1
|
Salgado-Hernández E, Ortiz-Ceballos ÁI, Alvarado-Lassman A, Martínez-Hernández S, Dorantes-Acosta AE, Rosas-Mendoza ES. Adaptation of a microbial consortium to pelagic Sargassum modifies its taxonomic and functional profile that improves biomethane potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55169-55186. [PMID: 39222230 DOI: 10.1007/s11356-024-34853-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In recent years, pelagic Sargassum has invaded the Caribbean coasts, and anaerobic digestion has been proposed as a sustainable management option. However, the complex composition of these macroalgae acts as a barrier to microbial degradation, thereby limiting methane production. Microbial adaptation is a promising strategy to improve substrate utilization and stress tolerance. This study aimed to investigate the adaptation of a microbial consortium to enhance methane production from the pelagic Sargassum. Microbial adaptation was performed in a fed-batch mode for 100 days by progressive feeding of Sargassum. The evolution of the microbial community was analyzed by high-throughput sequencing of 16S rRNA amplicons. Additionally, 16S rRNA data were used to predict functional profiles using the iVikodak platform. The results showed that, after adaptation, the consortium was dominated by the bacterial phyla Bacteroidota, Firmicutes, and Atribacterota, as well as methanogens of the families Methanotrichaceae and Methanoregulaceae. The abundance of predicted genes related to different metabolic functions was affected during the adaptation stage when Sargassum concentration was increased. At the end of the adaptation stage, the abundance of the predicted genes increased again. The adapted microbial consortium demonstrated a 60% increase in both biomethane potential and biodegradability index. This work offers valuable insights into the development of treatment technologies and the effective management of pelagic Sargassum in coastal regions, emphasizing the importance of microbial adaptation in this context.
Collapse
Affiliation(s)
- Enrique Salgado-Hernández
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, 91090, México.
| | | | - Alejandro Alvarado-Lassman
- División de Estudios de Posgrado E Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Orizaba, C.P. 94320, Orizaba, Mexico
| | - Sergio Martínez-Hernández
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, 91090, México
| | - Ana Elena Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, 91090, México
| | - Erik Samuel Rosas-Mendoza
- Programa de Investigadoras E Investigadores Por México del CONACYT, Av. Insurgentes Sur 1582, 03940, Ciudad de México, Mexico
| |
Collapse
|
2
|
Mahieux M, Aemig Q, Richard C, Delgenès JP, Juge M, Trably E, Escudié R. Improved organic matter biodegradation through pulsed H 2 injections during in situ biomethanation. BIORESOURCE TECHNOLOGY 2024; 407:131101. [PMID: 38996849 DOI: 10.1016/j.biortech.2024.131101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
During in situ biomethanation, microbial communities can convert complex Organic Matter (OM) and H2 into CH4. OM biodegradation was compared between Anaerobic Digestion (AD) and in situ biomethanation, in semi-continuous processes, using two inocula from the digester (D) and the post-digester (PoD) of an AD plant. The impact of H2 on OM degradation was assessed using a fractionation method. Operational parameters included 20 days of hydraulic retention time and 1.5 gVS.L-1.d-1 of organic loading rate. During in situ biomethanation, 485 NmL of H2 were injected for each feeding (3 times a week). Maximum organic COD removal was 0.6 gCOD in AD control and at least 1.6 gCOD for in situ biomethanation. Therefore, COD removal was 2.5 times higher with H2 injections. These results bring out the potential of H2 injections during AD, not only for CO2 consumption but also for better OM degradation.
Collapse
Affiliation(s)
- M Mahieux
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France; ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - Q Aemig
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - C Richard
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - J-P Delgenès
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France
| | - M Juge
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - E Trably
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France
| | - R Escudié
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France.
| |
Collapse
|
3
|
Tao Y, Li L, Ning J, Xu W. Culturing partial-denitrification (PD) granules in continuous flow reactor with waste sludge as inoculum: performance, granular sludge characteristics and microbial community. ENVIRONMENTAL TECHNOLOGY 2024; 45:3751-3764. [PMID: 37345969 DOI: 10.1080/09593330.2023.2228993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
Partial denitrification granular sludge (PDGS) can provide long-term stable nitrite for anaerobic ammonia oxidation (anammox). The cultivation of ordinary activated sludge from wastewater treatment plants into PDGS can further promote the application of PD in practical engineering. In this study, the feasibility of fast start-up of PDGS was explored by inoculating waste sludge in up-flow anaerobic sludge blanket (UASB) reactor with synergistic control of nitrogen load rate (NLR, 0.05-0.65 kg N/m3/d) and electron donor starvation (EDS) (240-168 mg L-1), and system performance, particle characteristics and microbial structure were studied. The results showed that PD-UASB started successfully within 48 days, the average nitrite accumulation rate (NTR) and nitrate removal ratio (NRR) reached 79.6% and 82.5% after successful initiation, accompanied by high abundance of PD bacteria (Thauera, Pseudomonas, unclassflied commamonadaceae and Limnobacter) (25.3%). The increase of PD activity, and the difference between nitrate reductase (NAR) and nitrite reductase (NIR) contributed to nitrite production. Besides, the sludge shifted from flocculated (≤0.5 mm, 95.37%) to granulated state (0.5-2 mm, 64.74%), which could be due to the increase of extracellular polymers (EPS) (especially T-EPS) and metabolism of specific microorganisms (Bacteroidota and Chloroflexi, 19.92%). Good sludge granulation promoted the settleability of PD (the SVI5 was 47.248 mL/ g. ss after successful start-up). In summary, good PD sludge granulation process could be achieved in a short time by synergistically controlling NLR and EDS.
Collapse
Affiliation(s)
- Youqi Tao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, People's Republic of China
| | - Linjing Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, People's Republic of China
| | - Jianyong Ning
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, People's Republic of China
| | - Wenlai Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, People's Republic of China
| |
Collapse
|
4
|
Kozłowski M, Igwegbe CA, Tarczyńska A, Białowiec A. Revealing the Adverse Impact of Additive Carbon Material on Microorganisms and Its Implications for Biogas Yields: A Critical Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7250. [PMID: 38067995 PMCID: PMC10707503 DOI: 10.3390/ma16237250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 09/16/2024]
Abstract
Biochar could be a brilliant additive supporting the anaerobic fermentation process. However, it should be taken into account that in some cases it could also be harmful to microorganisms responsible for biogas production. The negative impact of carbon materials could be a result of an overdose of biochar, high biochar pH, increased arsenic mobility in the methane fermentation solution caused by the carbon material, and low porosity of some carbon materials for microorganisms. Moreover, when biochar is affected by an anaerobic digest solution, it could reduce the biodiversity of microorganisms. The purpose of the article is not to reject the idea of biochar additives to increase the efficiency of biogas production, but to draw attention to the properties and ways of adding these materials that could reduce biogas production. These findings have practical relevance for organizations seeking to implement such systems in industrial or local-scale biogas plants and provide valuable insights for future research. Needless to say, this study will also support the implementation of biogas technologies and waste management in implementing the idea of a circular economy, further emphasizing the significance of the research.
Collapse
Affiliation(s)
- Michał Kozłowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka 420218, Nigeria
| | - Agata Tarczyńska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (M.K.); or (C.A.I.); (A.T.)
| |
Collapse
|
5
|
Amoohadi V, Pasalari H, Esrafili A, Gholami M, Farzadkia M. A comparative study on polyaluminum chloride (PACl) and Moringa oleifera (MO) chemically enhanced primary treatment (CEPT) in enhanced biogas production: anaerobic digestion performance and the Gompertz model. RSC Adv 2023; 13:17121-17129. [PMID: 37304783 PMCID: PMC10251396 DOI: 10.1039/d3ra02112b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
A comparative study was performed to estimate biogas production from sludge produced by organic and inorganic chemically enhanced primary treatments (CEPTs). To this end, the effects of two coagulants, polyaluminum chloride (PACl) and Moringa oleifera (MO), on CEPT and biogas production in anaerobic digestion were surveyed within an incubation period of 24 days. The optimal dosage and pH of PACl and MO were optimized in terms of sCOD, TSS and VS parameters in the CEPT process. Next, the digestion performance of anaerobic digestion reactors fed with sludge obtained from PACl and MO coagulants at a batch mesophilic reactor (37 ± 1 °C) was surveyed from the biogas production, volatile solid reduction (VSR) and Gompertz model. At the optimal conditions (pH = 7 and dosage = 5 mg L-1), the removal efficiency of COD, TSS and VS in CEPT assisted with PACL was 63, 81 and 56%, respectively. Moreover, CEPT assisted with MO led to the removal efficiency of COD, TSS and VS until 55, 68 and 25%, respectively. The highest methane yield (0.598 L gVS removed-1) was obtained in an anaerobic digestion reactor with sludge from the MO coagulant. The anaerobic digestion of CEPT sludge instead of primary sludge resulted in higher sCOD removal efficiency, and 43-50% of sCOD was observed compared with the removal of 32% for the primary sludge. Furthermore, the high coefficient of determination (R2) demonstrated the trustworthy predictive precision of the modified Gompertz model with actual data. The combination of CEPT and anaerobic digestion, especially using natural coagulants, provides a cost-effective and practical way to increase BMP from primary sludge.
Collapse
Affiliation(s)
- Vida Amoohadi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences Tehran Iran +98218607941 +98218607941
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences Tehran Iran
| | - Hasan Pasalari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences Tehran Iran +98218607941 +98218607941
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences Tehran Iran
| | - Ali Esrafili
- Research Center for Environmental Health Technology, Iran University of Medical Sciences Tehran Iran +98218607941 +98218607941
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences Tehran Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences Tehran Iran +98218607941 +98218607941
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences Tehran Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences Tehran Iran +98218607941 +98218607941
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
6
|
Hashemi S, Solli L, Lien KM, Lamb JJ, Horn SJ. Culture adaptation for enhanced biogas production from birch wood applying stable carbon isotope analysis to monitor changes in the microbial community. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:77. [PMID: 37149601 PMCID: PMC10163780 DOI: 10.1186/s13068-023-02328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
Birch wood is a potential feedstock for biogas production in Northern Europe; however, the lignocellulosic matrix is recalcitrant preventing efficient conversion to methane. To improve digestibility, birch wood was thermally pre-treated using steam explosion at 220 °C for 10 min. The steam-exploded birch wood (SEBW) was co-digested with cow manure for a period of 120 days in continuously fed CSTRs where the microbial community adapted to the SEBW feedstock. Changes in the microbial community were tracked by stable carbon isotopes- and 16S r RNA analyses. The results showed that the adapted microbial culture could increase methane production up to 365 mL/g VS day, which is higher than previously reported methane production from pre-treated SEBW. This study also revealed that the microbial adaptation significantly increased the tolerance of the microbial community against the inhibitors furfural and HMF which were formed during pre-treatment of birch. The results of the microbial analysis indicated that the relative amount of cellulosic hydrolytic microorganisms (e.g. Actinobacteriota and Fibrobacterota) increased and replaced syntrophic acetate bacteria (e.g. Cloacimonadota, Dethiobacteraceae, and Syntrophomonadaceae) as a function of time. Moreover, the stable carbon isotope analysis indicated that the acetoclastic pathway became the main route for methane production after long-term adaptation. The shift in methane production pathway and change in microbial community shows that for anaerobic digestion of SEBW, the hydrolysis step is important. Although acetoclastic methanogens became dominant after 120 days, a potential route for methane production could also be a direct electron transfer among Sedimentibacter and methanogen archaea.
Collapse
Affiliation(s)
- Seyedbehnam Hashemi
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7034, Trondheim, Norway.
| | - Linn Solli
- Norwegian Institute of Bioeconomy Research (NIBIO), 1433, Ås, Norway
| | - Kristian M Lien
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7034, Trondheim, Norway
| | - Jacob J Lamb
- Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7034, Trondheim, Norway
| | - Svein Jarle Horn
- Norwegian Institute of Bioeconomy Research (NIBIO), 1433, Ås, Norway
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| |
Collapse
|
7
|
Garlicka A, Umiejewska K, Halkjær Nielsen P, Muszyński A. Hydrodynamic disintegration of thickened excess sludge and maize silage to intensify methane production: Energy effect and impact on microbial communities. BIORESOURCE TECHNOLOGY 2023; 376:128829. [PMID: 36889601 DOI: 10.1016/j.biortech.2023.128829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The aim of this project was to study the combination of two methods to increase methane production: feedstock pretreatment by hydrodynamic disintegration and co-digestion of maize silage (MS) with thickened excess sludge (TES). Disintegration of TES alone resulted in a 15% increase in specific methane production from 0.192 Nml/gVS (TES + MS) to 0.220 Nml/gVS (pretreated TES + MS). The energy balance revealed additional energy (0.14 Wh) would cover only the energy expenditure for the mechanical pretreatment and would not allow for net energy profit. Identification of the methanogenic consortia by 16S rRNA gene amplicon sequencing revealed that Chloroflexi, Bacteroidota, Firmicutes, Proteobacteria and Actinobacteriota were five most abundant bacteria phyla, with Methanothrix and Methanolinea as the dominant methanogens. Principal component analysis did not show any effect of feedstock pretreatment on methanogenic consortia. Instead, the composition of inoculum was the decisive factor in shaping the microbial community structure.
Collapse
Affiliation(s)
- Agnieszka Garlicka
- Research and New Technologies Office, Municipal Water Supply and Sewerage Company in the Capital City of Warsaw Joint Stock Company, Warsaw, Poland
| | - Katarzyna Umiejewska
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Adam Muszyński
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
8
|
Wang Y, Lê Cao KA. PLSDA-batch: a multivariate framework to correct for batch effects in microbiome data. Brief Bioinform 2023; 24:bbac622. [PMID: 36653900 PMCID: PMC10025448 DOI: 10.1093/bib/bbac622] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 01/20/2023] Open
Abstract
Microbial communities are highly dynamic and sensitive to changes in the environment. Thus, microbiome data are highly susceptible to batch effects, defined as sources of unwanted variation that are not related to and obscure any factors of interest. Existing batch effect correction methods have been primarily developed for gene expression data. As such, they do not consider the inherent characteristics of microbiome data, including zero inflation, overdispersion and correlation between variables. We introduce new multivariate and non-parametric batch effect correction methods based on Partial Least Squares Discriminant Analysis (PLSDA). PLSDA-batch first estimates treatment and batch variation with latent components, then subtracts batch-associated components from the data. The resulting batch-effect-corrected data can then be input in any downstream statistical analysis. Two variants are proposed to handle unbalanced batch x treatment designs and to avoid overfitting when estimating the components via variable selection. We compare our approaches with popular methods managing batch effects, namely, removeBatchEffect, ComBat and Surrogate Variable Analysis, in simulated and three case studies using various visual and numerical assessments. We show that our three methods lead to competitive performance in removing batch variation while preserving treatment variation, especially for unbalanced batch $\times $ treatment designs. Our downstream analyses show selections of biologically relevant taxa. This work demonstrates that batch effect correction methods can improve microbiome research outputs. Reproducible code and vignettes are available on GitHub.
Collapse
Affiliation(s)
- Yiwen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 97 Buxin Rd, Shenzhen, 518000, Guangdong, China
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, 30 Royal Parade, Melbourne, 3052, VIC, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, 30 Royal Parade, Melbourne, 3052, VIC, Australia
| |
Collapse
|
9
|
Barrena R, Vargas-García MDC, Catacora-Padilla P, Gea T, Abo Markeb A, Moral-Vico J, Sánchez A, Font X, Aspray TJ. Magnetite-based nanoparticles and nanocomposites for recovery of overloaded anaerobic digesters. BIORESOURCE TECHNOLOGY 2023; 372:128632. [PMID: 36657586 DOI: 10.1016/j.biortech.2023.128632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The effect of magnetite nanoparticles and nanocomposites (magnetite nanoparticles impregnated into graphene oxide) supplement on the recovery of overloaded laboratory batch anaerobic reactors was assessed using two types of starting inoculum: anaerobic granular sludge (GS) and flocculent sludge (FS). Both nanomaterials recovered methane production at a dose of 0.27 g/L within 40 days in GS. Four doses of magnetite nanoparticles from 0.075 to 1 g/L recovered the process in FS systems between 30 and 50 days relaying on the dose. The presence of nanomaterials helped to reverse the effect of volatile fatty acids inhibition and enabled microbial communities to recover but also favoured the development of certain microorganisms over others. In GS reactors, the methanogenic population changed from being mostly acetoclastic (Methanothrix soehngenii) to being dominated by hydrogenotrophic species (Methanobacterium beijingense). Nanomaterial amendment may serve as a preventative measure or provide an effective remedial solution for system recovery following overloading.
Collapse
Affiliation(s)
- Raquel Barrena
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.
| | - María Del Carmen Vargas-García
- Department of Biology and Geology, CITE II-B Universidad de Almería CEIMAR Marine Campus of International Excellence, 04120 Almería, Spain
| | - Paula Catacora-Padilla
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Teresa Gea
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Ahmad Abo Markeb
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Javier Moral-Vico
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Antoni Sánchez
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Xavier Font
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona Edifici Q, Carrer de les Sitges 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Thomas J Aspray
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK; Solidsense Ltd, Bearsden, East Dunbartonshire G61 3BA, Scotland, UK
| |
Collapse
|
10
|
Donoso-Bravo A, Sadino-Riquelme MC, Valdebenito-Rolack E, Paulet D, Gómez D, Hansen F. Comprehensive ADM1 Extensions to Tackle Some Operational and Metabolic Aspects in Anaerobic Digestion. Microorganisms 2022; 10:microorganisms10050948. [PMID: 35630393 PMCID: PMC9143495 DOI: 10.3390/microorganisms10050948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Modelling in anaerobic digestion will play a crucial role as a tool for smart monitoring and supervision of the process performance and stability. By far, the Anaerobic Digestion Model No. 1 (ADM1) has been the most recognized and exploited model to represent this process. This study aims to propose simple extensions for the ADM1 model to tackle some overlooked operational and metabolic aspects. Extensions for the discontinuous feeding process, the reduction of the active working volume, the transport of the soluble compound from the bulk to the cell interior, and biomass acclimation are presented in this study. The model extensions are included by a change in the mass balance of the process in batch and continuous operation, the incorporation of a transfer equation governed by the gradient between the extra- and intra- cellular concentration, and a saturation-type function where the time has an explicit influence on the kinetic parameters, respectively. By adding minimal complexity to the existing ADM1, the incorporation of these phenomena may help to understand some underlying process issues that remain unexplained by the current model structure, broadening the scope of the model for control and monitoring industrial applications.
Collapse
Affiliation(s)
- Andrés Donoso-Bravo
- ProCycla SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile; (M.C.S.-R.); (E.V.-R.); (D.P.); (D.G.); (F.H.)
- ProCycla SL, Carretera Pont de Vilomara 140, 2-1, 08241 Manresa, Spain
- Department of Chemical Engineering, Universidad Técnica Federico Santa Maria, Valparaíso 2390123, Chile
- Correspondence:
| | - María Constanza Sadino-Riquelme
- ProCycla SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile; (M.C.S.-R.); (E.V.-R.); (D.P.); (D.G.); (F.H.)
- ProCycla SL, Carretera Pont de Vilomara 140, 2-1, 08241 Manresa, Spain
| | - Emky Valdebenito-Rolack
- ProCycla SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile; (M.C.S.-R.); (E.V.-R.); (D.P.); (D.G.); (F.H.)
- ProCycla SL, Carretera Pont de Vilomara 140, 2-1, 08241 Manresa, Spain
- Aroma SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile
| | - David Paulet
- ProCycla SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile; (M.C.S.-R.); (E.V.-R.); (D.P.); (D.G.); (F.H.)
- ProCycla SL, Carretera Pont de Vilomara 140, 2-1, 08241 Manresa, Spain
| | - Daniel Gómez
- ProCycla SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile; (M.C.S.-R.); (E.V.-R.); (D.P.); (D.G.); (F.H.)
- ProCycla SL, Carretera Pont de Vilomara 140, 2-1, 08241 Manresa, Spain
| | - Felipe Hansen
- ProCycla SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile; (M.C.S.-R.); (E.V.-R.); (D.P.); (D.G.); (F.H.)
- ProCycla SL, Carretera Pont de Vilomara 140, 2-1, 08241 Manresa, Spain
- Aroma SpA, Camino Fundo El Junco SN, Melipilla 9580000, Chile
| |
Collapse
|
11
|
Tonanzi B, Crognale S, Gianico A, Della Sala S, Miana P, Zaccone MC, Rossetti S. Microbial Community Successional Changes in a Full-Scale Mesophilic Anaerobic Digester from the Start-Up to the Steady-State Conditions. Microorganisms 2021; 9:2581. [PMID: 34946180 PMCID: PMC8704592 DOI: 10.3390/microorganisms9122581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/04/2023] Open
Abstract
Anaerobic digestion is a widely used technology for sewage sludge stabilization and biogas production. Although the structure and composition of the microbial communities responsible for the process in full-scale anaerobic digesters have been investigated, little is known about the microbial successional dynamics during the start-up phase and the response to variations occurring in such systems under real operating conditions. In this study, bacterial and archaeal population dynamics of a full-scale mesophilic digester treating activated sludge were investigated for the first time from the start-up, performed without adding external inoculum, to steady-state operation. High-throughput 16S rRNA gene sequencing was used to describe the microbiome evolution. The large majority of the reads were affiliated to fermentative bacteria. Bacteroidetes increased over time, reaching 22% of the total sequences. Furthermore, Methanosaeta represented the most abundant methanogenic component. The specific quantitative data generated by real-time PCR indicated an enrichment of bacteria and methanogens once the steady state was reached. The analysis allowed evaluation of the microbial components more susceptible to the shift from aerobic to anaerobic conditions and estimation of the microbial components growing or declining in the system. Additionally, activated sludge was investigated to evaluate the microbial core selected by the WWTP operative conditions.
Collapse
Affiliation(s)
- Barbara Tonanzi
- National Research Council of Italy Water Research Institute CNR-IRSA, Area della Ricerca RM1, Monterotondo, 00015 Rome, Italy; (S.C.); (A.G.); (S.R.)
| | - Simona Crognale
- National Research Council of Italy Water Research Institute CNR-IRSA, Area della Ricerca RM1, Monterotondo, 00015 Rome, Italy; (S.C.); (A.G.); (S.R.)
| | - Andrea Gianico
- National Research Council of Italy Water Research Institute CNR-IRSA, Area della Ricerca RM1, Monterotondo, 00015 Rome, Italy; (S.C.); (A.G.); (S.R.)
| | | | - Paola Miana
- Veritas S.p.a., 30135 Venezia, Italy; (S.D.S.); (P.M.); (M.C.Z.)
| | | | - Simona Rossetti
- National Research Council of Italy Water Research Institute CNR-IRSA, Area della Ricerca RM1, Monterotondo, 00015 Rome, Italy; (S.C.); (A.G.); (S.R.)
| |
Collapse
|
12
|
Nagarajan S, Ranade VV. Valorizing Waste Biomass via Hydrodynamic Cavitation and Anaerobic Digestion. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sanjay Nagarajan
- Multiphase Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, U.K
| | - Vivek V. Ranade
- Multiphase Reactors and Intensification Group, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, U.K
- Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
13
|
Vítězová M, Lochman J, Zapletalová M, Ratering S, Schnell S, Vítěz T. Archaeal community dynamics in biogas fermentation at various temperatures assessed by mcrA amplicon sequencing using different primer pairs. World J Microbiol Biotechnol 2021; 37:188. [PMID: 34611812 DOI: 10.1007/s11274-021-03152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
In this study, the taxonomic and functional diversity of methanogenic archaea in two parallel 120 l fermenters operated at different temperatures and fed with maize silage was estimated by mcrA metabarcoding analysis using two typical primer pairs (ML and MLA) amplifying part of the functional methyl coenzyme M reductase (mcrA) gene. The alpha diversity indices showed that the ML primer pair detected a higher Operational Taxonomic Unit (OTU) abundance compared to the MLA primer pair and methanogen diversity was significantly lower in the 60 °C fermenters. The beta diversity analysis showed the methanogenic community clustered together at 50 °C and 40° and was statistically different from the 60 °C community. Similar, to alpha diversity, beta diversity was also significantly different between primer pairs. At all temperatures analysed, the primer pairs showed a different abundance of the different methanogenic OTUs, e.g. more OTUs relative to Methanoculleus sp. with the ML primer pair, and more OTUs corresponding to Methanobacterium sp. with the MLA primer pair. Moreover, OTUs corresponding to Methanosphaera sp. and Methanobrevibacter sp. were found only by using ML primer pair, while the MLA primer pair detected sequences corresponding to Methanothrix sp.
Collapse
Affiliation(s)
- Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
| | - Martina Zapletalová
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Tomáš Vítěz
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.,Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University in Brno, 61300, Brno, Czech Republic
| |
Collapse
|
14
|
Mutschlechner M, Praeg N, Illmer P. Soil-Derived Inocula Enhance Methane Production and Counteract Common Process Failures During Anaerobic Digestion. Front Microbiol 2020; 11:572759. [PMID: 33193175 PMCID: PMC7606279 DOI: 10.3389/fmicb.2020.572759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/14/2020] [Indexed: 02/01/2023] Open
Abstract
Although soil-borne methanogens are known to be highly diverse and adapted to extreme environments, their application as potential (anaerobic) inocula to improve anaerobic digestion has not been investigated until now. The present study aimed at evaluating if soil-derived communities can be beneficial for biogas (methane, CH4) production and endure unfavorable conditions commonly associated with digestion failure. Nine study sites were chosen and tested for suitability as inoculation sources to improve biogas production via in situ measurements (CH4 fluxes, physical and chemical soil properties, and abundance of methanogens) and during a series of anaerobic digestions with (a) combinations of both sterile or unsterile soil and diluted fermenter sludge, and (b) pH-, acetate-, propionate-, and ammonium-induced disturbance. Amplicon sequencing was performed to assess key microbial communities pivotal for successful biogas production. Four out of nine tested soil inocula exerted sufficient methanogenic activity and repeatedly allowed satisfactory CH4/biogas production even under deteriorated conditions. Remarkably, the significantly highest CH4 production was observed using unsterile soil combined with sterile sludge, which coincided with both a higher relative abundance of methanogens and predicted genes involved in CH4 metabolism in these variants. Different bacterial and archaeal community patterns depending on the soil/sludge combinations and disturbance variations were established and these patterns significantly impacted CH4 production. Methanosarcina spp. seemed to play a key role in CH4 formation and prevailed even under stressed conditions. Overall, the results provided evidence that soil-borne methanogens can be effective in enhancing digestion performance and stability and, thus, harbor vast potential for further exploitation.
Collapse
Affiliation(s)
| | - Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Castro YA, Agblevor FA. Interaction effect of high feed to inoculum ratio (F/I) and temperature on the biomethanation kinetics of water hyacinth. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
16
|
Villa Gomez DK, Becerra Castañeda P, Montoya Rosales JDJ, González Rodríguez LM. Anaerobic digestion of bean straw applying a fungal pre-treatment and using cow manure as co-substrate. ENVIRONMENTAL TECHNOLOGY 2020; 41:2863-2874. [PMID: 30811276 DOI: 10.1080/09593330.2019.1587004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The significant amounts of agriculture residues such as bean straw (BS) in rural areas, advises its valorisation for energy recovery. The feasibility of using BS for biogas production through anaerobic digestion was assessed. Prior to this, a fungal pre-treatment to hydrolyse BS with Pleutorus ostreatus was studied at 30°C and 100 rpm in orbital incubators with 1, 10 and 30 mg fungus/g straw for 14, 21 and 28 days. Then, anaerobic digestion experiments were performed in batch with cow manure (CM) as co-substrate and pre-treated BS at ratios (g/g total solids) of 1/2, 1/3, 1/5 and 0/1. Maximum lignin (18%) and hemicellulose (44%) degradation occurred at 30 mg fungus/g straw and 28 days, along with the highest total methane yield (38 mL CH4/g VS loaded). The total amount of methane decreased when increasing CM in the experiments (701.4-191.5 mL CH4), suggesting inhibition owed to a component of CM. Self-sustained biogas production of BS occurred due to the presence of bacteria (i.e. Bacilli and Bacteroidia) and archea (i.e. Methanobacteria and Methanomicrobia). However, the usage of a full-active inoculum should be studied for higher biogas production rates.
Collapse
Affiliation(s)
| | - Patricia Becerra Castañeda
- Unidad Profesional Interdisciplinaria De Ingeniería Campus Zacatecas, Instituto Politécnico Nacional, Zacatecas, México
| | - Jose de Jesus Montoya Rosales
- Unidad Profesional Interdisciplinaria De Ingeniería Campus Zacatecas, Instituto Politécnico Nacional, Zacatecas, México
| | - Luis Mario González Rodríguez
- Unidad Profesional Interdisciplinaria De Ingeniería Campus Zacatecas, Instituto Politécnico Nacional, Zacatecas, México
| |
Collapse
|
17
|
Khan N, Khan MD, Sabir S, Nizami AS, Anwer AH, Rehan M, ZainKhan M. Deciphering the effects of temperature on bio-methane generation through anaerobic digestion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29766-29777. [PMID: 31873899 DOI: 10.1007/s11356-019-07245-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) is a sustainable wastewater treatment technology which facilitates energy, nutrient, and water recovery from organic wastes. The agricultural and industrial wastes are suitable substrates for the AD, as they contain a high level of biodegradable compounds. The aim of this study was to examine the AD of three different concentrations of phenol (100, 200, and 300 mg/L) containing wastewater with and without co-substrate (acetate) at four different temperatures (25, 35, 45, and 55 °C) to produce methane (CH4)-enriched biogas. It was observed that the chemical oxygen demand (COD) and phenol removal efficiencies of up to 76% and 72%, respectively, were achieved. The CH4 generation was found higher in anaerobic batch reactors (ABRs) using acetate as co-substrate, with the highest yield of 189.1 μL CH4 from 500 μL sample injected, obtained using 200 mg/L of phenol at 35 °C. The results revealed that the performance of ABR in terms of degradation efficiency, COD removal, and biogas generation was highest at 35 °C followed by 55, 45, and 25 °C indicating 35 °C to be the optimum temperature for AD of phenolic wastewater with maximum energy recovery. Scanning electron microscopy (SEM) revealed that the morphology of the anaerobic sludge depends greatly on the temperature at which the system is maintained which in turn affects the performance and degradation of toxic contaminants like phenol. It was observed that the anaerobic sludge maintained at 35 °C showed uniform channels leading to higher permeability through enhanced mass transfer to achieve higher degradation rates. However, the denser sludge as in the case of 55 °C showed lesser permeability leading to limited transfer and thus reduced treatment. Quantitative real-time PCR (qPCR) analysis revealed a more noteworthy change in the population of the microbial communities due to temperature than the presence of phenol with the methanogens being the dominating species at 35 °C. The findings suggest that the planned operation of the ABR could be a promising choice for CH4-enriched biogas and COD removal from phenolic wastewater.
Collapse
Affiliation(s)
- Nishat Khan
- Department of Chemistry, Environmental Research Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohammad Danish Khan
- Department of Chemistry, Environmental Research Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Suhail Sabir
- Department of Chemistry, Environmental Research Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan.
| | - Abdul Hakeem Anwer
- Department of Chemistry, Environmental Research Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohammad Rehan
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad ZainKhan
- Department of Chemistry, Environmental Research Laboratory, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
18
|
Magdalena JA, Greses S, González-Fernández C. Impact of Organic Loading Rate in Volatile Fatty Acids Production and Population Dynamics Using Microalgae Biomass as Substrate. Sci Rep 2019; 9:18374. [PMID: 31804573 PMCID: PMC6895168 DOI: 10.1038/s41598-019-54914-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Volatile fatty acids (VFAs) are regarded as building blocks with a wide range of applications, including biofuel production. The traditional anaerobic digestion used for biogas production can be alternatively employed for VFAs production. The present study aimed at maximizing VFAs productions from Chlorella vulgaris through anaerobic digestion by assessing the effect of stepwise organic loading rates (OLR) increases (3, 6, 9, 12 and 15 g COD L-1 d-1). The biological system was proven to be robust as organic matter conversion efficiency into VFAs increased from 0.30 ± 0.02 COD-VFAs/CODin at 3 g COD L-1 d-1 to 0.37 ± 0.02 COD-VFAs/CODin at 12 g COD L-1d-1. Even though, the hydrolytic step was similar for all studied scenario sCOD/tCOD = 0.52-0.58), the highest OLR (15 g COD L-1 d-1) did not show any further increase in VFAs conversion (0.29 ± 0.01 COD-VFAs/CODin). This fact suggested acidogenesis inhibition at 15 g COD L-1d-1. Butyric (23-32%), acetic (19-26%) and propionic acids (11-17%) were the most abundant bioproducts. Population dynamics analysis revealed microbial specialization, with a high presence of Firmicutes followed by Bacteroidetes. In addition, this investigation showed the microbial adaptation of Euryarchaeota species at the highest OLR (15 g COD L-1d-1), evidencing one of the main challenges in VFAs production (out-competition of archaea community to avoid product consumption). Stepwise OLR increase can be regarded as a tool to promote VFAs productions. However, acidogenic inhibition was reported at the highest OLR instead of the traditional hydrolytic barriers. The operational conditions imposed together with the high VFAs and ammonium concentrations might have affected the system yields. The relative abundance of Firmicutes (74%) and Bacteroidetes (20%), as main phyla, together with the reduction of Euryarchaeota phylum (0.5%) were found the best combination to promote organic matter conversion into VFAs.
Collapse
Affiliation(s)
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | | |
Collapse
|
19
|
Li K, Yun J, Zhang H, Yu Z. Full-scale anaerobic reactor samples would be more suitable than lab-scale anaerobic reactor and natural samples to inoculate the wheat straw batch anaerobic digesters. BIORESOURCE TECHNOLOGY 2019; 293:122040. [PMID: 31454734 DOI: 10.1016/j.biortech.2019.122040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This study evaluated the effects of the inocula from natural wetland, lab-scale and full-scale anaerobic reactors on wheat straw anaerobic digestion. Three replicate batch reactors were constructed for each inoculum to investigate the reactor performances and microbial communities. Reactors seeded with full-scale reactor samples were started up most rapidly, achieved the highest methane production, and were recognized as the higher efficient reactors. The dominance of acetoclastic methanogens, including Methanosaeta and Methanoscrina, was crucial for the higher efficient reactors, whereas hydrogenotrophic methanogens were dominant in other reactors. Genus Treponema, which could enhance the cellulose degradation and conduct homoacetogenesis, was first reported to be dominant in the bacterial communities of high efficient reactors. Inoculum sources and process conditions were suggested to be the deterministic factors in shaping the microbial communities in the higher efficient reactors. These findings contribute to the startup of new anaerobic reactors.
Collapse
Affiliation(s)
- Ke Li
- Water Affairs Research Institute, North China University of Water Resources and Electric Power, 36 Beihuan Road, Zhengzhou 450045, China; College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Hongxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
20
|
Bacterial and Fungal Diversity Inside the Medieval Building Constructed with Sandstone Plates and Lime Mortar as an Example of the Microbial Colonization of a Nutrient-Limited Extreme Environment (Wawel Royal Castle, Krakow, Poland). Microorganisms 2019; 7:microorganisms7100416. [PMID: 31623322 PMCID: PMC6843168 DOI: 10.3390/microorganisms7100416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Biodeterioration is a serious threat to cultural heritage objects and buildings. The deterioration of a given material often incurs irreparable losses in terms of uniqueness and historical value. Hence preventive actions should be taken. One important challenge is to identify microbes involved in the biodeterioration process. In this study, we analyzed the microbial diversity of an ancient architectonical structure of the Rotunda of Sts. Felix and Adauctus, which is a part of the Wawel Royal Castle located in Krakow, Poland. The Rotunda is unavailable to tourists and could be treated as an extreme habitat due to the low content of nutrients coming either from sandstone plates bound with lime mortar or air movement. Microbial diversity was analyzed with the use of the high-throughput sequencing of marker genes corresponding to fragments of 16S rDNA (for Bacteria) and ITS2 (internal transcribed spacer 2) (for Fungi). The results showed that the microbial community adhered to wall surfaces is, to a large extent, endemic. Furthermore, alongside many microorganisms that could be destructive to masonry and mortar (e.g., Pseudomonas, Aspergillus), there were also bacteria, such as species of genera Bacillus, Paenisporosarcina, and Amycolatopsis, that can positively affect wall surface properties by reducing the damage caused by the presence of other microorganisms. We also showed that airborne microorganisms probably have little impact on the biodeterioration process as their abundance in the microbial community adhered to the ancient walls was very low.
Collapse
|
21
|
Changes in the Substrate Source Reveal Novel Interactions in the Sediment-Derived Methanogenic Microbial Community. Int J Mol Sci 2019; 20:ijms20184415. [PMID: 31500341 PMCID: PMC6770359 DOI: 10.3390/ijms20184415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
Methanogenesis occurs in many natural environments and is used in biotechnology for biogas production. The efficiency of methane production depends on the microbiome structure that determines interspecies electron transfer. In this research, the microbial community retrieved from mining subsidence reservoir sediment was used to establish enrichment cultures on media containing different carbon sources (tryptone, yeast extract, acetate, CO2/H2). The microbiome composition and methane production rate of the cultures were screened as a function of the substrate and transition stage. The relationships between the microorganisms involved in methane formation were the major focus of this study. Methanogenic consortia were identified by next generation sequencing (NGS) and functional genes connected with organic matter transformation were predicted using the PICRUSt approach and annotated in the KEGG. The methane production rate (exceeding 12.8 mg CH4 L−1 d−1) was highest in the culture grown with tryptone, yeast extract, and CO2/H2. The analysis of communities that developed on various carbon sources casts new light on the ecophysiology of the recently described bacterial phylum Caldiserica and methanogenic Archaea representing the genera Methanomassiliicoccus and Methanothrix. Furthermore, it is hypothesized that representatives of Caldiserica may support hydrogenotrophic methanogenesis.
Collapse
|
22
|
Yan M, Fotidis IA, Tian H, Khoshnevisan B, Treu L, Tsapekos P, Angelidaki I. Acclimatization contributes to stable anaerobic digestion of organic fraction of municipal solid waste under extreme ammonia levels: Focusing on microbial community dynamics. BIORESOURCE TECHNOLOGY 2019; 286:121376. [PMID: 31030070 DOI: 10.1016/j.biortech.2019.121376] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 05/20/2023]
Abstract
The organic fraction of municipal solid waste (OFMSW) is an abundant and sustainable substrate for the anaerobic digestion (AD) process, yet ammonia released during OFMSW hydrolysis could result in suboptimal biogas production. Acclimatized ammonia tolerant microorganisms offer an efficient way to alleviate ammonia inhibition during AD. This study aimed to achieve an efficient AD of OFMSW under extreme ammonia levels and elucidate the dynamics of the acclimatized microbial community. Thus, two mesophilic continuous stirred tank reactors (CSTR), fed only with OFMSW, were successfully acclimatized up to 8.5 g NH4+-N/L, and their methane yields fluctuated <10%, compared to the methane yields without ammonia addition. Microbiological analyses showed that Methanosaeta concilii and Methanosarcina soligelidi were the dominant methanogens at low and high ammonia levels, respectively. Whilst, a unique metabolic pathway shift, from aceticlastic to hydrogenotrophic methanogenesis, of M. soligelidi was identified during the acclimatization process.
Collapse
Affiliation(s)
- Miao Yan
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark
| | - Ioannis A Fotidis
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark.
| | - Hailin Tian
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark
| | - Benyamin Khoshnevisan
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark
| | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
23
|
Lv Z, Liang J, Chen X, Chen Z, Jiang J, Loake GJ. Assessment of the start-up process of anaerobic digestion utilizing swine manure: 13C fractionation of biogas and microbial dynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:13275-13285. [PMID: 30895553 DOI: 10.1007/s11356-019-04703-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate how the microbial community structure adapts during the start-up phase and how the 13C fractionation of biogas reflects the microbial population dynamics in two parallel swine manure-fed anaerobic digesters. Two swine manure-fed reactors for the start-up of continuously stirred tank reactors at mesophilic condition were evaluated. Changes in community structure were monitored using 16S rRNA high-throughput sequencing to measure the abundance of fermenting bacteria and methanogens. Digesters with relatively stable Methanosarcinaceae started up successfully and contained high gas production and low levels of propionate. In contrast, the digester that experienced a difficult start-up period had reduced Methanosarcinaceae along with accumulated propionate and low gas production. Specific gas production, specific methane production, and 13C fractionation of biogas were influenced significantly by Methanosarcinaceae, Methanobacteriaceae, and Clostridiaceae, indicating that the 13C fractionation of biogas had significant potential to reflect microbial population changes and digester performance during the start-up period.
Collapse
Affiliation(s)
- Zuopeng Lv
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Road 101, Xuzhou, 221116, Shanghai, China.
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, People's Republic of China.
| | - Jiazhuo Liang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Road 101, Xuzhou, 221116, Shanghai, China
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, People's Republic of China
| | - Xin Chen
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Road 101, Xuzhou, 221116, Shanghai, China
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, People's Republic of China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague, Czech Republic
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Road 101, Xuzhou, 221116, Shanghai, China
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, People's Republic of China
| | - Gary J Loake
- Jiangsu Normal University - Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, People's Republic of China.
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JH, UK.
| |
Collapse
|
24
|
Pyzik A, Ciezkowska M, Krawczyk PS, Sobczak A, Drewniak L, Dziembowski A, Lipinski L. Comparative analysis of deep sequenced methanogenic communities: identification of microorganisms responsible for methane production. Microb Cell Fact 2018; 17:197. [PMID: 30572955 PMCID: PMC6302309 DOI: 10.1186/s12934-018-1043-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although interactions between microorganisms involved in biogas production are largely uncharted, it is commonly accepted that methanogenic Archaea are essential for the process. Methanogens thrive in various environments, but the most extensively studied communities come from biogas plants. In this study, we employed a metagenomic analysis of deeply sequenced methanogenic communities, which allowed for comparison of taxonomic and functional diversity as well as identification of microorganisms directly involved in various stages of methanogenesis pathways. RESULTS A comprehensive metagenomic approach was used to compare seven environmental communities, originating from an agricultural biogas plant, cattle-associated samples, a lowland bog, sewage sludge from a wastewater treatment plant and sediments from an ancient gold mine. In addition to the native consortia, two laboratory communities cultivated on maize silage as the sole substrate were also analyzed. Results showed that all anaerobic communities harbored genes of all known methanogenesis pathways, but their abundance varied greatly between environments and that genes were encoded by different methanogens. Identification of microorganisms directly involved in different stages of methane production revealed that hydrogenotrophic methanogens, such as Methanoculleus, Methanobacterium, Methanobrevibacter, Methanocorpusculum or Methanoregula, predominated in most native communities, whereas acetoclastic Methanosaeta seemed to be the key methanogen in the wastewater treatment plant. Furthermore, in many environments, the methylotrophic pathway carried out by representatives of Methanomassiliicoccales, such as Candidatus Methanomethylophilus and Candidatus Methanoplasma, seemed to play an important role in methane production. In contrast, in stable laboratory reactors substrate versatile Methanosarcina predominated. CONCLUSIONS The metagenomic approach presented in this study allowed for deep exploration and comparison of nine environments in which methane production occurs. Different abundance of methanogenesis-related functions was observed and the functions were analyzed in the phylogenetic context in order to identify microbes directly involved in methane production. In addition, a comparison of two metagenomic analytical tools, MG-RAST and MetAnnotate, revealed that combination of both allows for a precise characterization of methanogenic communities.
Collapse
Affiliation(s)
- Adam Pyzik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Martyna Ciezkowska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Pawel S Krawczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Adam Sobczak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Lukasz Drewniak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Leszek Lipinski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
25
|
Pu C, Liu L, Yao M, Liu H, Sun Y. Responses and successions of sulfonamides, tetracyclines and fluoroquinolones resistance genes and bacterial community during the short-term storage of biogas residue and organic manure under the incubator and natural conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:749-759. [PMID: 30031308 DOI: 10.1016/j.envpol.2018.07.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 05/23/2023]
Abstract
Biogas residue and organic manure are frequently used for crop planting. However, the evaluation of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and bacterial community before their applications to fields is still lacking. This study monitored the variations of bacteria resistant to sulfadiazine, tetracycline and norfloxacin, 57 resistance genes for sulfonamides, tetracyclines and fluoroquinolones as well as the bacterial community during the 28-day aerobic storage of biogas residue and organic manure by using viable plate counts, high-throughput qPCR and Illumina MiSeq sequencing methods. Then two storage conditions, incubator (25 °C) and natural environment, were used to assess the responses of ARB and ARGs to the environmental factors. Results showed that a total of 35 and 21 ARGs were detected in biogas residue and organic manure, respectively. ARB and ARGs were enriched up to 8.01-fold in biogas residue after the 28-day storage, but varied in a narrow range during the storage of organic manure. Compared with the incubator condition, the proliferation of ARB and ARGs in biogas residue under the natural condition was relatively inhibited by the varied and complicated environmental factors. However, we found that there was no significant difference of ARB and ARGs in organic manure between the incubator and natural conditions. Bacterial community was also shifted during the storage of biogas residue, especially Bacteroidetes_VC2.1_Bac22, Aequorivita, Luteimonas and Arenimonas. Network analysis revealed that the relationship in biogas residue was much more complicated than that in organic manure, which ultimately resulted in large successions of ARB and ARGs during the short-term storage of biogas residue. Therefore, we suggest that further measures should be taken before the application of biogas residue to fields.
Collapse
Affiliation(s)
- Chengjun Pu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Liquan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng Yao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Hang Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
26
|
New concepts in anaerobic digestion processes: recent advances and biological aspects. Appl Microbiol Biotechnol 2018; 102:5065-5076. [DOI: 10.1007/s00253-018-9039-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
|