inhibition properties to a probiotic.What is known: Probiotics can be used to treat clinical conditions.Probiotics improve dysbiosis and symptoms.Clinical trials may not confirm in vitro and animal studies.What is new: Adhesion structures may be important for probiotic function.Need to systematically determine physical characteristics of probiotics before selecting for clinical trials.Probiotics may be genetically engineered to add to clinical efficacy.
Collapse
Affiliation(s)
- Frida Gorreja
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - W. Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Exopolysaccharides from Bifidobacterium animalis Ameliorate Escherichia coli-Induced IPEC-J2 Cell Damage via Inhibiting Apoptosis and Restoring Autophagy. Microorganisms 2021; 9:microorganisms9112363. [PMID: 34835488 PMCID: PMC8625581 DOI: 10.3390/microorganisms9112363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/26/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a common zoonotic pathogen that causes acute infectious diarrhea. Probiotics like Bifidobacterium are known to help prevent pathogen infections. The protective effects of Bifidobacterium are closely associated with its secretory products exopolysaccharides (EPS). We explored the effects of the EPS from Bifidobacterium animalis subsp. lactis (B. lactis) on ameliorating the damage of an intestinal porcine epithelial cell line (IPEC-J2) during EPEC infection. Pretreatment with EPS alleviated EPEC-induced apoptosis through the restoration of cell morphology and the downregulation of protein expressions of cleaved-caspase 8, cleaved-caspase 3, and cleaved-PARP. EPS-mediated remission of apoptosis significantly improved cell viability during EPEC infection. EPEC infection also resulted in impaired autophagy, as demonstrated by decreased expressions of autophagy-related proteins Beclin 1, ATG5, and microtubule-binding protein light chain-3B (LC3B) and the increased expression of p62 through western blot analysis. However, EPS reversed these effects which indicated that EPS promoted autophagosome formation. Furthermore, EPS prevented the lysosome damage induced by EPEC as it enhanced lysosomal acidification and raised lysosome-associated protein levels, thus promoted autophagosome degradation. Our findings suggest that the amelioration of EPEC-induced cell damages by EPS is associated with the limitation of detrimental apoptosis and the promotion of autophagy flux.
Collapse
|
7
|
Yang Y, Zhang W, Huan H, Xia W, Chen Y, Wang P, Liu Y. Construction of an Integrated mCherry Red Fluorescent Protein Expression System for Labeling and Tracing in Lactiplantibacillus plantarum WCFS1. Front Microbiol 2021; 12:690270. [PMID: 34239511 PMCID: PMC8258168 DOI: 10.3389/fmicb.2021.690270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Thorough intestinal adhesion and colonization greatly promote the probiotic properties of lactic acid bacteria (LAB). Labeling and tracing with fluorescent proteins are effective and reliable for studying the in vivo physiological activities of LAB including localization, adhesion, and colonization. Lactiplantibacillus plantarum WCFS1 was successfully traced with a red fluorescent protein (RFP), which was expressed by the bacteria-carrying recombinant plasmids. In this study, we aimed to construct a stable RFP mCherry expression system, whose encoding gene was integrated into the bacterial chromosome via double-crossed homologous recombination, and use it for labeling WCFS1 with the goal of avoiding the potential loss of non-chromosomal plasmids along with intestinal growth. First, the constitutive expression of the mCherry protein was improved after adjusting the length of the spacer between the promoter and the gene start codon. Then, the optimized mCherry gene expression cassette was integrated into the chromosome of WCFS1. The resulting strain had normal unimpaired growth and strong fluorescent signals, even after 100 generations, indicating its stability. Furthermore, quantitative polymerase chain reaction (PCR) results revealed a strong positive correlation between the fluorescence intensity of the strain and the number of viable cells, demonstrating its potential usage for the quantification of in vivo WCFS1 cells. Finally, the increased adhesion ability of WCFS1 due to the recombinant expression of the bsh gene was visualized and evaluated using fluorescence intensity, the results of which were consistent with those obtained using the previously established quantification methods. These results suggest that the chromosomal-integrated mCherry labeling system can be extensively used to examine the distribution, colonization, and survival of LAB in vivo in order to determine the mechanism of its probiotic function.
Collapse
Affiliation(s)
- Yao Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wenjun Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Hailin Huan
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenxu Xia
- Geneception (Shanghai) Bio-technology Co., Ltd., Shanghai, China
| | - Ying Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Peijuan Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yanrong Liu
- Nanjing Institute of Product Quality Inspection, Nanjing, China
| |
Collapse
|
8
|
Abdalla AK, Ayyash MM, Olaimat AN, Osaili TM, Al-Nabulsi AA, Shah NP, Holley R. Exopolysaccharides as Antimicrobial Agents: Mechanism and Spectrum of Activity. Front Microbiol 2021; 12:664395. [PMID: 34093478 PMCID: PMC8170130 DOI: 10.3389/fmicb.2021.664395] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/20/2021] [Indexed: 01/16/2023] Open
Abstract
Exopolysaccharides (EPSs) are metabolites synthesized and excreted by a variety of microorganisms, including lactic acid bacteria (LAB). EPS serve several biological functions such as interactions between bacteria and their environments, protection against hostile conditions including dehydration, the alleviation of the action of toxic compounds (bile salts, hydrolyzing enzymes, lysozyme, gastric, and pancreatic enzymes, metal ions, antibiotics), and stresses (changing pH, osmolarity), and evasion of the immune response and phage attack. Bacterial EPSs are considered valuable by the food, pharmaceutical, and nutraceutical industries, owing to their health-promoting benefits and rheological impacts. Numerous studies have reported the unusual antimicrobial activities of various EPS against a wide variety of pathogenic microbes (bacteria, virus, and fungi). This review aims to provide a comprehensive examination of the in vitro and in vivo antimicrobial activities of different EPSs, mainly against foodborne bacterial, fungal, and viral pathogens. The mechanism of EPS action against these pathogens as well as the methods used to measure antimicrobial activities are critically reviewed.
Collapse
Affiliation(s)
| | - Mutamed M. Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Tareq M. Osaili
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah, United Arab Emirates
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas A. Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Nagendra P. Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Richard Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Detection, Isolation, and Purification of Bifidobacterial Exopolysaccharides. Methods Mol Biol 2021. [PMID: 33649951 DOI: 10.1007/978-1-0716-1274-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
This chapter describes some of the available methods to assess EPS production in bifidobacteria, being largely based on those developed for the same purpose for members of the lactic acid bacteria group. The first step is detection of putative EPS-producing bifidobacteria based on a mucoid and/or ropy phenotype. Next, a basic procedure is described for the isolation of the glycan polymer based on the release from bifidobacterial cells grown and collected from the surface of agar-MRSc ("crude EPS"), followed by a purification procedure intended to remove other bacterial macromolecules (DNA and proteinaceous material) to generate "purified EPS." Finally, several methods used for quantification and physical-chemical characterization of isolated/purified polysaccharide are outlined.
Collapse
|
10
|
Han S, Lu Y, Xie J, Fei Y, Zheng G, Wang Z, Liu J, Lv L, Ling Z, Berglund B, Yao M, Li L. Probiotic Gastrointestinal Transit and Colonization After Oral Administration: A Long Journey. Front Cell Infect Microbiol 2021; 11:609722. [PMID: 33791234 PMCID: PMC8006270 DOI: 10.3389/fcimb.2021.609722] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Orally administered probiotics encounter various challenges on their journey through the mouth, stomach, intestine and colon. The health benefits of probiotics are diminished mainly due to the substantial reduction of viable probiotic bacteria under the harsh conditions in the gastrointestinal tract and the colonization resistance caused by commensal bacteria. In this review, we illustrate the factors affecting probiotic viability and their mucoadhesive properties through their journey in the gastrointestinal tract, including a discussion on various mucosadhesion-related proteins on the probiotic cell surface which facilitate colonization.
Collapse
Affiliation(s)
- Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqiu Fei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Björn Berglund
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
A Resource for Cloning and Expression Vectors Designed for Bifidobacteria: Overview of Available Tools and Biotechnological Applications. Methods Mol Biol 2021. [PMID: 33649956 DOI: 10.1007/978-1-0716-1274-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2023]
Abstract
Bifidobacteria represent an important group of (mostly) commensal microorganisms, which have enjoyed increasing scientific and industrial attention due to their purported health-promoting attributes. For the latter reason, several species have been granted "generally recognized as safe" (GRAS) and "qualified presumption of safety" (QPS) status by the Food and Drugs Administration (FDA) and European Food Safety Authority (EFSA) organizations. Increasing scientific evidence supports their potential as oral delivery vectors to produce bioactive and therapeutic molecules at intestinal level. In order to achieve an efficient utilization of bifidobacterial strains as health-promoting (food) ingredients, it is necessary to provide evidence on the molecular mechanisms behind their purported beneficial and probiotic traits, and precise mechanisms of interaction with their human (or other mammalian) host. In this context, developing appropriate molecular tools to generate and investigate recombinant strains is necessary. While bifidobacteria have long remained recalcitrant to genetic manipulation, a wide array of Bifidobacterium-specific replicating vectors and genetic modification procedures have been described in literature. The current chapter intends to provide an updated overview on the vectors used to genetically modify and manipulate bifidobacteria, including their general characteristics, reviewing examples of their use to successfully generate recombinant bifidobacterial strains for specific purposes, and providing a general workflow and cautions to design and conduct heterologous expression in bifidobacteria. Knowledge gaps and fields of research that may help to widen the molecular toolbox to improve the functional and technological potential of bifidobacteria are also discussed.
Collapse
|
12
|
Engineer probiotic bifidobacteria for food and biomedical applications - Current status and future prospective. Biotechnol Adv 2020; 45:107654. [DOI: 10.1016/j.biotechadv.2020.107654] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/14/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022]
|
13
|
Sabater C, Molinero-García N, Castro-Bravo N, Diez-Echave P, Hidalgo-García L, Delgado S, Sánchez B, Gálvez J, Margolles A, Ruas-Madiedo P. Exopolysaccharide Producing Bifidobacterium animalis subsp. lactis Strains Modify the Intestinal Microbiota and the Plasmatic Cytokine Levels of BALB/c Mice According to the Type of Polymer Synthesized. Front Microbiol 2020; 11:601233. [PMID: 33324384 PMCID: PMC7726137 DOI: 10.3389/fmicb.2020.601233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
Bacteria-host interactions are mediated by different microbial associated molecular patterns which are most often surface structures such as, among others, exopolysaccharides (EPSs). In this work, the capability of two isogenic EPS-producing Bifidobacterium animalis subsp. lactis strains to modulate the gut microbiota of healthy mice, was assessed. Each strain produces a different type of polymer; the ropy strain S89L synthesized a rhamnose-rich, high-molecular weight EPS in highest abundance than the non-ropy DMS10140 one. BALB/c mice were orally fed for 10 days with milk-bifidobacterial suspensions and followed afterward for 7 post-intervention days (wash-out period). The colonic content of mice was collected in several sampling points to perform a metataxonomic analysis. In addition, the influence of specific microbial clades, apparently stimulated by the ropy and non-ropy strains, on mouse plasmatic cytokine levels was investigated through hierarchical association testing. Analysis of 16S rRNA gene sequences showed that the abundance of Firmicutes phylum significantly increased 7 days after cessing the treatment with both strains. The relative abundance of Alloprevotella genus also rose, but after shorter post-treatment times (3 days for both DMS10140 and S89L strains). Some bacterial clades were specifically modulated by one or another strain. As such, the non-ropy DMS10140 strain exerted a significant influence on Intestinomonas genus, which increased after 4 post-administration days. On the other hand, feeding with the ropy strain S89L led to an increase in sequences of Faecalibaculum genus at 4 post-treatment days, while the abundance of Erysipelotrichaceae and Lactobacillaceae families increased for prolonged times. Association testing revealed that several lactobacilli and bifidobacterial significantly stimulated by ropy S89L strain were positively associated with the levels of certain cytokines, including IL-5 and IL-27. These results highlight relevant changes in mice gut microbiota produced after administration of the ropy S89L strain that were associated to a potential immune modulation effect.
Collapse
Affiliation(s)
- Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Natalia Molinero-García
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Nuria Castro-Bravo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Patricia Diez-Echave
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Laura Hidalgo-García
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
14
|
Mohedano ML, Hernández-Recio S, Yépez A, Requena T, Martínez-Cuesta MC, Peláez C, Russo P, LeBlanc JG, Spano G, Aznar R, López P. Real-Time Detection of Riboflavin Production by Lactobacillus plantarum Strains and Tracking of Their Gastrointestinal Survival and Functionality in vitro and in vivo Using mCherry Labeling. Front Microbiol 2019; 10:1748. [PMID: 31417534 PMCID: PMC6684964 DOI: 10.3389/fmicb.2019.01748] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/15/2019] [Indexed: 01/12/2023] Open
Abstract
Some strains of lactic acid bacteria (LAB) produce riboflavin, a water-soluble vitamin of the B complex, essential for human beings. Here, we have evaluated riboflavin (B2 vitamin) production by five Lactobacillus plantarum strains isolated from chicha, a traditional maize-based fermented alcoholic beverage from north-western Argentina and their isogenic riboflavin-overproducing derivatives previously selected using roseoflavin. A direct fluorescence spectroscopic detection method to quantify riboflavin production in bacterial culture supernatants has been tested. Comparison of the efficiency for riboflavin fluorescence quantification with and without prior HPLC fractionation showed that the developed method is a rapid and easy test for selection of B2 vitamin-producing strains. In addition, it can be used for quantitative detection of the vitamin production in real time during bacterial growth. On the basis of this and previous analyses, the L. plantarum M5MA1-B2 riboflavin overproducer was selected for in vitro and in vivo studies after being fluorescently labeled by transfer of the pRCR12 plasmid, which encodes the mCherry protein. The labeling did not affect negatively the growth, the riboflavin production nor the adhesion of the strain to Caco-2 cells. Thus, L. plantarum M5MA1-B2[pRCR12] was evaluated for its survival under digestive tract stresses in the presence of microbiota in the dynamic multistage BFBL gut model and in a murine model. After exposure to both models, M5MA1-B2[pRCR12] could be recovered and detected by the pink color of the colonies. The results indicated a satisfactory resistance of the strain to gastric and intestinal stress conditions but a low colonization capability observed both in vitro and in vivo. Overall, L. plantarum M5MA1-B2 could be proposed as a probiotic strain for the development of functional foods.
Collapse
Affiliation(s)
- Mari Luz Mohedano
- Department of Microorganisms and Plant Biotechnology, Biological Research Center (CIB-CSIC), Madrid, Spain
| | - Sara Hernández-Recio
- Department of Microorganisms and Plant Biotechnology, Biological Research Center (CIB-CSIC), Madrid, Spain
| | - Alba Yépez
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Teresa Requena
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - M. Carmen Martínez-Cuesta
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - Carmen Peláez
- Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL-CSIC), Madrid, Spain
| | - Pasquale Russo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Jean Guy LeBlanc
- Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Giuseppe Spano
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Rosa Aznar
- Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Spain
| | - Paloma López
- Department of Microorganisms and Plant Biotechnology, Biological Research Center (CIB-CSIC), Madrid, Spain
| |
Collapse
|
15
|
Castro-Bravo N, Margolles A, Wells JM, Ruas-Madiedo P. Exopolysaccharides synthesized by Bifidobacterium animalis subsp. lactis interact with TLR4 in intestinal epithelial cells. Anaerobe 2019; 56:98-101. [PMID: 30794874 DOI: 10.1016/j.anaerobe.2019.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/15/2022]
Abstract
The toll-like receptors involved in recognition of the exopolysaccharide produced by two isogenic, ropy and non-ropy, Bifidobacterium animalis subsp. lactis strains were investigated. Both strains interact with human embryonic kidney (HEK)-293 cells via TLR2, whereas purified EPSs specifically stimulate TLR4 regardless their molar mass.
Collapse
Affiliation(s)
- Nuria Castro-Bravo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain; Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, the Netherlands
| | - Abelardo Margolles
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, the Netherlands
| | - Patricia Ruas-Madiedo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.
| |
Collapse
|
16
|
Hernández-Rodríguez D, Vásquez-Aguilar AA, Serio-Silva JC, Rebollar EA, Azaola-Espinosa A. Molecular detection of Bifidobacterium spp. in faeces of black howler monkeys (Alouatta pigra). J Med Primatol 2018; 48:99-105. [PMID: 30520095 DOI: 10.1111/jmp.12395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Bifidobacterium genus are considered to be beneficial bacteria for their hosts; however, knowledge about the specific species that are part of the gut microbiome of howler monkeys is scarce. Polymerase chain reaction (PCR) is a useful technique for the identification of non-cultivable or difficult to grow bacterial species. With the goal of detecting species of the genus Bifidobacterium in black howler monkeys, we used PCR on DNA derived from faecal samples. METHODS We collected and extracted DNA from 40 faecal samples. Using specific primers, we performed PCR and nested PCR to detect members of the Bifidobacterium genus and a subset of species: Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium infantis, Bifidobacterium longum and Bifidobacterium animalis subsp. animalis. RESULTS 97.5% (39/40) of the samples were positive for Bifidobacterium spp. We found B longum in 100% of the analysed samples. CONCLUSIONS This is the first report of B longum in black howler monkey faeces.
Collapse
Affiliation(s)
- Dolores Hernández-Rodríguez
- Doctorado en Ciencias Agropecuarias, Universidad Autónoma Metropolitana-Xochimilco, Coyoacán, CDMX, México.,Instituto de Ecología, A.C. Red de Biología y Conservación de Vertebrados, Xalapa, Veracruz, México
| | | | - Juan Carlos Serio-Silva
- Instituto de Ecología, A.C. Red de Biología y Conservación de Vertebrados, Xalapa, Veracruz, México
| | - Eria Alaide Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alejandro Azaola-Espinosa
- Sistemas Biológicos, Laboratorio de Biotecnología, Universidad Autónoma Metropolitana-Xochimilco, Coyoacán, CDMX, México
| |
Collapse
|
17
|
Mao YH, Song AX, Wang ZM, Yao ZP, Wu JY. Protection of Bifidobacterial cells against antibiotics by a high molecular weight exopolysaccharide of a medicinal fungus Cs-HK1 through physical interactions. Int J Biol Macromol 2018; 119:312-319. [DOI: 10.1016/j.ijbiomac.2018.07.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/12/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022]
|
18
|
Castro-Bravo N, Wells JM, Margolles A, Ruas-Madiedo P. Interactions of Surface Exopolysaccharides From Bifidobacterium and Lactobacillus Within the Intestinal Environment. Front Microbiol 2018; 9:2426. [PMID: 30364185 PMCID: PMC6193118 DOI: 10.3389/fmicb.2018.02426] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/21/2018] [Indexed: 12/28/2022] Open
Abstract
Exopolysaccharides (EPS) are surface carbohydrate polymers present in most bacteria acting as a protective surface layer but also interacting with the surrounding environment. This review discusses the roles of EPS synthesized by strains of Lactobacillus and Bifidobacterium, many of them with probiotic characteristics, in the intestinal environment. Current knowledge on genetics and biosynthesis pathways of EPS in lactic acid bacteria and bifidobacteria, as well as the development of genetic tools, has created possibilities to elucidate the interplay between EPS and host intestinal mucosa. These include the microbiota that inhabits this ecological niche and the host cells. Several carbohydrate recognition receptors located in the intestinal epithelium could be involved in the interaction with bacterial EPS and modulation of immune response; however, little is known about the receptors recognizing EPS from lactobacilli or bifidobacteria and the triggered response. On the contrary, it has been clearly demonstrated that EPS play a relevant role in the persistence of the producing bacteria in the intestinal tract. Indeed, some authors postulate that some of the beneficial actions of EPS-producing probiotics could be related to the formation of a biofilm layer protecting the host against injury, for example by pathogens or their toxins. Nevertheless, the in vivo formation of biofilms by probiotics has not been proved to date. Finally, EPS produced by probiotic strains are also able to interact with the intestinal microbiota that populates the gut. In fact, some of these polymers can be used as carbohydrate fermentable source by some gut commensals thus being putatively involved in the release of bacterial metabolites that exert positive benefits for the host. In spite of the increasing knowledge about the role that these surface molecules play in the interaction of probiotic bacteria with the gut mucosal actors, both intestinal receptors and microbiota, the challenging issue is to demonstrate the functionality of EPS in vivo, which will open an avenue of opportunities for the application of EPS-producing probiotics to improve health.
Collapse
Affiliation(s)
- Nuria Castro-Bravo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain.,Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Science Department, Wageningen University and Research (WUR), Wageningen, Netherlands
| | - Abelardo Margolles
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Microhealth Group, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| |
Collapse
|
19
|
Llamas-Arriba MG, Pérez-Ramos A, Puertas AI, López P, Dueñas MT, Prieto A. Characterization of Pediococcus ethanolidurans CUPV141: A β-D-glucan- and Heteropolysaccharide-Producing Bacterium. Front Microbiol 2018; 9:2041. [PMID: 30233527 PMCID: PMC6131198 DOI: 10.3389/fmicb.2018.02041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
Pediococcus ethanolidurans CUPV141 is an exopolysaccharide (EPS)-producing lactic acid bacterium, first isolated from Basque Country cider (Spain). Physicochemical analysis of the EPS synthesized by the bacterium revealed that CUPV141 produces mostly a homopolysaccharide (HoPS), characterized as a 2-substituted (1,3)-β-D-glucan, together with a small quantity of a heteropolysaccharide (HePS) composed of glucose, galactose, glucosamine, and glycerol-3-phosphate, this being the first Pediococcus strain described to produce this kind of polymer. On the contrary, an isogenic strain CUPV141NR, generated by chemical mutagenesis of CUPV141, produced the HePS as the main extracellular polysaccharide and a barely detectable amount of 2-substituted (1,3)-β-D-glucan. This HoPS is synthesized by the transmembrane GTF glycosyltransferase (GTF), encoded by the gtf gene, which has been previously reported to be located in the pPP2 plasmid of the Pediococcus parvulus 2.6 strain. Southern blot hybridization revealed that in CUPV141 the gtf gene is located in a plasmid designated as pPE3, whose molecular mass (34.4 kbp) is different from that of pPP2 (24.5 kbp). Analysis of the influence of the EPS on the ability of the producing bacteria to adhere to the eukaryotic Caco-2 cells revealed higher affinity for the human enterocytes of CUPV141NR compared to that of CUPV141. This result indicates that, in contrast to the 2.6 strain, the presence of the HoPS does not potentiate the binding ability of P. ethanolidurans. Moreover, it supports that the phosphate-containing bacterial HePS improved the interaction between P. ethanolidurans and the eukaryotic cells.
Collapse
Affiliation(s)
- María G. Llamas-Arriba
- Chemistry Faculty, Department of Applied Chemistry, University of the Basque Country (UPV/EHU), San Sebastián, Spain
- Department of Microorganisms and Plant Technology, Biological Research Center, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - Adrián Pérez-Ramos
- Department of Microorganisms and Plant Technology, Biological Research Center, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - Ana I. Puertas
- Chemistry Faculty, Department of Applied Chemistry, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Paloma López
- Department of Microorganisms and Plant Technology, Biological Research Center, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - María T. Dueñas
- Chemistry Faculty, Department of Applied Chemistry, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Alicia Prieto
- Department of Microorganisms and Plant Technology, Biological Research Center, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| |
Collapse
|