1
|
Li Q, Li C, Chen L, Cai Z, Wu S, Gu Q, Zhang Y, Wei X, Zhang J, Yang X, Zhang S, Ye Q, Wu Q. Cronobacter spp. Isolated from Quick-Frozen Foods in China: Incidence, Genetic Characteristics, and Antibiotic Resistance. Foods 2023; 12:3019. [PMID: 37628018 PMCID: PMC10453260 DOI: 10.3390/foods12163019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cronobacter spp. are emerging foodborne pathogens that cause severe diseases. However, information on Cronobacter contamination in quick-frozen foods in China is limited. Therefore, we studied the prevalence, molecular characterization, and antimicrobial susceptibility of Cronobacter in 576 quick-frozen food samples collected from 39 cities in China. Cronobacter spp. were found in 18.75% (108/576) of the samples, and the contamination degree of the total positive samples was 5.82 MPN/g. The contamination level of frozen flour product samples was high (44.34%). Among 154 isolates, 109 were C. sakazakii, and the main serotype was C. sakazakii O1 (44/154). Additionally, 11 serotypes existed among four species. Eighty-five sequence types (STs), including 22 novel ones, were assigned, indicating a relatively high genetic diversity of the Cronobacter in this food type. Pathogenic ST148, ST7, and ST1 were the main STs in this study. ST4, epidemiologically related to neonatal meningitis, was also identified. All strains were sensitive to cefepime, tobramycin, ciprofloxacin, and imipenem, in which the resistance to cephalothin was the highest (64.94%).Two isolates exhibited multidrug resistance to five and seven antimicrobial agents, respectively. In conclusion, these findings suggest that the comparatively high contamination level of Cronobacter spp. in quick-frozen foods is a potential risk warranting public attention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Q.L.); (C.L.); (L.C.); (Z.C.); (S.W.); (Q.G.); (Y.Z.); (X.W.); (J.Z.); (X.Y.); (S.Z.); (Q.Y.)
| |
Collapse
|
2
|
Li Q, Li C, Ye Q, Gu Q, Wu S, Zhang Y, Wei X, Xue L, Chen M, Zeng H, Zhang J, Wu Q. Occurrence, molecular characterization and antibiotic resistance of Cronobacter spp. isolated from wet rice and flour products in Guangdong, China. Curr Res Food Sci 2023; 7:100554. [PMID: 37559946 PMCID: PMC10407891 DOI: 10.1016/j.crfs.2023.100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/27/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023] Open
Abstract
This study explored the prevalence of Cronobacter spp. in wet rice and flour products from Guangdong province, China, the molecular characteristics and antimicrobial susceptibility profiles of the isolates were identified. Among 249 samples, 100 (40.16%) were positive for Cronobacter spp., including 77 wet rice and 23 wet flour products. Eleven serotypes were characterized among 136 isolates with C. sakazakii O2 (n = 32) predominating. Forty-nine MLST patterns were assigned, 15 of which were new. C. sakazakii ST4 (n = 17) was the dominant ST, which is previously reported to have caused three deaths; followed by C. malonaticus ST7 (n = 15), which is connected to adult infections. All strains presented susceptibility to ampicillin/sulbactam, imipenem, aztreonam and trimethoprim/sulfamethoxazole. The isolates showed maximum resistance to cephalothin, and the resistance and intermediate rates were 91.91% and 3.68%, each. Two strains, croM234A1 and croM283-1, displayed resistance to three antibiotics. High contamination level and predominant number of pathogenic STs of Cronobacter in wet rice and flour products implied a potential risk to public healthiness. This survey could provide comprehensive information for establishing more targeted control methods for Cronobacter spp.
Collapse
Affiliation(s)
| | | | - Qinghua Ye
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Qihui Gu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Shi Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Youxiong Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Xianhu Wei
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Liang Xue
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Moutong Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Haiyan Zeng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| |
Collapse
|
3
|
Petrucci S, Costa C, Broyles D, Dikici E, Daunert S, Deo S. On-site detection of food and waterborne bacteria - current technologies, challenges, and future directions. Trends Food Sci Technol 2021; 115:409-421. [PMID: 34267423 DOI: 10.1016/j.tifs.2021.06.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the rise in outbreaks of pathogenic bacteria in both food and water resulting in an increased instance of infection, there is a growing public health problem in both developed and developing countries. In this increasing threat the most effective method for control and prevention is rapid and cost-effective detection. Research has shifted in recent years towards the development of rapid and on-site assays for the detection of these kinds of bacteria. However, there are still some limitations in the implementation of these assays in the field. This article discusses the current on-site detection methods. Current scope of advancements and limitations in the development or use of these on-site technologies for food and waterborne bacterial detection is evaluated in this study. With the continued development of these technologies, on-site detection will continue to impact many areas of public health. As these methods continue to improve and diversify further, on-site detection could become more widely implemented in food and water analysis.
Collapse
Affiliation(s)
- Sabrina Petrucci
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Connor Costa
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - David Broyles
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Clinical and Translational Science Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 United States.,Dr. John T. MacDonald Foundation Biomedical Nanotechnology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136 United States
| |
Collapse
|
4
|
Gupta Y, Ghrera AS. Recent advances in gold nanoparticle-based lateral flow immunoassay for the detection of bacterial infection. Arch Microbiol 2021; 203:3767-3784. [PMID: 34086107 DOI: 10.1007/s00203-021-02357-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
Diagnosis of bacterial infections (BI) is becoming an increasingly difficult task in clinical practice due to their high prevalence and frequency, as well as the growth of antibiotic resistance worldwide. World Health Organization (WHO) reported antibiotic resistance is a major public health problem. BI becomes difficult or impossible to treat when the bacteria acquire immunity against antibiotics. Thus, there is a need for a quick and accurate technique to detect infection. Lateral flow immunoassay (LFIA) is an ideal technique for point-of-care testing of a disease or pathological changes inside the human body. In recent years, several LFIA based strips are being used for the detection of BI by targeting specific analytes which may range from the causative bacterium, whole-cell, DNA, or biomarker. Numerous nanoparticles like lipid-based nanoparticles, polymeric nanoparticles, and inorganic nanoparticles such as quantum dots, magnetic, ceramic, and metallic nanoparticles (copper, silver gold, iron) are widely being used in the advanced treatment of BI. Out of these gold nanoparticle (AuNPs), is being used for detection BI more effectively than other nanoparticles due to their surface functionalization, extraordinary chemical stability, biorecognition, and signal amplification properties and help to improve in conjugation with capture antibodies, and act as a color marker with unique optical properties on LFIA strips. Herein, a review that provides an overview of the principle of LFIA, how LFIA based strip is developed, and how it is helpful to detect a specific biomarker for bedside detection of the BI.
Collapse
Affiliation(s)
- Yachana Gupta
- Applied Science Department, The NorthCap University, Gurugram, India
| | | |
Collapse
|
5
|
Kim K, Kashefi-Kheyrabadi L, Joung Y, Kim K, Dang H, Chavan SG, Lee MH, Choo J. Recent advances in sensitive surface-enhanced Raman scattering-based lateral flow assay platforms for point-of-care diagnostics of infectious diseases. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 329:129214. [PMID: 36568647 PMCID: PMC9759493 DOI: 10.1016/j.snb.2020.129214] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 05/03/2023]
Abstract
This review reports the recent advances in surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) platforms for the diagnosis of infectious diseases. As observed through the recent infection outbreaks of COVID-19 worldwide, a timely diagnosis of the disease is critical for preventing the spread of a disease and to ensure epidemic preparedness. In this regard, an innovative point-of-care diagnostic method is essential. Recently, SERS-based assay platforms have received increasing attention in medical communities owing to their high sensitivity and multiplex detection capability. In contrast, LFAs provide a user-friendly and easily accessible sensing platform. Thus, the combination of LFAs with a SERS detection system provides a new diagnostic modality for accurate and rapid diagnoses of infectious diseases. In this context, we briefly discuss the recent application of LFA platforms for the POC diagnosis of SARS-CoV-2. Thereafter, we focus on the recent advances in SERS-based LFA platforms for the early diagnosis of infectious diseases and their applicability for the rapid diagnosis of SARS-CoV-2. Finally, the key issues that need to be addressed to accelerate the clinical translation of SERS-based LFA platforms from the research laboratory to the bedside are discussed.
Collapse
Key Words
- AuNPs, gold nanoparticles
- BA, bacillary angiomatosis
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeat
- HIV, human immunodeficiency virus
- IFA, indirect immunofluorescence assay
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- In vitro diagnostics (IVD)
- Infectious disease
- KSHV, Kaposi’s sarcoma herpes virus
- LFA, lateral flow assay
- Lateral flow assay (LFA)
- NC, nitrocellulose
- NS1, nonstructural protein 1
- POC, point-of-care
- PRV, pseudorabies virus
- Point-of-care (POC)
- RT-PCR, real-time polymerase chain reaction
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2
- SEB, staphylococcal enterotoxin
- SERS, surface-enhanced Raman scattering
- Si-AuNPs, silica-encapsulated AuNPs
- Surface-enhanced Raman scattering (SERS)
- crRNAs, CRISPR RNAs
Collapse
Affiliation(s)
- Kihyun Kim
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | | | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Kyeongnyeon Kim
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Hajun Dang
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
6
|
Gao S, Wu J, Wang H, Hu S, Meng L. Highly sensitive detection of Cronobacter sakazakii based on immunochromatography coupled with surface-enhanced Raman scattering. J Dairy Sci 2021; 104:2748-2757. [PMID: 33455767 DOI: 10.3168/jds.2020-18915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/21/2020] [Indexed: 01/21/2023]
Abstract
The presence of Cronobacter sakazakii must be controlled in infant powder plants, because it may cause infectious disease in infants, with high mortality. Testing for C. sakazakii in powdered infant formula should be performed before delivery, and it requires rapid and specific detection methods. In this study, we established a surface-enhanced Raman scattering (SERS) immunochromatographic test strip for the quantitative determination of C. sakazakii in powdered infant formula. Monoclonal antibodies for C. sakazakii were labeled with p-aminothiophenol-bound colloidal gold nanoparticles. Color change in the test line indicated the presence of C. sakazakii. A highly sensitive and quantitative test method was developed based on the Raman signal produced by the p-aminothiophenol bonding on gold nanoparticles. The SERS immunochromatographic test strip assay required a short analysis time (12 min) and exhibited a linearity range from 102 to 107 cfu/mL. The limit of detection was 201 cfu/mL without preculture. The SERS immunochromatographic test strip assay is a promising tool for the simple and rapid quantitative analysis of C. sakazakii and other pathogenic bacteria.
Collapse
Affiliation(s)
- Siyuan Gao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Science, Heilongjiang University, Harbin 150080, China
| | - Jinhui Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Science, Heilongjiang University, Harbin 150080, China
| | - Hong Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, China
| | - Shengying Hu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Science, Heilongjiang University, Harbin 150080, China
| | - Li Meng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
7
|
Strom M, Crowley T, Shigdar S. Novel Detection of Nasty Bugs, Prevention Is Better than Cure. Int J Mol Sci 2020; 22:E149. [PMID: 33375709 PMCID: PMC7795740 DOI: 10.3390/ijms22010149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Hospital-acquired infections (HAIs) are a growing concern around the world. They contribute to increasing mortality and morbidity rates and are an economic threat. All hospital patients have the potential to contract an HAI, but those with weakened or inferior immune systems are at highest risk. Most hospital patients will contract at least one HAI, but many will contract multiple ones. Bacteria are the most common cause of HAIs and contribute to 80-90% of all HAIs, with Staphylococcus aureus, Clostridium difficile, Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae accounting for the majority. Each of these bacteria are highly resistant to antibiotics and can produce a protective film, known as a biofilm, to further prevent their eradication. It has been shown that by detecting and eradicating bacteria in the environment, infection rates can be reduced. The current methods for detecting bacteria are time consuming, non-specific, and prone to false negatives or false positives. Aptamer-based biosensors have demonstrated specific, time-efficient and simple detection, highlighting the likelihood that they could be used in a similar way to detect HAI-causing bacteria.
Collapse
Affiliation(s)
- Mia Strom
- School of Medicine, Deakin University, Geelong 3216, Australia; (M.S.); (T.C.)
| | - Tamsyn Crowley
- School of Medicine, Deakin University, Geelong 3216, Australia; (M.S.); (T.C.)
- Centre for Molecular and Medical Research, Deakin University, Geelong 3216, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, Geelong 3216, Australia; (M.S.); (T.C.)
- Centre for Molecular and Medical Research, Deakin University, Geelong 3216, Australia
| |
Collapse
|
8
|
Akineden Ö, Wittwer T, Geister K, Plötz M, Usleber E. Nucleic acid lateral flow immunoassay (NALFIA) with integrated DNA probe degradation for the rapid detection of Cronobacter sakazakii and Cronobacter malonaticus in powdered infant formula. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Reid R, Chatterjee B, Das SJ, Ghosh S, Sharma TK. Application of aptamers as molecular recognition elements in lateral flow assays. Anal Biochem 2020; 593:113574. [PMID: 31911046 DOI: 10.1016/j.ab.2020.113574] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 02/07/2023]
Abstract
Owing to their ease in operation and fast turnaround time, lateral flow assays (LFAs) are increasingly being used as point-of-care diagnostic tests for variety of analytes. In a majority of these LFAs, antibodies are used as a molecular recognition element. Antibodies have a number of limitations such as high batch-to-batch variation, poor stability, long development time, difficulty in functionalization and need for ethical approval and cold chain. All these factors pose a great challenge to scale up the antibody-based tests. In recent years, the advent of aptamer technology has made a paradigm shift in the point-of-care diagnostics owing to the various advantages of aptamers over antibodies that favour their adaptability on a variety of sensing platforms including the lateral flow. In this review, we have highlighted the advantages of aptamers over antibodies, suitability of aptamers for lateral flow platforms, different types of aptamer-based LFAs and various labels for aptamer-based LFAs. We have also provided a summary of the applications of aptamer technology in LFAs for analytical applications.
Collapse
Affiliation(s)
- Ruth Reid
- Centre for Biological Engineering, Loughborough University, UK
| | - Bandhan Chatterjee
- Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Soon Jyoti Das
- Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Sourav Ghosh
- Centre for Biological Engineering, Loughborough University, UK.
| | - Tarun Kumar Sharma
- Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
| |
Collapse
|
10
|
Tominaga T, Ishii M. Detection of microorganisms with lateral flow test strips. METHODS IN MICROBIOLOGY 2020. [DOI: 10.1016/bs.mim.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Ali MM, Wolfe M, Tram K, Gu J, Filipe CDM, Li Y, Brennan JD. A DNAzyme‐Based Colorimetric Paper Sensor for
Helicobacter pylori. Angew Chem Int Ed Engl 2019; 58:9907-9911. [PMID: 31095864 DOI: 10.1002/anie.201901873] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Indexed: 01/25/2023]
Affiliation(s)
- M. Monsur Ali
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Michael Wolfe
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Kha Tram
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
| | - Jimmy Gu
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
- Department of Biochemistry and Biomedical SciencesMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Carlos D. M. Filipe
- Department of Chemical EngineeringMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Yingfu Li
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
- Department of Biochemistry and Biomedical SciencesMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
12
|
Ali MM, Wolfe M, Tram K, Gu J, Filipe CDM, Li Y, Brennan JD. A DNAzyme‐Based Colorimetric Paper Sensor forHelicobacter pylori. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901873] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- M. Monsur Ali
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Michael Wolfe
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Kha Tram
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
| | - Jimmy Gu
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
- Department of Biochemistry and Biomedical SciencesMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Carlos D. M. Filipe
- Department of Chemical EngineeringMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Yingfu Li
- InnovoGene Biosciences Inc. 919 Fraser Drive Burlington ON L7L 4X8 Canada
- Department of Biochemistry and Biomedical SciencesMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces InstituteMcMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
13
|
Li C, Zeng H, Zhang J, He W, Ling N, Chen M, Wu S, Lei T, Wu H, Ye Y, Ding Y, Wang J, Wei X, Zhang Y, Wu Q. Prevalence, Antibiotic Susceptibility, and Molecular Characterization of Cronobacter spp. Isolated From Edible Mushrooms in China. Front Microbiol 2019; 10:283. [PMID: 30863374 PMCID: PMC6399401 DOI: 10.3389/fmicb.2019.00283] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Cronobacter spp. are foodborne pathogens that can infect and cause life-threatening diseases in all age groups, particularly in infants and immunocompromised elderly. This study aimed to investigate the prevalence, antibiotic susceptibility, and molecular characteristics of Cronobacter spp. isolates in edible mushrooms collected from 44 cities in China. In total, 668 edible mushrooms were collected from traditional retail markets and supermarkets and were analyzed by quantitative methods, PCR-based serotyping, multilocus sequence typing (MLST), and antibiotic susceptibility testing. Among the 668 samples tested, 89 (13.32%) were positive for Cronobacter spp., and the contamination levels exceeded the 110 most probable number (MPN)/g in 13.48% (12/89) of the samples. Flammulina velutipes samples had the highest contamination rate of 17.54% (37/211), whereas Hypsizygus marmoreus samples had the lowest contamination rate of 3.28% (2/61). Ten serotypes were identified among 115 isolates, of which the C. sakazakii serogroup O1 (n = 32) was the primary serotype. MLST indicated that there was quite high genetic diversity in Cronobacter spp. and 72 sequence types were identified, 17 of which were new. Notably, C. sakazakii ST148 (n = 10) was the most prevalent, followed by C. malonaticus ST7 (n = 5). Antibiotic susceptibility testing revealed that the majority of Cronobacter spp. strains were susceptible to the 16 antibiotics tested. However, a portion of isolates exhibited relatively high resistance to cephalothin, with resistance and intermediate rates of 93.91 and 6.09%, respectively. One isolate (cro300A) was multidrug-resistant, with resistance to five antibiotics. Overall, this large-scale study revealed the relatively high prevalence and high genetic diversity of Cronobacter spp. on edible mushrooms in China, indicating a potential public health concern. To our knowledge, this is the first large-scale and systematic study on the prevalence of Cronobacter spp. on edible mushrooms in China, and the findings can provide valuable information that can guide the establishment of effective measures for the control and precaution of Cronobacter spp on edible mushrooms during production processes.
Collapse
Affiliation(s)
- Chengsi Li
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Wenjing He
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Na Ling
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shi Wu
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Tao Lei
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haoming Wu
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yingwang Ye
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xianhu Wei
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Youxiong Zhang
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology South China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|