1
|
Behera PR, Behera KK, Sethi G, Prabina BJ, Bai AT, Sipra BS, Adarsh V, Das S, Behera KC, Singh L, Mishra MK, Behera M. Enhancing Agricultural Sustainability Through Rhizomicrobiome: A Review. J Basic Microbiol 2024; 64:e2400100. [PMID: 38899609 DOI: 10.1002/jobm.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024]
Abstract
Sustainable agriculture represents the responsible utilization of natural resources while safeguarding the well-being of the natural environment. It encompasses the objectives of preserving the environment, fostering economic growth, and promoting socioeconomic equality. To achieve sustainable development for humanity, it is imperative to prioritize sustainable agriculture. One significant approach to achieving this transition is the extensive utilization of microbes, which play a crucial role due to the genetic reliance of plants on the beneficial functions provided by symbiotic microbes. This review focuses on the significance of rhizospheric microbial communities, also known as the rhizomicrobiome (RM). It is a complex community of microorganisms that live in the rhizosphere and influence the plant's growth and health. It provides its host plant with various benefits related to plant growth, including biocontrol, biofertilization, phytostimulation, rhizoremediation, stress resistance, and other advantageous properties. Yet, the mechanisms by which the RM contributes to sustainable agriculture remain largely unknown. Investigating this microbial population presents a significant opportunity to advance toward sustainable agriculture. Hence, this study aims to provide an overview of the diversity and applications of RM in sustainable agriculture practices. Lately, there has been growing momentum in various areas related to rhizobiome research and its application in agriculture. This includes rhizosphere engineering, synthetic microbiome application, agent-based modeling of the rhizobiome, and metagenomic studies. So, developing bioformulations of these beneficial microorganisms that support plant growth could serve as a promising solution for future strategies aimed at achieving a new green revolution.
Collapse
Affiliation(s)
| | | | - Gangadhar Sethi
- Department of Botany, Shailabala Women's Autonomous College, Cuttack, Odisha, India
| | - B Jeberlin Prabina
- Department of Soil Science and Agricultural Chemistry, VOC AGRL College and Research Institute, Killikulam, India
| | - A Thoyajakshi Bai
- Department of Plant Pathology, College of Agriculture, Jawarharlal Nehru Krishi Vishwavidyalaya, Jabalpur, Madhya Pradesh, India
| | - B S Sipra
- Department of Botany, Ravenshaw University, Cuttack, Odisha, India
| | - Varanasi Adarsh
- School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Sasmita Das
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | | | - Lakshmi Singh
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Mihir Kumar Mishra
- Department of Plant Pathology, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Maheswari Behera
- School of Agriculture, GIET University, Rayagada, Odisha, India
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
- Department of Plant Pathology, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Wang W, Chen X, Ma J, Li W, Long Y. Activity of Streptomyces globosus OPF-9 against the important pathogen Alternaria longipes and biocontrol mechanisms revealed by multi-omic analyses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106094. [PMID: 39277405 DOI: 10.1016/j.pestbp.2024.106094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/17/2024]
Abstract
Plant diseases caused by fungal pathogens represent main threats to the yield and quality of agricultural products, and Alternaria longipes is one of the most important pathogens in agricultural systems. Biological control is becoming increasingly prevalent in the management of plant diseases due to its environmental compatibility and sustainability. In the present study, a bacterial strain, designated as OPF-9, was shown to effectively inhibit the pathogen A. longipes, which was identified as Streptomyces globosus. The culture conditions for OPF-9 were optimized through a stepwise approach and the fermentation broth acquired displayed an excellent inhibitory activity against A. longipes in vitro and in vivo. Further investigations suggested that the fermentation broth exhibited strong stability under a range of adverse environmental conditions. To reveal the molecular bases of OPF-9 in inhibiting pathogens, the whole-genome sequencing and assembly were conducted on this strain. It showed that the genome size of OPF-9 was 7.668 Mb, containing a chromosome and two plasmids. Multiple clusters of secondary metabolite synthesis genes were identified by genome annotation analysis. In addition, the fermentation broth of strain OPF-9 was analyzed by LC-MS/MS non-target metabolomic assay and the activity of potential antifungal substances was determined. Among the five compounds evaluated, pyrogallol displayed the most pronounced inhibitory activity against A. longipes, which was found to effectively inhibit the mycelial growth of this pathogen. Overall, this study reported, for the first time, a strain of S. globosus that effectively inhibits A. longipes and revealed the underlying biocontrol mechanisms by genomic and metabolomic analyses.
Collapse
Affiliation(s)
- Weizhen Wang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xuetang Chen
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jiling Ma
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Wenzhi Li
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Youhua Long
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
3
|
Purayil GP, Saeed EE, Mathai AM, El-Tarabily KA, AbuQamar SF. A high-quality genome assembly and annotation of Thielaviopsis punctulata DSM102798. Sci Data 2024; 11:745. [PMID: 38982096 PMCID: PMC11233662 DOI: 10.1038/s41597-024-03458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
Black scorch disease (BSD), caused by the fungal pathogen Thielaviopsis punctulata (Tp) DSM102798, poses a significant threat to date palm cultivation in the United Arab Emirates (UAE). In this study, Chicago and Hi-C libraries were prepared as input for the Dovetail HiRise pipeline to scaffold the genome of Tp DSM102798. We generated an assembly with a total length of 28.23 Mb comprising 1,256 scaffolds, and the assembly had a contig N50 of 18.56 kb, L50 of three, and a BUSCO completeness score of 98.6% for 758 orthologous genes. Annotation of this assembly produced 7,169 genes and 3,501 Gene Ontology (GO) terms. Compared to five other Thielaviopsis genomes, Tp DSM102798 exhibited the highest continuity with a cumulative size of 27.598 Mb for the first seven scaffolds, surpassing the assemblies of all examined strains. These findings offer a foundation for targeted strategies that enhance date palm resistance against BSD, and foster more sustainable and resilient agricultural systems.
Collapse
Affiliation(s)
- Gouthaman P Purayil
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Esam Eldin Saeed
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Archana M Mathai
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| |
Collapse
|
4
|
Alshamsi AAA, Sheteiwy MS, AbuQamar SF, El-Tarabily KA. Enhancement of mangrove growth performance using fish emulsion and halotolerant plant growth-promoting actinobacteria for sustainable management in the UAE. MARINE POLLUTION BULLETIN 2024; 199:115916. [PMID: 38150978 DOI: 10.1016/j.marpolbul.2023.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
The combination of fish emulsion (FE) and the actinobacterial isolate, Streptomyces griseorubens UAE1 (Sg) capable of producing plant growth regulators (PGRs) and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, was evaluated on mangrove (Avicennia marina) in the United Arab Emirates. Under greenhouse and field conditions, sediments amended with the biostimulant FE effectively enhanced mangrove growth compared to those inoculated with Sg only. Plant growth promotion by Sg was more pronounced in the presence of FE (+FE/+Sg) than in individual applications. Our data showed that Sg appeared to use FE as a source of nutrients and precursors for plant growth promotion. Thus, in planta PGR levels following the combined +FE/+Sg were significantly induced. This is the first report in the field of marine agriculture that uses FE as a nutrient base for soil microorganisms to promote mangrove growth. This study will support mangrove restoration along the Arabian Gulf coastline as a nature-based solution to changing climate and economic activities.
Collapse
Affiliation(s)
- Al Anoud A Alshamsi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
5
|
Quach NT, Vu THN, Nguyen TTA, Le PC, Do HG, Nguyen TD, Thao PTH, Nguyen TTL, Chu HH, Phi QT. Metabolic and genomic analysis deciphering biocontrol potential of endophytic Streptomyces albus RC2 against crop pathogenic fungi. Braz J Microbiol 2023; 54:2617-2626. [PMID: 37792269 PMCID: PMC10689689 DOI: 10.1007/s42770-023-01134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Plant diseases caused by phytopathogenic fungi are one of the leading factors affecting crop loss. In the present study, sixty-one Streptomyces strains were screened for their antifungal activity against relevant wide range fungal pathogens prominent in Vietnam, namely Lasiodiplodia theobromae, Fusarium fujikuroi, and Scopulariopsis gossypii. Endophytic strain RC2 was the most effective strain in the mycelial inhibition of the tested fungi. Based on phenotypic characteristics, 16S rDNA gene analysis, and genomic analysis, strain RC2 belonged to Streptomyces albus. An ethyl acetate extract of S. albus RC2 led to the strong growth inhibition of S. gossypii Co1 and F. fujikuroi L3, but not L. theobromae N13. The crude extract also suppressed the spore germination of S. gossypii Co1 and F. fujikuroi L3 to 92.4 ± 3.2% and 87.4% ± 1.9%, respectively. In addition, the RC2 extract displayed potent and broad-spectrum antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, and the phytopathogenic bacteria Ralstonia solanacearum and Xanthomonas oryzae. The genome of strain RC2 was sequenced and revealed the presence of 15 biosynthetic gene clusters (BGCs) with similarities ≥ 45% to reference BGCs available in the antiSMASH database. The UPLC-HRMS analysis led to the identification of 8 other secondary metabolites, which have not been reported in S. albus. The present study indicated that RC2 could be a potent biocontrol agent against phytopathogenic fungi. Further attention should be paid to antifungal metabolites without functional annotation, development of product prototypes, and greenhouse experiments to demonstrate effective control of the plant diseases.
Collapse
Affiliation(s)
- Ngoc Tung Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Hanh Nguyen Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Thu An Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Phuong Chi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Hoang Giang Do
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Tien Dat Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Phan Thi Hong Thao
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Thanh Loi Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Hoang Ha Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Quyet-Tien Phi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam.
| |
Collapse
|
6
|
Kaur T, Khanna K, Sharma S, Manhas RK. Mechanistic insights into the role of actinobacteria as potential biocontrol candidates against fungal phytopathogens. J Basic Microbiol 2023; 63:1196-1218. [PMID: 37208796 DOI: 10.1002/jobm.202300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/26/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
Worldwide mounting demand for better food production to nurture exasperating population emphasizes on reduced crop losses. The incidence of pathogens into the agricultural fields has tend to dwindle plethora of cereal, vegetable, and other fodder crops. This, in turn, has seriously impacted the economic losses on global scale. Apart from this, it is quite challenging to feed the posterity in the coming decades. To counteract this problem, various agrochemicals have been commercialized in the market that no doubt shows positive results but along with adversely affecting the ecosystem. Therefore, the excessive ill-fated use of agrochemicals to combat the plant pests and diseases highlights that alternatives to chemical pesticides are need of the hour. In recent days, management of plant diseases using plant-beneficial microbes is gaining interest as safer and potent alternatives to replace chemically based pesticides. Among these beneficial microbes, actinobacteria especially streptomycetes play considerable role in combating plant diseases along with promoting the plant growth and development along with their productivity and yield. The mechanisms exhibited by actinobacteria include antibiosis (antimicrobial compounds and hydrolytic enzymes), mycoparasitism, nutrient competition, and induction of resistance in plants. Thus, in cognizance with potential of actinobacteria as potent biocontrol agents, this review summarizes role of actinobacteria and the multifarious mechanisms exhibited by actinobacteria for commercial applications.
Collapse
Affiliation(s)
- Talwinder Kaur
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kanika Khanna
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
| | - Sonika Sharma
- Faculty of Agricultural Sciences, Jalandhar, Punjab, India
| | - Rajesh K Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
7
|
Sadeq BM, Tan Kee Zuan A, Kasim S, Mui Yun W, Othman NMI, Alkooranee JT, Chompa SS, Akter A, Rahman ME. Humic Acid-Amended Formulation Improves Shelf-Life of Plant Growth-Promoting Rhizobacteria (PGPR) Under Laboratory Conditions. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023. [DOI: 10.47836/pjst.31.3.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) is a soil bacterium that positively impacts soil and crops. These microbes invade plant roots, promote plant growth, and improve crop yield production. Bacillus subtilis is a type of PGPR with a short shelf-life due to its structural and cellular components, with a non-producing resistance structure (spores). Therefore, optimum formulations must be developed to prolong the bacterial shelf-life by adding humic acid (HA) as an amendment that could benefit the microbes by providing shelter and carbon sources for bacteria. Thus, a study was undertaken to develop a biofertilizer formulation from locally isolated PGPR, using HA as an amendment. Four doses of HA (0, 0.01, 0.05, and 0.1%) were added to tryptic soy broth (TSB) media and inoculated with B. subtilis (UPMB10), Bacillus tequilensis (UPMRB9) and the combination of both strains. The shelf-life was recorded, and viable cells count and optical density were used to determine the bacterial population and growth trend at monthly intervals and endospores detection using the malachite green staining method. After 12 months of incubation, TSB amended with 0.1% HA recorded the highest bacterial population significantly with inoculation of UPMRB9, followed by mixed strains and UPMB10 at 1.8x107 CFUmL-1, 2.8x107 CFUmL-1and 8.9x106 CFUmL-1, respectively. Results showed that a higher concentration of HA has successfully prolonged the bacterial shelf-life with minimal cell loss. Thus, this study has shown that the optimum concentration of humic acid can extend the bacterial shelf-life and improve the quality of a biofertilizer.
Collapse
|
8
|
Chellappan BV, El-Ganainy SM, Alrajeh HS, Al-Sheikh H. In Silico Characterization of the Secretome of the Fungal Pathogen Thielaviopsis punctulata, the Causal Agent of Date Palm Black Scorch Disease. J Fungi (Basel) 2023; 9:jof9030303. [PMID: 36983471 PMCID: PMC10051545 DOI: 10.3390/jof9030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The black scorch disease of date palm caused by Thielaviopsis punctulata is a serious threat to the cultivation and productivity of date palm in Arabian Peninsula. The virulence factors that contribute to pathogenicity of T. punctulata have not been identified yet. In the present study, using bioinformatics approach, secretory proteins of T. punctulata were identified and functionally characterized. A total of 197 putative secretory proteins were identified, of which 74 were identified as enzymes for carbohydrate degradation (CAZymes), 25 were proteases, and 47 were predicted as putative effectors. Within the CAZymes, 50 cell wall-degrading enzymes, potentially to degrade cell wall components such as cellulose, hemicellulose, lignin, and pectin, were identified. Of the 47 putative effectors, 34 possessed at least one functional domain. The secretome of T. punctulata was compared to the predicted secretome of five closely related species (T. musarum, T. ethacetica, T. euricoi, T. cerberus, and T. populi) and identified species specific CAZymes and putative effector genes in T. punctulata, providing a valuable resource for the research aimed at understanding the molecular mechanism underlying the pathogenicity of T. punctulata on Date palm.
Collapse
Affiliation(s)
- Biju Vadakkemukadiyil Chellappan
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Correspondence:
| | - Sherif Mohamed El-Ganainy
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Agricultural Research Center, Plant Pathology Research Institute, Giza 12619, Egypt
| | - Hind Salih Alrajeh
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| | - Hashem Al-Sheikh
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
9
|
Ryabova OV, Gagarina AA. Actinomycetes as the Basis of Probiotics for Plants. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822070055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
El-Saadony MT, Saad AM, Soliman SM, Salem HM, Ahmed AI, Mahmood M, El-Tahan AM, Ebrahim AAM, Abd El-Mageed TA, Negm SH, Selim S, Babalghith AO, Elrys AS, El-Tarabily KA, AbuQamar SF. Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:923880. [PMID: 36275556 PMCID: PMC9583655 DOI: 10.3389/fpls.2022.923880] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/24/2022] [Indexed: 05/14/2023]
Abstract
Plant diseases and pests are risk factors that threaten global food security. Excessive chemical pesticide applications are commonly used to reduce the effects of plant diseases caused by bacterial and fungal pathogens. A major concern, as we strive toward more sustainable agriculture, is to increase crop yields for the increasing population. Microbial biological control agents (MBCAs) have proved their efficacy to be a green strategy to manage plant diseases, stimulate plant growth and performance, and increase yield. Besides their role in growth enhancement, plant growth-promoting rhizobacteria/fungi (PGPR/PGPF) could suppress plant diseases by producing inhibitory chemicals and inducing immune responses in plants against phytopathogens. As biofertilizers and biopesticides, PGPR and PGPF are considered as feasible, attractive economic approach for sustainable agriculture; thus, resulting in a "win-win" situation. Several PGPR and PGPF strains have been identified as effective BCAs under environmentally controlled conditions. In general, any MBCA must overcome certain challenges before it can be registered or widely utilized to control diseases/pests. Successful MBCAs offer a practical solution to improve greenhouse crop performance with reduced fertilizer inputs and chemical pesticide applications. This current review aims to fill the gap in the current knowledge of plant growth-promoting microorganisms (PGPM), provide attention about the scientific basis for policy development, and recommend further research related to the applications of PGPM used for commercial purposes.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Soliman M. Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Alshaymaa I. Ahmed
- Department of Agricultural Microbiology, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Alia A. M. Ebrahim
- Jiangsu Key Laboratory for Microbes and Genomics, School, of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Shaimaa H. Negm
- Department of Home Economic, Specific Education Faculty, Port Said University, Port Said, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed S. Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
11
|
Ebrahimi-Zarandi M, Saberi Riseh R, Tarkka MT. Actinobacteria as Effective Biocontrol Agents against Plant Pathogens, an Overview on Their Role in Eliciting Plant Defense. Microorganisms 2022; 10:microorganisms10091739. [PMID: 36144341 PMCID: PMC9500821 DOI: 10.3390/microorganisms10091739] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 01/02/2023] Open
Abstract
Pathogen suppression and induced systemic resistance are suitable alternative biocontrol strategies for integrated plant disease management and potentially comprise a sustainable alternative to agrochemicals. The use of Actinobacteria as biocontrol agents is accepted in practical sustainable agriculture, and a short overview on the plant-beneficial members of this phylum and recent updates on their biocontrol efficacies are the two topics of this review. Actinobacteria include a large portion of microbial rhizosphere communities and colonizers of plant tissues that not only produce pest-antagonistic secondary metabolites and enzymes but also stimulate plant growth. Non-pathogenic Actinobacteria can also induce systemic resistance against pathogens, but the mechanisms are still poorly described. In the absence of a pathogen, a mild defense response is elicited under jasmonic acid and salicylic acid signaling that involves pathogenesis-related proteins and secondary plant metabolites. Priming response partly includes the same compounds as the response to a sole actinobacterium, and the additional involvement of ethylene signaling has been suggested. Recent amplicon sequencing studies on bacterial communities suggest that future work may reveal how biocontrol active strains of Actinobacteria can be enriched in plant rhizosphere.
Collapse
Affiliation(s)
- Marzieh Ebrahimi-Zarandi
- Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
- Correspondence: (R.S.R.); (M.T.T.)
| | - Mika T. Tarkka
- UFZ—Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig Puschstrasse 4, 04103 Leipzig, Germany
- Correspondence: (R.S.R.); (M.T.T.)
| |
Collapse
|
12
|
Alwahshi KJ, Purayil GP, Saeed EE, Abufarajallah HA, Aldhaheri SJ, AbuQamar SF, El-Tarabily KA. The 1-aminocyclopropane-1-carboxylic acid deaminase-producing Streptomyces violaceoruber UAE1 can provide protection from sudden decline syndrome on date palm. FRONTIERS IN PLANT SCIENCE 2022; 13:904166. [PMID: 35968092 PMCID: PMC9373858 DOI: 10.3389/fpls.2022.904166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/27/2022] [Indexed: 05/27/2023]
Abstract
In the United Arab Emirates (UAE), sudden decline syndrome (SDS) is one of the major fungal diseases caused by Fusarium solani affecting date palm plantations. To minimize the impact of the causal agent of SDS on date palm, native actinobacterial strains isolated from rhizosphere soils of healthy date palm plants were characterized according to their antifungal activities against F. solani DSM 106836 (Fs). Based on their in vitro abilities, two promising biocontrol agents (BCAs), namely Streptomyces tendae UAE1 (St) andStreptomyces violaceoruber UAE1 (Sv), were selected for the production of antifungal compounds and cell wall degrading enzymes (CWDEs), albeit their variations in synthesizing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD). Although both isolates showed antagonism when applied 7 days before the pathogen in the greenhouse experiments, the ACCD-producing Sv was relatively superior in its efficacy against SDS over the non-ACCD-producing St. This was evident from the symptoms of SDS in diseased date palm seedlings which were greatly reduced by Sv compared to St. On a scale of 5.0, the estimated disease severity indices in Fs-diseased seedlings were significantly (P < 0.05) reduced from 4.8 to 1.5 and 0.5 by St and Sv, respectively. Thus, the number of conidia of Fs recovered from plants pre-treated with both BCAs was comparable, but significantly (P < 0.05) reduced compared to plants without any BCA treatment. In addition, a significant (P < 0.05) decrease in ACC levels of both the root and shoot tissues was detected inSv + Fs seedlings to almost similar levels of healthy seedlings. However, in planta ACC levels highly increased in seedlings grown in soils infested with the pathogen alone or amended with St prior to F. solani infestation (St + Fs). This suggests a major role of ACCD production in relieving the stress of date palm seedlings infected with F. solani, thus supporting the integrated preventive disease management programs against this pathogen. This is the first report of effective rhizosphere actinobacterial BCAs to provide protection against SDS on date palm, and to help increase agricultural productivity in a more sustainable manner in the UAE and the other arid regions.
Collapse
Affiliation(s)
- Khawla J. Alwahshi
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Research Station Section, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Gouthaman P. Purayil
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Esam Eldin Saeed
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Haneen A. Abufarajallah
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Shama J. Aldhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
13
|
Shamim A, Sanka Loganathachetti D, Chandran S, Masmoudi K, Mundra S. Salinity of irrigation water selects distinct bacterial communities associated with date palm (Phoenix dactylifera L.) root. Sci Rep 2022; 12:12733. [PMID: 35882908 PMCID: PMC9325759 DOI: 10.1038/s41598-022-16869-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023] Open
Abstract
Saline water irrigation has been used in date palm (Phoenix dactylifera L.) agriculture as an alternative to non-saline water due to water scarcity in hyper-arid environments. However, the knowledge pertaining to saline water irrigation impact on the root-associated bacterial communities of arid agroecosystems is scarce. In this study, we investigated the effect of irrigation sources (non-saline freshwater vs saline groundwater) on date palm root-associated bacterial communities using 16S rDNA metabarcoding. The bacterial richness, Shannon diversity and evenness didn't differ significantly between the irrigation sources. Soil electrical conductivity (EC) and irrigation water pH were negatively related to Shannon diversity and evenness respectively, while soil organic matter displayed a positive correlation with Shannon diversity. 40.5% of total Operational Taxonomic Units were unique to non-saline freshwater irrigation, while 26% were unique to saline groundwater irrigation. The multivariate analyses displayed strong structuring of bacterial communities according to irrigation sources, and both soil EC and irrigation water pH were the major factors affecting bacterial communities. The genera Bacillus, Micromonospora and Mycobacterium were dominated while saline water irrigation whereas contrasting pattern was observed for Rhizobium, Streptomyces and Acidibacter. Taken together, we suggest that date-palm roots select specific bacterial taxa under saline groundwater irrigation, which possibly help in alleviating salinity stress and promote growth of the host plant.
Collapse
Affiliation(s)
- Azra Shamim
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE
| | | | - Subha Chandran
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE.
| | - Sunil Mundra
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE.
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
14
|
Streptomyces species from the rhizosphere of the medicinal plant Artemisia herba-alba Asso: screening for biological activities. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Le KD, Yu NH, Park AR, Park DJ, Kim CJ, Kim JC. Streptomyces sp. AN090126 as a Biocontrol Agent against Bacterial and Fungal Plant Diseases. Microorganisms 2022; 10:microorganisms10040791. [PMID: 35456841 PMCID: PMC9025191 DOI: 10.3390/microorganisms10040791] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
Bacteria and fungi are major phytopathogens which substantially affect global agricultural productivity. In the present study, Streptomyces sp. AN090126, isolated from agricultural suppressive soil in Korea, showed broad-spectrum antagonistic activity against various phytopathogenic bacteria and fungi. In the 96-well plate assay, the fermentation filtrate of Streptomyces sp. AN090126 exhibited antimicrobial activity, with a minimum inhibitory concentration (MIC) of 0.63–10% for bacteria and 0.63–3.3% for fungi. The MIC of the partially purified fraction was 20.82–250 µg/mL for bacteria and 15.6–83.33 µg/mL for fungi. Gas chromatography–mass spectrometry (GC-MS) analysis revealed that AN090126 produced various volatile organic compounds (VOCs), including dimethyl sulfide and trimethyl sulfide, which inhibited the growth of pathogenic bacteria and fungi in in vitro VOC assays. In pot experiments, the fermentation broth of Streptomyces sp. AN090126 reduced tomato bacterial wilt caused by Ralstonia solanacearum, red pepper leaf spot caused by Xanthomonas euvesicatoria, and creeping bentgrass dollar spot caused by Sclerotinia homoeocarpa in a dose-dependent manner. Moreover, the secondary metabolites derived from this strain showed a synergistic effect with streptomycin sulfate against streptomycin-resistant Pectobacterium carotovorum subsp. carotovorum, the causative agent of Kimchi cabbage soft rot, in both in vitro and in vivo experiments. Therefore, Streptomyces sp. AN090126 is a potential biocontrol agent in controlling plant diseases caused by pathogenic bacteria and fungi, specifically by the streptomycin-resistant strains.
Collapse
Affiliation(s)
- Khanh Duy Le
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonam National University, Gwangju 61186, Korea; (K.D.L.); (N.H.Y.); (A.R.P.)
- Institute of New Technology, Academy of Military Science and Technology, 17 Hoangsam, Caugiay, Hanoi 100000, Vietnam
| | - Nan Hee Yu
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonam National University, Gwangju 61186, Korea; (K.D.L.); (N.H.Y.); (A.R.P.)
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonam National University, Gwangju 61186, Korea; (K.D.L.); (N.H.Y.); (A.R.P.)
| | - Dong-Jin Park
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (D.-J.P.); (C.-J.K.)
| | - Chang-Jin Kim
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (D.-J.P.); (C.-J.K.)
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonam National University, Gwangju 61186, Korea; (K.D.L.); (N.H.Y.); (A.R.P.)
- Correspondence:
| |
Collapse
|
16
|
Alhudaib KA, El-Ganainy SM, Almaghasla MI, Sattar MN. Characterization and Control of Thielaviopsis punctulata on Date Palm in Saudi Arabia. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030250. [PMID: 35161231 PMCID: PMC8839011 DOI: 10.3390/plants11030250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
Date palm (Phoenix dactylifera L.) is the most important edible fruit crop in Saudi Arabia. Date palm cultivation and productivity are severely affected by various fungal diseases in date palm-producing countries. In recent years, black scorch disease has emerged as a devastating disease affecting date palm cultivation in the Arabian Peninsula. In the current survey, leaves and root samples were collected from deteriorated date palm trees showing variable symptoms of neck bending, leaf drying, tissue necrosis, wilting, and mortality of the entire tree in the Al-Ahsa region of Saudi Arabia. During microscopic examination, the fungus isolates growing on potato dextrose agar (PDA) media produced thick-walled chlamydospores and endoconidia. The morphological characterization confirmed the presence of Thielaviopsis punctulata in the date palm plant samples as the potential agent of black scorch disease. The results were further confirmed by polymerase chain reaction (PCR), sequencing, and phylogenetic dendrograms of partial regions of the ITS, TEF1-α, and β-tubulin genes. The nucleotide sequence comparison showed that the T. punctulata isolates were 99.9-100% identical to each other and to the T. punctulata isolate identified from Iraq-infecting date palm trees. The pathogenicity of the three selected T. punctulata isolates was also confirmed on date palm plants of Khalas cultivar. The morphological, molecular, and pathogenicity results confirmed that T. punctulata causes black scorch disease in symptomatic date palm plants in Saudi Arabia. Furthermore, seven commercially available fungicides were also tested for their potential efficacy to control black scorch disease. The in vitro application of the three fungicides Aliette, Score, and Tachigazole reduced the fungal growth zone by 86-100%, respectively, whereas the in vivo studies determined that the fungicides Aliette and Score significantly impeded the mycelial progression of T. punctulata with 40% and 73% efficiency, respectively. These fungicides can be used in integrated disease management (IDM) strategies to curb black scorch disease.
Collapse
Affiliation(s)
- Khalid A. Alhudaib
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia; (K.A.A.); (S.M.E.-G.); (M.I.A.)
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| | - Sherif M. El-Ganainy
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia; (K.A.A.); (S.M.E.-G.); (M.I.A.)
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, ARC, Giza 12619, Egypt
| | - Mustafa I. Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia; (K.A.A.); (S.M.E.-G.); (M.I.A.)
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| | - Muhammad N. Sattar
- Central Laboratories, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
17
|
Alblooshi AA, Purayil GP, Saeed EE, Ramadan GA, Tariq S, Altaee AS, El-Tarabily KA, AbuQamar SF. Biocontrol Potential of Endophytic Actinobacteria against Fusarium solani, the Causal Agent of Sudden Decline Syndrome on Date Palm in the UAE. J Fungi (Basel) 2021; 8:jof8010008. [PMID: 35049948 PMCID: PMC8779766 DOI: 10.3390/jof8010008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 01/07/2023] Open
Abstract
Thirty-one endophytic streptomycete and non-streptomycete actinobacteria were isolated from healthy date palm root tissues. In vitro screening revealed that the antifungal action of isolate #16 was associated with the production of cell-wall degrading enzymes, whereas with diffusible antifungal metabolites in isolate #28, albeit their production of volatile antifungal compounds. According to the 16S rRNA gene sequencing, isolates #16 and #28 were identified as Streptomyces polychromogenes UAE2 (Sp; GenBank Accession #: OK560620) and Streptomyces coeruleoprunus UAE1 (Sc; OK560621), respectively. The two antagonists were recovered from root tissues until 12 weeks after inoculation, efficiently colonized root cortex and xylem vessels, indicating that the date palm roots are a suitable habitat for these endophytic isolates. At the end of the greenhouse experiments, the development of sudden decline syndrome (SDS) was markedly suppressed by 53% with the application of Sp and 86% with Sc, confirming their potential in disease management. Results showed that the estimated disease severity indices in diseased seedlings were significantly (p < 0.05) reduced from 4.75 (scale of 5) to 2.25 or 0.67 by either Sp or Sc, respectively. In addition, conidial numbers of the pathogen significantly (p < 0.05) dropped by 38% and 76% with Sp and Sc, respectively, compared to infected seedlings with F. solani (control). Thus, the suppression of disease symptoms was superior in seedlings pre-inoculated with S. coeruleoprunus, indicating that the diffusible antifungal metabolites were responsible for F. solani retardation in these plants. This is the first report of actinobacteria naturally existing in date palm tissues acting as microbial antagonists against SDS on date palm.
Collapse
Affiliation(s)
- Aisha A. Alblooshi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.A.); (G.P.P.); (G.A.R.); (A.S.A.)
| | - Gouthaman P. Purayil
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.A.); (G.P.P.); (G.A.R.); (A.S.A.)
| | - Esam Eldin Saeed
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (E.E.S.)
| | - Gaber A. Ramadan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.A.); (G.P.P.); (G.A.R.); (A.S.A.)
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.T.)
| | - Amna S. Altaee
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.A.); (G.P.P.); (G.A.R.); (A.S.A.)
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.A.); (G.P.P.); (G.A.R.); (A.S.A.)
- Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (K.A.E.-T.); (S.F.A.); Tel.: +971-3-713-6518 (K.A.E.-T.); +971-3-713-6733 (S.F.A.)
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (A.A.A.); (G.P.P.); (G.A.R.); (A.S.A.)
- Correspondence: (K.A.E.-T.); (S.F.A.); Tel.: +971-3-713-6518 (K.A.E.-T.); +971-3-713-6733 (S.F.A.)
| |
Collapse
|
18
|
El-Saadony MT, Saad AM, Taha TF, Najjar AA, Zabermawi NM, Nader MM, AbuQamar SF, El-Tarabily KA, Salama A. Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk. Saudi J Biol Sci 2021; 28:6782-6794. [PMID: 34866977 PMCID: PMC8626219 DOI: 10.1016/j.sjbs.2021.07.059] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
The current study was performed to develop a simple, safe, and cost-effective technique for the biosynthesis of selenium nanoparticles (SeNPs) from lactic acid bacteria (LAB) isolated from human breast milk with antifungal activity against animal pathogenic fungi. The LAB was selected based on their speed of transforming sodium selenite (Na2SeO3) to SeNPs. Out of the four identified LAB isolates, only one strain produced dark red color within 32 h of incubation, indicating that this isolate was the fastest in transforming Na2SeO3 to SeNPs; and was chosen for the biosynthesis of LAB-SeNPs. The superior isolate was further identified as Lactobacillus paracasei HM1 (MW390875) based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and phylogenetic tree analysis of 16S rRNA sequence alignments. The optimum experimental conditions for the biosynthesis of SeNPs by L. paracasei HM1 were found to be pH (6.0), temperature (35˚C), Na2SeO3 (4.0 mM), reaction time (32 h), and agitation speed (160 rpm). The ultraviolet absorbance of L. paracasei-SeNPs was detected at 300 nm, and the transmission electron microscopy (TEM) captured a diameter range between 3.0 and 50.0 nm. The energy-dispersive X-ray spectroscopy (EDX) and the Fourier-transform infrared spectroscopy (FTIR) provided a clear image of the active groups associated with the stability of L. paracasei-SeNPs. The size of L. paracasei-SeNPs using dynamic light scattering technique was 56.91 ± 1.8 nm, and zeta potential value was -20.1 ± 0.6 mV in one peak. The data also revealed that L. paracasei-SeNPs effectively inhibited the growth of Candida and Fusarium species, and this was further confirmed by scanning electron microscopy (SEM). The current study concluded that the SeNPs obtained from L. paracasei HM1 could be used to prepare biological antifungal formulations effective against major animal pathogenic fungi. The antifungal activity of the biologically synthesized SeNPs using L. paracasei HM1 outperforms the chemically produced SeNPs. In vivo studies showing the antagonistic effect of SeNPs on pathogenic fungi are underway to demonstrate the potential of a therapeutic agent to treat animals against major infectious fungal diseases.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Taha F. Taha
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Azhar A. Najjar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nidal M. Zabermawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maha M. Nader
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, 15551 Al-Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, 15551 Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch 6150, Western Australia, Australia
| | - Ali Salama
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
19
|
Effectiveness of Augmentative Biological Control of Streptomyces griseorubens UAE2 Depends on 1-Aminocyclopropane-1-Carboxylic Acid Deaminase Activity against Neoscytalidium dimidiatum. J Fungi (Basel) 2021; 7:jof7110885. [PMID: 34829174 PMCID: PMC8618148 DOI: 10.3390/jof7110885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
To manage stem canker disease on royal poinciana, actinobacterial isolates were used as biological control agents (BCAs) based on their strong in vitro inhibitory effects against Neoscytalidiumdimidiatum. Streptomyces griseorubens UAE2 and Streptomyces wuyuanensis UAE1 had the ability to produce antifungal compounds and cell-wall-degrading enzymes (CWDEs). Only S. griseorubens, however, restored the activity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCD). In vivo apple fruit bioassay showed that lesion development was successfully constrained by either isolates on fruits inoculated with N. dimidiatum. In our greenhouse and container nursery experiments, S. griseorubens showed almost complete suppression of disease symptoms. This was evident when the preventive treatment of S. griseorubens significantly (p < 0.05) reduced the numbers of conidia of N. dimidiatum and defoliated leaves of royal poinciana seedlings to lesser levels than when S. wuyuanensis was applied, but comparable to control treatments (no pathogen). The disease management of stem canker was also associated with significant (p < 0.05) decreases in ACC levels in royal poinciana stems when S. griseorubens was applied compared to the non-ACCD-producing S. wuyuanensis. This study is the first to report the superiority of antagonistic actinobacteria to enhance their effectiveness as BCAs not only for producing antifungal metabolites and CWDEs but also for secreting ACCD.
Collapse
|
20
|
Boukaew S, Cheirsilp B, Yossan S, Khunjan U, Petlamul W, Prasertsan P. Utilization of palm oil mill effluent as a novel substrate for the production of antifungal compounds by Streptomyces philanthi RM-1-138 and evaluation of its efficacy in suppression of three strains of oil palm pathogen. J Appl Microbiol 2021; 132:1990-2003. [PMID: 34564911 DOI: 10.1111/jam.15304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022]
Abstract
AIMS This study aimed to use palm oil mill effluent (POME) as a renewable resource for the production of antifungal compounds by Streptomyces philanthi RM-1-138 against Ganoderma boninense, Ceratocystis paradoxa and Curvularia oryzae. METHODS AND RESULTS The efficacy of antifungal compounds RM-1-138 against the three strains of fungal oil palm pathogen was evaluated both in vitro and on oil palm leaf segments. In vitro studies using confrontation tests on glucose yeast-malt extract (GYM) agar plates indicated that the strain RM-1-138 inhibited the growth of all three fungal pathogenic strains. The antifungal compounds produced in the GYM medium exhibited significantly higher inhibition (79%-100%) against the three fungal pathogens than using the diluted POME (50%) medium (80%-83% inhibition). The optimum condition for the production of antifungal compounds from the strain RM-1-138 was as following: POME of 47,966 mg L-1 chemical oxygen demand (COD), the initial pH at 7.0 and supplemented with yeast extract (0.4%). Meanwhile, severe morphological and internal abnormalities in C. oryzae hyphae were observed under a scanning electron microscope and transmission electron microscope. In vivo experiment on oil palm leaf segments indicated that the efficacy of the antifungal compounds RM-1-138 (DSI = 1.3) were not significantly difference in the suppression of Curvularia leaf spot compared with the two commercial chemical fungicides of mancozeb® (DSI = 1.0) and tetraconazole® (DSI = 1.3). CONCLUSIONS Antifungal compounds produced by S. philanthi RM-1-138 grown in POME have the potential to inhibit fungal pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY The POME (about 47 mg L-1 COD) with the initial pH of 7.0 and supplementation of 0.4% nitrogen could be used as a culture medium for the growth and production of antifungal compounds of S. philanthi RL-1-138. In addition, the antifungal compound RM-1-138 could suppress the three strains of oil palm fungal pathogen tested on oil palm leaf segment.
Collapse
Affiliation(s)
- Sawai Boukaew
- College of Innovation and Management, Songkhla Rajabhat University, Songkhla, Thailand
| | - Benjamas Cheirsilp
- International Program in Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hatyai, Thailand
| | - Siriporn Yossan
- Division of Environmental Science, Faculty of Liberal Arts and Science, Sisaket Rajabhat University, Sisaket, Thailand
| | - Uraiwan Khunjan
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
| | - Wanida Petlamul
- College of Innovation and Management, Songkhla Rajabhat University, Songkhla, Thailand
| | - Poonsuk Prasertsan
- Research and Development Office, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
21
|
Xiao L, Niu HJ, Qu TL, Zhang XF, Du FY. Streptomyces sp. FX13 inhibits fungicide-resistant Botrytis cinerea in vitro and in vivo by producing oligomycin A. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104834. [PMID: 33993959 DOI: 10.1016/j.pestbp.2021.104834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Botrytis cinerea is one of the most destructive fungal pathogens which can cause gray mold diseases of numerous plant species, while the frequent applications of fungicides also result in the fungicide-resistances of B. cinerea. In this study, a new Streptomyces strain FX13 was obtained to show biocontrol potentials against fungicide-resistant B. cinerea B3-4. Its in vitro and in vivo antifungal mechanisms were further investigated. The results showed that the culture extract of strain FX13 could significantly inhibit the mycelia growth of B. cinerea B3-4 with the EC50 value of 5.40 mg L-1, which was greatly lower than those of pyrisoxazole, boscalid and azoxystrobin. Further bioassay-guided isolation of the extract had yielded the antifungal component SA1, which was elucidated as a 26-membered polyene macrolide of oligomycin A. SA1 could inhibit the mycelia growth, spore germination, germ tube elongation and sporogenesis of B. cinerea B3-4 in vitro, and also showed significant curative and protective effects against gray mold on grapes in vivo. Moreover, SA1 could result in the loss of membrane integrity and the leakage of cytoplasmic contents, which might be related to the accumulation of reactive oxygen species (ROS) and membrane lipid peroxidation. Besides, intracellular adenosine triphosphatase (ATPase) activity and adenosine triphosphate (ATP) content of B. cinerea B3-4 decreased after SA1-treatment. Overall, the oligomycin A-producing strain FX13 could inhibit fungicide-resistant B. cinerea B3-4 in vitro and in vivo, also highlighting its biocontrol potential against gray mold.
Collapse
Affiliation(s)
- Lin Xiao
- Institute of Green Pesticide Development, College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China
| | - Hong-Jie Niu
- Institute of Green Pesticide Development, College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China
| | - Tian-Li Qu
- Institute of Green Pesticide Development, College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiang-Fei Zhang
- Institute of Green Pesticide Development, College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China
| | - Feng-Yu Du
- Institute of Green Pesticide Development, College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China; Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
22
|
Nili O, Azizi A, Abdollahzadeh J. Development of an efficient Tef-1α RNA hairpin structure to efficient management of Lasiodiplodia theobromae and Neofusicoccum parvum. Sci Rep 2021; 11:9612. [PMID: 33953257 PMCID: PMC8099910 DOI: 10.1038/s41598-021-88422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/12/2021] [Indexed: 12/05/2022] Open
Abstract
Lasiodiplodia theobromae and Neofusicoccum parvum are serious worldwide-distributed plant pathogenic fungi with a wide host range in tropical and temperate climates. They cause fruit rot, canker, and dieback of twigs in various woody plants. Protection of pruning wounds using fungicides is the prevalent strategy for the management of the diseases caused by these fungi. Chemical control of plant diseases is not environmentally safe and the residues of fungicides are a threat to nature. Furthermore, genetic resources of resistance to plant diseases in woody plants are limited. The aim of this study was to investigate the efficiency of RNA silencing using an efficient hairpin structure based on Tef-1α gene for the management of L. theobromae and N. parvum. Hairpin structure of Tef-1α was cloned in pFGC5941 binary vector and the recombinant construct was named pFGC-TEF-d. Transient expression of pFGC-TEF-d using Agrobacterium LBA4404 in grapevine (Bidaneh Sefid cv.) and strawberry cultivars (Camarosa and Ventana) led to a reduction in disease progress of L. theobromae. The disease reduction in grapevine was estimated by 55% and in strawberries cultivars Camarosa and Ventana by 58% and 93%, respectively. Further analysis of transient expression of pFGC-TEF-d in strawberry (Camarosa) shown disease reduction using Neofusicoccum parvum. Here we introduce RNAi silencing using pFGC-TEF-d construct as an efficient strategy to the management of L. theobromae and N. parvum for the first time.
Collapse
Affiliation(s)
- Omid Nili
- Department of Plant Protection, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdolbaset Azizi
- Department of Plant Protection, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Jafar Abdollahzadeh
- Department of Plant Protection, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| |
Collapse
|
23
|
Phenotypic and molecular analysis of dominant occurring antibiotic active-producing Streptomyces soil flora in Northern Jordan. Saudi J Biol Sci 2021; 28:4500-4510. [PMID: 34354436 PMCID: PMC8324927 DOI: 10.1016/j.sjbs.2021.04.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/18/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022] Open
Abstract
This investigation aimed to determine the relatedness of dominant occurring soil Streptomyces spp. in Northern Jordan based on their RAPD-PCR fingerprints, and to compare RAPD technique with the conventional phenotypic characterization of Streptomyces isolates. Fifty-eight white and gray color-bearing aerial mycelia antibiotic active-producing Streptomyces soil isolates along with three reference strains were genetically analyzed by RAPD-PCR. Polymorphisms between the isolates showed 1 to 10 bands per isolate and ranged from 200 to 3200 bp in size. Results revealed one common band of ~600 bp shared by ~85% of the isolates, and the observation of bands specific to some reference strains and some soil isolates. When RAPD patterns were analyzed with the UPGMA, results revealed clustering the tested isolates into two equal main super clusters (50% each). Super cluster I appeared to be homogenous and include the three reference strains. However, super cluster II was heterogeneous and but not including any of the reference strains. The association of the antibiotic activity of the dominant white and gray aerial mycelium-bearing Streptomyces isolates to RAPD clustering is reported for the first time, and the RAPD-PCR fingerprints generated here deserve to be cloned, characterized and sequenced in future as Streptomyces species-specific DNA markers. The more random primers used in the analysis may add to RAPD technique a cost-effective, fast, precise result, and less labor work solution for analyzing the similarities and differences among the Streptomyces isolates.
Collapse
|
24
|
Qian H, Wang L, Ma X, Yi X, Wang B, Liang W. Proteome-Wide Analysis of Lysine 2-Hydroxyisobutyrylated Proteins in Fusarium oxysporum. Front Microbiol 2021; 12:623735. [PMID: 33643252 PMCID: PMC7902869 DOI: 10.3389/fmicb.2021.623735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Protein lysine 2-hydroxyisobutyrylation (K hib ), a new type of post-translational modification, occurs in histones and non-histone proteins and plays an important role in almost all aspects of both eukaryotic and prokaryotic living cells. Fusarium oxysporum, a soil-borne fungal pathogen, can cause disease in more than 150 plants. However, little is currently known about the functions of K hib in this plant pathogenic fungus. Here, we report a systematic analysis of 2-hydroxyisobutyrylated proteins in F. oxysporum. In this study, 3782 K hib sites in 1299 proteins were identified in F. oxysporum. The bioinformatics analysis showed that 2-hydroxyisobutyrylated proteins are involved in different biological processes and functions and are located in diverse subcellular localizations. The enrichment analysis revealed that K hib participates in a variety of pathways, including the ribosome, oxidative phosphorylation, and proteasome pathways. The protein interaction network analysis showed that 2-hydroxyisobutyrylated protein complexes are involved in diverse interactions. Notably, several 2-hydroxyisobutyrylated proteins, including three kinds of protein kinases, were involved in the virulence or conidiation of F. oxysporum, suggesting that K hib plays regulatory roles in pathogenesis. Moreover, our study shows that there are different K hib levels of F. oxysporum in conidial and mycelial stages. These findings provide evidence of K hib in F. oxysporum, an important filamentous plant pathogenic fungus, and serve as a resource for further exploration of the potential functions of K hib in Fusarium species and other filamentous pathogenic fungi.
Collapse
Affiliation(s)
- Hengwei Qian
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China.,College of Life Sciences, Shandong Normal University, Jinan, China
| | - Lulu Wang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | | | - Xingling Yi
- Micron Biotechnology Co., Ltd., Hangzhou, China
| | - Baoshan Wang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
25
|
Nishad R, Ahmed TA. Survey and Identification of Date Palm Pathogens and Indigenous Biocontrol Agents. PLANT DISEASE 2020; 104:2498-2508. [PMID: 32631200 DOI: 10.1094/pdis-12-19-2556-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fungal diseases are considered a major threat to plant growth and productivity. However, some beneficial fungi growing in the same environment protect plants from various pathogens, either by secreting antifungal metabolites or by stimulating the host immune defense mechanism. Date palms are susceptible to several fungal pathogens. Nevertheless, information on the pathogenic fungal distribution in date palm fields across different seasons is limited, especially that from Qatar. Therefore, the current study's aim was to evaluate the pathogenic and beneficial fungal diversity and distribution, including the endophytic fungi from the date palm tissues and root-associated soil fungi, during different seasons, for the identification of indigenous biocontrol agents. Our results showed that the highest number of fungal species was isolated in fall and spring, and pathogenic fungi were isolated mainly in spring. This is the first report that in Qatar, Neodeightonia phoenicum and Thielaviopsis punctulata cause date palm root rot disease, Fusarium brachygibbosum and Fusarium equiseti cause date palm wilting, and N. phoenicum causes diplodia disease in date palm offshoots. The combinations of the fungi that did not frequently occur together in date palm rhizosphere soil were investigated to identify indigenous biocontrol agents. Based on the results, we determined that Trichoderma harzianum and Trichoderma longibrachiatum are effective antagonistic fungi against T. punctulata, N. phoenicum, F. brachygibbosum, and Fusarium solani, qualifying them as potential biocontrol agents. Antagonistic activity of endophytic fungi against the pathogens was tested; except for Ulocladium chartarum, no endophytic fungi showed antagonistic activity against the tested pathogens.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Resna Nishad
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| | - Talaat A Ahmed
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
- Environmental Science Centre, Qatar University, Doha, Qatar
| |
Collapse
|
26
|
Mathew BT, Torky Y, Amin A, Mourad AHI, Ayyash MM, El-Keblawy A, Hilal-Alnaqbi A, AbuQamar SF, El-Tarabily KA. Halotolerant Marine Rhizosphere-Competent Actinobacteria Promote Salicornia bigelovii Growth and Seed Production Using Seawater Irrigation. Front Microbiol 2020; 11:552. [PMID: 32308651 PMCID: PMC7145952 DOI: 10.3389/fmicb.2020.00552] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Salicornia bigelovii is a promising halophytic cash crop that grows in seawater of the intertidal zone of the west-north coast of the UAE. This study assess plant growth promoting (PGP) capabilities of halotolerant actinobacteria isolated from rhizosphere of S. bigelovii to be used as biological inoculants on seawater-irrigated S. bigelovii plants. Under laboratory conditions, a total of 39 actinobacterial strains were isolated, of which 22 were tolerant to high salinity (up to 8% w/v NaCl). These strains were further screened for their abilities to colonize S. bigelovii roots in vitro; the most promising ones that produced indole-3-acetic acid, polyamines (PA) or 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) were selected for rhizosphere-competency under naturally competitive environment. Three outstanding rhizosphere-competent isolates, Streptomyces chartreusis (Sc), S. tritolerans (St), and S. rochei (Sr) producing auxins, PA and ACCD, respectively, were investigated individually and as consortium (Sc/St/Sr) to determine their effects on the performance of S. bigelovii in the greenhouse. Individual applications of strains on seawater-irrigated plants significantly enhanced shoot and root dry biomass by 32.3-56.5% and 42.3-71.9%, respectively, in comparison to non-inoculated plants (control). In addition, plants individually treated with Sc, St and Sr resulted in 46.1, 60.0, and 69.1% increase in seed yield, respectively, when compared to control plants. Thus, the synergetic combination of strains had greater effects on S. bigelovii biomass (62.2 and 77.9% increase in shoot and root dry biomass, respectively) and seed yield (79.7% increase), compared to the control treatment. Our results also showed significant (P < 0.05) increases in the levels of photosynthetic pigments, endogenous auxins and PA, but a reduction in the levels of ACC in tissues of plants inoculated with Sc/St/Sr. We conclude that the consortium of isolates was the most effective treatment on S. bigelovii growth; thus confirmed by principal component and correlation analyses. To this best of our knowledge, this is the first report about halotolerant rhizosphere-competent PGP actinobacteria thriving in saline soils that can potentially contribute to promoting growth and increasing yield of S. bigelovii. These halotolerant actinobacterial strains could potentially be exploited as biofertilizers to sustain crop production in arid coastal areas.
Collapse
Affiliation(s)
- Betty T. Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Yaser Torky
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Abdel-Hamid I. Mourad
- Department of Mechanical Engineering, College of Engineering, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mutamed M. Ayyash
- Department of Food, Nutrition and Health Sciences, College of Food and Agriculture, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ali El-Keblawy
- Department of Applied Biology, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
27
|
Romano-Armada N, Yañez-Yazlle MF, Irazusta VP, Rajal VB, Moraga NB. Potential of Bioremediation and PGP Traits in Streptomyces as Strategies for Bio-Reclamation of Salt-Affected Soils for Agriculture. Pathogens 2020; 9:E117. [PMID: 32069867 PMCID: PMC7169405 DOI: 10.3390/pathogens9020117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/31/2020] [Accepted: 02/08/2020] [Indexed: 12/11/2022] Open
Abstract
Environmental limitations influence food production and distribution, adding up to global problems like world hunger. Conditions caused by climate change require global efforts to be improved, but others like soil degradation demand local management. For many years, saline soils were not a problem; indeed, natural salinity shaped different biomes around the world. However, overall saline soils present adverse conditions for plant growth, which then translate into limitations for agriculture. Shortage on the surface of productive land, either due to depletion of arable land or to soil degradation, represents a threat to the growing worldwide population. Hence, the need to use degraded land leads scientists to think of recovery alternatives. In the case of salt-affected soils (naturally occurring or human-made), which are traditionally washed or amended with calcium salts, bio-reclamation via microbiome presents itself as an innovative and environmentally friendly option. Due to their low pathogenicity, endurance to adverse environmental conditions, and production of a wide variety of secondary metabolic compounds, members of the genus Streptomyces are good candidates for bio-reclamation of salt-affected soils. Thus, plant growth promotion and soil bioremediation strategies combine to overcome biotic and abiotic stressors, providing green management options for agriculture in the near future.
Collapse
Affiliation(s)
- Neli Romano-Armada
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ingeniería, UNSa, Salta 4400, Argentina
| | - María Florencia Yañez-Yazlle
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ciencias Naturales, UNSa, Salta 4400, Argentina
| | - Verónica P. Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ciencias Naturales, UNSa, Salta 4400, Argentina
| | - Verónica B. Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ingeniería, UNSa, Salta 4400, Argentina
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Norma B. Moraga
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ingeniería, UNSa, Salta 4400, Argentina
| |
Collapse
|
28
|
Al Raish SM, Saeed EE, Sham A, Alblooshi K, El-Tarabily KA, AbuQamar SF. Molecular Characterization and Disease Control of Stem Canker on Royal Poinciana ( Delonix regia) Caused by Neoscytalidium dimidiatum in the United Arab Emirates. Int J Mol Sci 2020; 21:E1033. [PMID: 32033175 PMCID: PMC7036867 DOI: 10.3390/ijms21031033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 01/04/2023] Open
Abstract
In the United Arab Emirates (UAE), royal poinciana (Delonix regia) trees suffer from stem canker disease. Symptoms of stem canker can be characterized by branch and leaf dryness, bark lesions, discoloration of xylem tissues, longitudinal wood necrosis and extensive gumming. General dieback signs were also observed leading to complete defoliation of leaves and ultimately death of trees in advanced stages. The fungus, Neoscytalidium dimidiatum DSM 109897, was consistently recovered from diseased royal poinciana tissues; this was confirmed by the molecular, structural and morphological studies. Phylogenetic analyses of the translation elongation factor 1-a (TEF1-α) of N. dimidiatum from the UAE with reference specimens of Botryosphaeriaceae family validated the identity of the pathogen. To manage the disease, the chemical fungicides, Protifert®, Cidely® Top and Amistrar® Top, significantly inhibited mycelial growth and reduced conidial numbers of N. dimidiatum in laboratory and greenhouse experiments. The described "apple bioassay" is an innovative approach that can be useful when performing fungicide treatment studies. Under field conditions, Cidely® Top proved to be the most effective fungicide against N. dimidiatum among all tested treatments. Our data suggest that the causal agent of stem canker disease on royal poinciana in the UAE is N. dimidiatum.
Collapse
Affiliation(s)
- Seham M. Al Raish
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE; (S.M.A.R.); (A.S.); (K.A.)
| | - Esam Eldin Saeed
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain 15551, UAE;
| | - Arjun Sham
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE; (S.M.A.R.); (A.S.); (K.A.)
| | - Khulood Alblooshi
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE; (S.M.A.R.); (A.S.); (K.A.)
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE; (S.M.A.R.); (A.S.); (K.A.)
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain 15551, UAE;
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE; (S.M.A.R.); (A.S.); (K.A.)
| |
Collapse
|
29
|
El-Tarabily KA, AlKhajeh AS, Ayyash MM, Alnuaimi LH, Sham A, ElBaghdady KZ, Tariq S, AbuQamar SF. Growth Promotion of Salicornia bigelovii by Micromonospora chalcea UAE1, an Endophytic 1-Aminocyclopropane-1-Carboxylic Acid Deaminase-Producing Actinobacterial Isolate. Front Microbiol 2019; 10:1694. [PMID: 31396194 PMCID: PMC6668420 DOI: 10.3389/fmicb.2019.01694] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022] Open
Abstract
Salicornia bigelovii is a promising halophytic crop for saline soils in semi-arid regions. This study was designed to characterize isolates of endophytic actinobacteria from S. bigelovii roots and evaluate the effects associated with plant growth promotion. Twenty-eight endophytic isolates obtained from surface-sterilized roots of S. bigelovii were initially selected based on their production of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase in vitro in a chemically defined medium. Application of Micromonospora chalcea UAE1, possessing the highest ACC deaminase activity, to S. bigelovii seedlings significantly enhanced the plant growth under gnotobiotic and greenhouse conditions. This was clear from the increases in the dry weight and length of both shoot and root, and seed yield compared to the non-ACC deaminase-producing isolate Streptomyces violaceorectus, or control treatment. The growth promotion was also supported by significant increases in the content of photosynthetic pigments and the levels of auxins, but significant decreases in the levels of ACC in planta. Under greenhouse conditions, M. chalcea recovered from inside the inoculated roots in all samplings (up to 12 weeks post inoculation), suggesting that the roots of healthy S. bigelovii are a suitable habitat for the endophytic actinobacterial isolates. Pure cultures of M. chalcea were not capable of producing auxins, gibberellic acid, cytokinins or polyamines in vitro. This indicates that the growth promotion is most likely to be due to the reduction of the endogenous levels of the stress hormone ethylene. Our findings suggest that growth and yields of S. bigelovii can be enhanced by the field application of the endophyte M. chalcea UAE1. This study is the first to report potential endophytic non-streptomycete actinobacteria to promote the growth of halophytic plants in semi-arid zones under greenhouse conditions.
Collapse
Affiliation(s)
- Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Abdulmajeed S. AlKhajeh
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mutamed M. Ayyash
- Department of Food, Nutrition and Health Sciences, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Latifa H. Alnuaimi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Arjun Sham
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled Z. ElBaghdady
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
30
|
Tolba STM, Ibrahim M, Amer EAM, Ahmed DAM. First insights into salt tolerance improvement of Stevia by plant growth-promoting Streptomyces species. Arch Microbiol 2019; 201:1295-1306. [PMID: 31273402 DOI: 10.1007/s00203-019-01696-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 11/28/2022]
Abstract
The present study aimed to investigate the potential of plant growth-promoting rhizobacteria (PGPR) to improve the salt stress and alleviate its impact on Stevia crop plant under different levels of salt concentration. Two Streptomyces spp. isolated from the rhizosphere of halophytic plants (Cucumis sativus L. and Salicornia europaea L.) have shown potential for plant growth promotion in Stevia plant. The streptomycetes isolates were identified by classical microbiological techniques and partial sequencing of 16S rRNA gene as Streptomyces variabilis (4NC) and S. fradiae (8PK). The results have shown that inoculation of Stevia plant by these isolates has enhanced plant growth parameters under applied salt stress. Moreover, total cellular proteins were extracted from the two Streptomyces isolates and SDS-PAGE technique was conducted. Mass spectrometric analysis has identified unique polypeptide of the elongation factor thermos unstable (EF-Tu) indicating the elevation of ribosomal RNA and ribosomal protein genes transcription. On the same context, alleviation of salt stress in Stevia plants inoculated with the two Streptomyces isolates has potentially promoted the accumulation of the major pronounced RuBisCO large subunit protein band detected approximately at 53 kDa. These results may give novel insights and accretion our understanding of salinity tolerance mechanisms using PGP streptomycetes to develop resistant sugar crops of highly important economic value. This study has presented the integration of microbiological, biochemical, and molecular techniques to evaluate the effect of salt stress and to assess the level of stress amelioration using PGPR on proteostasis of sugar crops in Egypt.
Collapse
Affiliation(s)
- Sahar T M Tolba
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Mohamed Ibrahim
- Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Essam A M Amer
- Breeding and Genetics Department, Sugar Crops Research Institute, Agricultural Research Centre (ARC), Giza, Egypt
| | - Doaa A M Ahmed
- Breeding and Genetics Department, Sugar Crops Research Institute, Agricultural Research Centre (ARC), Giza, Egypt
| |
Collapse
|
31
|
AbdElgawad H, Saleh AM, Al Jaouni S, Selim S, Hassan MO, Wadaan MAM, Shuikan AM, Mohamed HS, Hozzein WN. Utilization of actinobacteria to enhance the production and quality of date palm (Phoenix dactylifera L.) fruits in a semi-arid environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:690-697. [PMID: 30780014 DOI: 10.1016/j.scitotenv.2019.02.140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 05/14/2023]
Abstract
Actinobacteria have received much attention due to their capacity for plant growth promotion, a promising approach in sustainable development of agriculture. Date palm (Phoenix dactylifera L.) is an important crop, particularly in semi-arid regions of the world, due to the high nutritional and health-promoting values of its fruits. The present study was conducted to investigate the utilization of actinobacteria as an approach to support soil fertility and enhance production and functional food value of date palm fruits in a semi-arid environment. To achieve this purpose, actinobacterial strains were isolated from palm rhizosphere, characterized and screened for bioactivity. Then the potent isolates, based on plant growth promoting assays, were inoculated into the soil rhizosphere of five-target palms (Ajwa, Sokary, Khodry, Rashodia and Saffawy) before flowering and during fruiting stages in two successive seasons. Interestingly, the actinobacterial inoculants increased soil fertility and improved fruit yield of the tested palms. The treated date fruits accumulated higher levels of valuable phytochemicals such as sugars, organic acids, essential amino acids, unsaturated fatty acids, phenolic acids, flavonoids, vitamins and minerals, as compared with the untreated ones. Moreover, actinobacterial treatment induced the biological activities (antioxidant, antibacterial, antifungal and anticancer) of the produce dates. Conclusively, results presented herein suggest the promising application of actinobacteria for supporting the production and functional food value of date palms in semi-arid regions.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Belgium
| | - Ahmed M Saleh
- Biology Department, Faculty of Science at Yanbu, Taibah University, King Khalid Rd., Al Amoedi, 46423 Yanbu El-Bahr, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Soad Al Jaouni
- Department of Hematology and Youssef Abdulatif Jameel Chair of Prophetic Medicine Application (YAJCPMA), Faculty of Medicine, King Abdulaziz University, P.O. Box 80215, Jeddah 21589, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. 2014, Saudi Arabia; Microbiology and Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O. 41522, Egypt
| | - Mahmoud O Hassan
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed A M Wadaan
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M Shuikan
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
32
|
Alwahshi KJ, Saeed EE, Sham A, Alblooshi AA, Alblooshi MM, El-Tarabily KA, AbuQamar SF. Molecular Identification and Disease Management of Date Palm Sudden Decline Syndrome in the United Arab Emirates. Int J Mol Sci 2019; 20:ijms20040923. [PMID: 30791606 PMCID: PMC6412958 DOI: 10.3390/ijms20040923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/03/2019] [Accepted: 02/17/2019] [Indexed: 11/22/2022] Open
Abstract
Date palm orchards suffer from serious diseases, including sudden decline syndrome (SDS). External symptoms were characterized by whitening on one side of the rachis, progressing from the base to the apex of the leaf until the whole leaf dies; while the internal disease symptoms included reddish roots and highly colored vascular bundles causing wilting and death of the tree. Although three Fusarium spp. (F. oxysporum, F. proliferatum and F. solani) were isolated from diseased root samples, the fungal pathogen F. solani was associated with SDS on date palm in the United Arab Emirates (UAE). Fusarium spp. were identified based on their cultural and morphological characteristics. The internal transcribed spacer regions and large subunit of the ribosomal RNA (ITS/LSU rRNA) gene complex of the pathogens was further sequenced. Pathogenicity assays and disease severity indices confirm the main causal agent of SDS on date palm in the UAE is F. solani. Application of Cidely® Top (difenoconazole and cyflufenamid) significantly inhibited the fungal mycelial growth in vitro and reduced SDS development on date palm seedlings pre-inoculated with F. solani under greenhouse conditions. This is the first report confirming that the chemical fungicide Cidely® Top is strongly effective against SDS on date palm.
Collapse
Affiliation(s)
- Khawla J Alwahshi
- Department of Biology, United Arab Emirates University, Al Ain 15551, UAE.
| | - Esam Eldin Saeed
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain 15551, UAE.
| | - Arjun Sham
- Department of Biology, United Arab Emirates University, Al Ain 15551, UAE.
| | - Aisha A Alblooshi
- Department of Biology, United Arab Emirates University, Al Ain 15551, UAE.
| | - Marwa M Alblooshi
- Department of Biology, United Arab Emirates University, Al Ain 15551, UAE.
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al Ain 15551, UAE.
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al Ain 15551, UAE.
| |
Collapse
|
33
|
Kamil FH, Saeed EE, El-Tarabily KA, AbuQamar SF. Biological Control of Mango Dieback Disease Caused by Lasiodiplodia theobromae Using Streptomycete and Non-streptomycete Actinobacteria in the United Arab Emirates. Front Microbiol 2018; 9:829. [PMID: 29780366 PMCID: PMC5945903 DOI: 10.3389/fmicb.2018.00829] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/11/2018] [Indexed: 11/13/2022] Open
Abstract
Dieback caused by the fungus Lasiodiplodia theobromae is an important disease on mango plantations in the United Arab Emirates (UAE). In this study, 53 actinobacterial isolates were obtained from mango rhizosphere soil in the UAE, of which 35 (66%) were classified as streptomycetes (SA) and 18 (34%) as non-streptomycetes (NSA). Among these isolates, 19 (12 SA and 7 NSA) showed antagonistic activities against L. theobromae associated with either the production of diffusible antifungal metabolites, extracellular cell-wall-degrading enzymes (CWDEs), or both. Using a "novel" mango fruit bioassay, all isolates were screened in vivo for their abilities to reduce lesion severity on fruits inoculated with L. theobromae. Three isolates, two belonging to Streptomyces and one to Micromonospora spp., showed the strongest inhibitory effect against this pathogen in vitro and were therefore selected for tests on mango seedlings. Our results revealed that the antifungal action of S. samsunensis UAE1 was related to antibiosis, and the production of CWDEs (i.e., chitinase) and siderophores; whilst S. cavourensis UAE1 and M. tulbaghiae UAE1 were considered to be associated with antibiotic- and CWDE-production, respectively. Pre-inoculation in greenhouse experiments with the most promising actinobacterial isolates resulted in very high levels of disease protection in mango seedlings subsequently inoculated with the pathogen. This was evident by the dramatic reduction in the estimated disease severity indices of the mango dieback of individual biocontrol agent (BCA) applications compared with the pathogen alone, confirming their potential in the management of mango dieback disease. L. theobromae-infected mango seedlings treated with S. samsunensis showed significantly reduced number of defoliated leaves and conidia counts of L. theobromae by 2- and 4-fold, respectively, in comparison to the other two BCA applications. This indicates that the synergistic antifungal effects of S. samsunensis using multiple modes of action retarded the in planta invasion of L. theobromae. This is the first report of BCA effects against L. theobromae on mango seedlings by microbial antagonists. It is also the first report of actinobacteria naturally existing in the soils of the UAE or elsewhere that show the ability to suppress the mango dieback disease.
Collapse
Affiliation(s)
- Fatima H Kamil
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Esam E Saeed
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates.,School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
34
|
Al-Dubaili N, El-Tarabily K, Saleh N. Host-guest complexes of imazalil with cucurbit[8]uril and β-cyclodextrin and their effect on plant pathogenic fungi. Sci Rep 2018; 8:2839. [PMID: 29434320 PMCID: PMC5809605 DOI: 10.1038/s41598-018-21156-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 01/31/2018] [Indexed: 02/01/2023] Open
Abstract
We report the control of imazalil (IMZ) antifungal activity utilizing its non-covalent assembly with β-cyclodextrins (β-CD) and cucurbit[8]uril (CB8) macrocycles, as well as its stimuli-responsive disassembly with cadaverine. The NMR results are consistent with inclusion of a single IMZ molecule inside the cavities of either CB8 from its aromatic site or β-CD from its aliphatic end. Efficient complex formation with both host molecules and controlled released upon the addition of cadaverine is supported by NMR measurements. The stimuli-responsiveness of the same host-guest assemblies with cadaverine was validated against seven economically important plant pathogenic fungi which cause agriculturally important plant diseases across the globe. While loading the drug into macrocycles cavities suppressed its activity, subsequent adding of cadaverine efficiently restored it up. The results in the present paper enable researchers working in the area of mycology and plant pathology to inhibit or reduce the fungal growth on demand in order to control these economically important plant pathogenic fungi.
Collapse
Affiliation(s)
- Naji Al-Dubaili
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box, 15551, Al-Ain, United Arab Emirates
| | - Khaled El-Tarabily
- Biology Department, College of Science, United Arab Emirates University, P.O. Box, 15551, Al-Ain, United Arab Emirates
| | - Na'il Saleh
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box, 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
35
|
Saeed EE, Sham A, AbuZarqa A, A Al Shurafa K, S Al Naqbi T, Iratni R, El-Tarabily K, F AbuQamar S. Detection and Management of Mango Dieback Disease in the United Arab Emirates. Int J Mol Sci 2017; 18:E2086. [PMID: 29053600 PMCID: PMC5666768 DOI: 10.3390/ijms18102086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 11/20/2022] Open
Abstract
Mango is affected by different decline disorders causing significant losses to mango growers. In the United Arab Emirates (UAE), the pathogen was isolated from all tissues sampled from diseased trees affected by Lasiodiplodia theobromae. Symptoms at early stages of the disease included general wilting appearance of mango trees, and dieback of twigs. In advanced stages, the disease symptoms were also characterized by the curling and drying of leaves, leading to complete defoliation of the tree and discolouration of vascular regions of the stems and branches. To substantially reduce the devastating impact of dieback disease on mango, the fungus was first identified based on its morphological and cultural characteristics. Target regions of 5.8S rRNA (ITS) and elongation factor 1-α (EF1-α) genes of the pathogen were amplified and sequenced. We also found that the systemic chemical fungicides, Score®, Cidely® Top, and Penthiopyrad®, significantly inhibited the mycelial growth of L. theobromae both in vitro and in the greenhouse. Cidely® Top proved to be a highly effective fungicide against L. theobromae dieback disease also under field conditions. Altogether, the morphology of the fruiting structures, molecular identification and pathogenicity tests confirm that the causal agent of the mango dieback disease in the UAE is L. theobromae.
Collapse
Affiliation(s)
- Esam Eldin Saeed
- Department of Biology, United Arab Emirates University, Al-Ain 15551, UAE.
| | - Arjun Sham
- Department of Biology, United Arab Emirates University, Al-Ain 15551, UAE.
| | - Ayah AbuZarqa
- Department of Biology, United Arab Emirates University, Al-Ain 15551, UAE.
| | | | | | - Rabah Iratni
- Department of Biology, United Arab Emirates University, Al-Ain 15551, UAE.
| | - Khaled El-Tarabily
- Department of Biology, United Arab Emirates University, Al-Ain 15551, UAE.
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al-Ain 15551, UAE.
| |
Collapse
|