1
|
Faidi A, Chakchouk-Mtibaa A, Mellouli L, Treilhou M, Téné N, Allouche N. Phytochemical composition, antioxidant and antimicrobial activities of Enarthrocarpus clavatus Delile ex Godr flowers extracts. Nat Prod Res 2025:1-11. [PMID: 39862044 DOI: 10.1080/14786419.2025.2457119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/11/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
The phytochemical profile of various plant species reveals that some compounds possess notable antioxidant and antimicrobial properties. In this study we investigated for the first time, the antioxidant activity (FRAP, DPPH and TAC), total phenolic contents and total flavonoid contents of Enarthrocarpus clavatus Delile ex Godr flowers extracts (n-hexane, ethyl acetate and methanol) as well as their antimicrobial activity. The results obtained showed that the methanol extract contained the highest content of total phenolics (346.7 mg GAE/g DE) and flavonoids (339.9 mg QE/g) as it exhibited the strongest antioxidant activity. Furthermore, E. clavatus flower extracts have been tested for their activity against gram-positive and gram-negative bacteria and an interesting activity was obtained with methanol extract (MICs = 31.25 µg.mL-1). The chemical composition of methanol extract was investigated using a high-performance liquid chromatographic method coupled with electrospray ionisation mass spectrometry (HPLC-ESI-MS). Therefore, 28 compounds were detected among them 18 were identified as flavonoids, phenolic acids and fatty acids.
Collapse
Affiliation(s)
- Abir Faidi
- Laboratory of Organic Chemistry LR17-ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Ahlem Chakchouk-Mtibaa
- Laboratory of Microbial and Enzymes Biotechnology and Biomolecules, Centre of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Sfax, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microbial and Enzymes Biotechnology and Biomolecules, Centre of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Sfax, Tunisia
| | - Michel Treilhou
- Equipe BTSB-EA 7417, Institut National Universitaire Jean-François Champollion, Université de Toulouse, Albi, France
| | - Nathan Téné
- Equipe BTSB-EA 7417, Institut National Universitaire Jean-François Champollion, Université de Toulouse, Albi, France
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17-ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
2
|
Saposnik L, Coria LM, Bruno L, Guaimas FF, Pandolfi J, Pol M, Urga ME, Sabbione F, McClelland M, Trevani A, Pasquevich KA, Cassataro J. Ecotin protects Salmonella Typhimurium against the microbicidal activity of host proteases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594389. [PMID: 38798423 PMCID: PMC11118277 DOI: 10.1101/2024.05.15.594389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Salmonella enterica serovar Typhimurium causes acute diarrhea upon oral infection in humans. The harsh and proteolytic environment found in the gastrointestinal tract is the first obstacle that these bacteria face after infection. However, the mechanisms that allow Salmonella to survive the hostile conditions of the gut are poorly understood. The ecotin gene is found in an extensive range of known phyla of bacteria and it encodes a protein that has been shown to inhibit serine proteases. Thus, in the present work we studied the role of ecotin of Salmonella Typhimurium in host-pathogen interactions. We found that Salmonella Typhimurium Δ ecotin strain exhibited lower inflammation in a murine model of Salmonella induced colitis. The Δ ecotin mutant was more susceptible to the action of pancreatin and purified pancreatic elastase. In addition, the lack of ecotin led to impaired adhesion to Caco-2 and HT-29 cell lines, related to the proteolytic activity of brush border enzymes. Besides, Δ ecotin showed higher susceptibility to lysosomal proteolytic content and intracellular replication defects in macrophages. In addition, we found Ecotin to have a crucial role in Salmonella against the microbicide action of granules released and neutrophil extracellular traps from human polymorphonuclear leukocytes. Thus, the work presented here highlights the importance of ecotin in Salmonella as countermeasures against the host proteolytic defense system. IMPORTANCE The gastrointestinal tract is a very complex and harsh environment. Salmonella is a successful food borne pathogen, but little is known about its capacity to survive against the proteolysis of the gut lumen and intracellular proteases. Here, we show that Ecotin, a serine protease inhibitor, plays an important role in protecting Salmonella against proteases present at different sites encountered during oral infection. Our results indicate that Ecotin is an important virulence factor in Salmonella , adding another tool to the wide range of features this pathogen uses during oral infection.
Collapse
|
3
|
Leleiwi I, Kokkinias K, Kim Y, Baniasad M, Shaffer M, Sabag-Daigle A, Daly RA, Flynn RM, Wysocki VH, Ahmer BMM, Borton MA, Wrighton KC. Gut microbiome carbon and sulfur metabolisms support Salmonella during pathogen infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575907. [PMID: 38293109 PMCID: PMC10827160 DOI: 10.1101/2024.01.16.575907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Salmonella enterica serovar Typhimurium is a pervasive enteric pathogen and an ongoing global threat to public health. Ecological studies in the Salmonella impacted gut remain underrepresented in the literature, discounting the microbiome mediated interactions that may inform Salmonella physiology during colonization and infection. To understand the microbial ecology of Salmonella remodeling of the gut microbiome, here we performed multi-omics approaches on fecal microbial communities from untreated and Salmonella -infected mice. Reconstructed genomes recruited metatranscriptomic and metabolomic data providing a strain-resolved view of the expressed metabolisms of the microbiome during Salmonella infection. This data informed possible Salmonella interactions with members of the gut microbiome that were previously uncharacterized. Salmonella- induced inflammation significantly reduced the diversity of transcriptionally active members in the gut microbiome, yet increased gene expression was detected for 7 members, with Luxibacter and Ligilactobacillus being the most active. Metatranscriptomic insights from Salmonella and other persistent taxa in the inflamed microbiome further expounded the necessity for oxidative tolerance mechanisms to endure the host inflammatory responses to infection. In the inflamed gut lactate was a key metabolite, with microbiota production and consumption reported amongst transcriptionally active members. We also showed that organic sulfur sources could be converted by gut microbiota to yield inorganic sulfur pools that become oxidized in the inflamed gut, resulting in thiosulfate and tetrathionate that supports Salmonella respiration. Advancement of pathobiome understanding beyond inferences from prior amplicon-based approaches can hold promise for infection mitigation, with the active community outlined here offering intriguing organismal and metabolic therapeutic targets.
Collapse
|
4
|
Leleiwi I, Kokkinias K, Kim Y, Baniasad M, Shaffer M, Sabag-Daigle A, Daly RA, Flynn RM, Wysocki VH, Ahmer BMM, Borton MA, Wrighton KC. Gut microbiota carbon and sulfur metabolisms support Salmonella infections. THE ISME JOURNAL 2024; 18:wrae187. [PMID: 39404095 PMCID: PMC11482014 DOI: 10.1093/ismejo/wrae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/15/2024] [Indexed: 10/18/2024]
Abstract
Salmonella enterica serovar Typhimurium is a pervasive enteric pathogen and ongoing global threat to public health. Ecological studies in the Salmonella impacted gut remain underrepresented in the literature, discounting microbiome mediated interactions that may inform Salmonella physiology during colonization and infection. To understand the microbial ecology of Salmonella remodeling of the gut microbiome, we performed multi-omics on fecal microbial communities from untreated and Salmonella-infected mice. Reconstructed genomes recruited metatranscriptomic and metabolomic data providing a strain-resolved view of the expressed metabolisms of the microbiome during Salmonella infection. These data informed possible Salmonella interactions with members of the gut microbiome that were previously uncharacterized. Salmonella-induced inflammation significantly reduced the diversity of genomes that recruited transcripts in the gut microbiome, yet increased transcript mapping was observed for seven members, among which Luxibacter and Ligilactobacillus transcript read recruitment was most prevalent. Metatranscriptomic insights from Salmonella and other persistent taxa in the inflamed microbiome further expounded the necessity for oxidative tolerance mechanisms to endure the host inflammatory responses to infection. In the inflamed gut lactate was a key metabolite, with microbiota production and consumption reported amongst members with detected transcript recruitment. We also showed that organic sulfur sources could be converted by gut microbiota to yield inorganic sulfur pools that become oxidized in the inflamed gut, resulting in thiosulfate and tetrathionate that support Salmonella respiration. This research advances physiological microbiome insights beyond prior amplicon-based approaches, with the transcriptionally active organismal and metabolic pathways outlined here offering intriguing intervention targets in the Salmonella-infected intestine.
Collapse
Affiliation(s)
- Ikaia Leleiwi
- Department of Cell and Molecular Biology, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
| | - Katherine Kokkinias
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
- Department of Microbiology, Immunology, and Pathology, Microbiology Building, 1682 Campus Delivery Colorado State University, Fort Collins, CO 80523, United States
| | - Yongseok Kim
- Department of Chemistry and Biochemistry, The Ohio State University, 200 CBEC Building 151 W. Woodruff Ave. Columbus, OH 43210, United States
| | - Maryam Baniasad
- Department of Chemistry and Biochemistry, The Ohio State University, 200 CBEC Building 151 W. Woodruff Ave. Columbus, OH 43210, United States
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
| | - Anice Sabag-Daigle
- Department of Microbial Infection and immunity, The Ohio State University, 776 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, OH 43210-2210, United States
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
| | - Rory M Flynn
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, 200 CBEC Building 151 W. Woodruff Ave. Columbus, OH 43210, United States
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, 280 Biomedical Research Tower 460 W. 12th Ave. Columbus, OH 43210, United States
| | - Brian M M Ahmer
- Department of Microbial Infection and immunity, The Ohio State University, 776 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, OH 43210-2210, United States
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
| | - Kelly C Wrighton
- Department of Cell and Molecular Biology, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
- Department of Microbiology, Immunology, and Pathology, Microbiology Building, 1682 Campus Delivery Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
5
|
Keshavam CC, Naz S, Gupta A, Sanyal P, Kochar M, Gangwal A, Sangwan N, Kumar N, Tyagi E, Goel S, Singh NK, Sowpati DT, Khare G, Ganguli M, Raze D, Locht C, Basu-Modak S, Gupta M, Nandicoori VK, Singh Y. The heparin-binding hemagglutinin protein of Mycobacterium tuberculosis is a nucleoid-associated protein. J Biol Chem 2023; 299:105364. [PMID: 37865319 PMCID: PMC10665949 DOI: 10.1016/j.jbc.2023.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) regulate multiple cellular processes such as gene expression, virulence, and dormancy throughout bacterial species. NAPs help in the survival and adaptation of Mycobacterium tuberculosis (Mtb) within the host. Fourteen NAPs have been identified in Escherichia coli; however, only seven NAPs are documented in Mtb. Given its complex lifestyle, it is reasonable to assume that Mtb would encode for more NAPs. Using bioinformatics tools and biochemical experiments, we have identified the heparin-binding hemagglutinin (HbhA) protein of Mtb as a novel sequence-independent DNA-binding protein which has previously been characterized as an adhesion molecule required for extrapulmonary dissemination. Deleting the carboxy-terminal domain of HbhA resulted in a complete loss of its DNA-binding activity. Atomic force microscopy showed HbhA-mediated architectural modulations in the DNA, which may play a regulatory role in transcription and genome organization. Our results showed that HbhA colocalizes with the nucleoid region of Mtb. Transcriptomics analyses of a hbhA KO strain revealed that it regulates the expression of ∼36% of total and ∼29% of essential genes. Deletion of hbhA resulted in the upregulation of ∼73% of all differentially expressed genes, belonging to multiple pathways suggesting it to be a global repressor. The results show that HbhA is a nonessential NAP regulating gene expression globally and acting as a plausible transcriptional repressor.
Collapse
Affiliation(s)
| | - Saba Naz
- Department of Zoology, University of Delhi, Delhi, India; CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Aanchal Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Priyadarshini Sanyal
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Centre for Cellular and Molecular Biology (CSIR-CCMB) Campus, Hyderabad, India
| | - Manisha Kochar
- Department of Zoology, University of Delhi, Delhi, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | | | - Nitika Sangwan
- Department of Zoology, University of Delhi, Delhi, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Delhi, India
| | - Ekta Tyagi
- Department of Zoology, University of Delhi, Delhi, India
| | - Simran Goel
- Department of Zoology, University of Delhi, Delhi, India
| | | | | | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Dominique Raze
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Centre for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Centre for Infection and Immunity of Lille, Lille, France
| | | | - Meetu Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.
| | - Vinay Kumar Nandicoori
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Centre for Cellular and Molecular Biology (CSIR-CCMB) Campus, Hyderabad, India; National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India.
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India; Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi, India.
| |
Collapse
|
6
|
Yi SW, Lee HG, Kim E, Jung YH, Bok EY, Cho A, Do YJ, So KM, Hur TY, Oh SI. Gut microbiota alteration with growth performance, histopathological lesions, and immune responses in Salmonella Typhimurium-infected weaned piglets. Vet Anim Sci 2023; 22:100324. [PMID: 38125715 PMCID: PMC10730377 DOI: 10.1016/j.vas.2023.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Salmonella Typhimurium can cause gastroenteritis in weaned piglets, which are particularly vulnerable to dietary changes and dysfunction of their immature organs. The colonization of S. Typhimurium could disrupt the gut microbiota and increase susceptibility to the bacterium. This study aimed to investigate the alterations of gut microbiota in S. Typhimurium-infected weaned piglets. Ten 49-day-old pigs were divided into two groups: S. Typhimurium-inoculated (ST, n = 6) and negative control (NC, n = 4) groups. The body weight and S. Typhimurium fecal shedding were monitored for 14 days after S. Typhimurium inoculation (dpi). The intestinal tissues were collected at 14 dpi; histopathological lesions and cytokine gene expression were evaluated. The gut microbiome composition and short-chain fatty acid concentrations were analyzed in fecal samples collected at 14 dpi. The average daily gain and gut microbiota alpha diversity in ST group tended to be lower than NC group at 14 dpi. Linear discriminant analysis effect size results showed a significant increase in the abundance of two genera and five species, while a significant decrease was observed in the five genera and nine species within the gut microbiota of ST group. Among the significantly less abundant bacteria in the ST group, Lachnospira eligens and Anaerobium acetethylicum produce acetate and butyrate, and may be considered as key S. Typhimurium infection-preventing bacteria. The overall results provide invaluable information about changes in the gut microbiota of S. Typhimurium-infected weaned piglets, which can be used to develop alternative measures to antibiotics and prevent ST bacterial infection.
Collapse
Affiliation(s)
- Seung-Won Yi
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Han Gyu Lee
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Eunju Kim
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Young-Hun Jung
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Eun-Yeong Bok
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Ara Cho
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Yoon Jung Do
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Kyoung-Min So
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Tai-Young Hur
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Sang-Ik Oh
- Laboratory of Veterinary Pathology and Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do 54596, South Korea
| |
Collapse
|
7
|
Liu RH, Sun AQ, Liao Y, Tang ZX, Zhang SH, Shan X, Hu JT. Lactiplantibacillus plantarum Regulated Intestinal Microbial Community and Cytokines to Inhibit Salmonella typhimurium Infection. Probiotics Antimicrob Proteins 2023; 15:1355-1370. [PMID: 36074298 DOI: 10.1007/s12602-022-09987-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
Abstract
Lactic acid bacteria (LAB) are recognized as food-grade safe microorganisms and have many beneficial effects. LAB could maintain the host intestinal homeostasis and regulate intestinal microbial community to exert antibacterial effects. In this study, Lactiplantibacillus plantarum (L. plantarum, Lp01) strain isolated from pig intestine was orally administered to C57BL/6 mice, and mice were then infected with Salmonella typhimurium (ATCC14028). The protective effects of L. plantarum were evaluated by monitoring body weight loss, survival rates, bacterial loads in tissue, colon histopathology analysis, and cytokine secretion. 16S rRNA gene sequencing was also utilized to detect the dynamics of the blind gut microbial community in mice. We found that L. plantarum could significantly reduce the body weight loss and improve the survival rates. The survival rate in the L. P-Sty group was up to 67.5%, which was much higher than that in the STY group (25%). Counting of bacterial loads displayed that the colony-forming unit (CFU) of S. typhimurium in the spleen (p < 0.05) and the liver (p < 0.05) from L. P-Sty group both decreased, compared with STY group. Intestinal histopathology showed that it alleviated the intestinal injury caused by Salmonella, inhibited the secretion of pro-inflammatory cytokines, and promoted anti-inflammatory cytokines (p < 0. 01). In addition, L. plantarum also significantly ameliorated the intestinal gut microbiome disturbance caused by Salmonella. It displayed an obvious increase of beneficial bacteria including Lactobacillus and Bacteroidetes and reduction of pathogenic bacteria like Proteobacteria. In conclusion, L. plantarum could regulate microbial community to inhibit Salmonella typhimurium infection.
Collapse
Affiliation(s)
- Rui-Han Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - An-Qi Sun
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ye Liao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Zheng-Xu Tang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Shi-Han Zhang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Shan
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jing-Tao Hu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
8
|
Kogut MH, Fernandez Miyakawa ME. Phenotype Alterations in the Cecal Ecosystem Involved in the Asymptomatic Intestinal Persistence of Paratyphoid Salmonella in Chickens. Animals (Basel) 2023; 13:2824. [PMID: 37760224 PMCID: PMC10525526 DOI: 10.3390/ani13182824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The gastrointestinal ecosystem involves interactions between the host, gut microbiota, and external environment. To colonize the gut of poultry, Salmonella must surmount barriers levied by the intestine including mucosal innate immune responses and microbiota-mediated niche restrictions. Accordingly, comprehending Salmonella intestinal colonization in poultry requires an understanding of how the pathogen interacts with the intestinal ecosystem. In chickens, the paratyphoid Salmonella have evolved the capacity to survive the initial immune response and persist in the avian ceca for months without triggering clinical signs. The persistence of a Salmonella infection in the avian host involves both host defenses and tolerogenic defense strategies. The initial phase of the Salmonella-gut ecosystem interaction is characteristically an innate pro-inflammatory response that controls bacterial invasion. The second phase is initiated by an expansion of the T regulatory cell population in the cecum of Salmonella-infected chickens accompanied by well-defined shifts in the enteric neuro-immunometabolic pathways that changes the local phenotype from pro-inflammatory to an anti-inflammatory environment. Thus, paratyphoid Salmonella in chickens have evolved a unique survival strategy that minimizes the inflammatory response (disease resistance) during the initial infection and then induces an immunometabolic reprogramming in the cecum that alters the host defense to disease tolerance that provides an environment conducive to drive asymptomatic carriage of the bacterial pathogen.
Collapse
Affiliation(s)
- Michael H. Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, USA
| | - Mariano Enrique Fernandez Miyakawa
- Instituto de Patobiología, Instituto Nacional de Tecnología, Nicolas Repetto y Los Reseros S/N, Hurlingham 1686, Buenos Aires, Argentina;
| |
Collapse
|
9
|
Jiang M, Li X, Xie CL, Chen P, Luo W, Lin CX, Wang Q, Shu DM, Luo CL, Qu H, Ji J. Fructose-enabled killing of antibiotic-resistant Salmonella enteritidis by gentamicin: Insight from reprogramming metabolomics. Int J Antimicrob Agents 2023; 62:106907. [PMID: 37385564 DOI: 10.1016/j.ijantimicag.2023.106907] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/29/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Salmonella enterica is a food-borne pathogen that poses a severe threat to both poultry production and human health. Antibiotics are critical for the initial treatment of bacterial infections. However, the overuse and misuse of antibiotics results in the rapid evolution of antibiotic-resistant bacteria, and the discovery and development of new antibiotics are declining. Therefore, understanding antibiotic resistance mechanisms and developing novel control measures are essential. In the present study, GC-MS-based metabolomics analysis was performed to determine the metabolic profile of gentamicin sensitive (SE-S) and resistant (SE-R) S. enterica. Fructose was identified as a crucial biomarker. Further analysis demonstrated a global depressed central carbon metabolism and energy metabolism in SE-R. The decrease in the pyruvate cycle reduces the production of NADH and ATP, causing a decrease in membrane potential, which contributes to gentamicin resistance. Exogenous fructose potentiated the effectiveness of gentamicin in killing SE-R by promoting the pyruvate cycle, NADH, ATP and membrane potential, thereby increasing gentamicin intake. Further, fructose plus gentamicin improved the survival rate of chicken infected with gentamicin-resistant Salmonella in vivo. Given that metabolite structures are conserved across species, fructose identified from bacteria could be used as a biomarker for breeding disease-resistant phenotypes in chicken. Therefore, a novel strategy is proposed for fighting against antibiotic-resistant S. enterica, including exploring molecules suppressed by antibiotics and providing a new approach to find pathogen targets for disease resistance in chicken breeding.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China; The Third Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xia Li
- The Third Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun-Lin Xie
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Peng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wei Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chu-Xiao Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiao Wang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ding-Ming Shu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Cheng-Long Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Qu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| | - Jian Ji
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| |
Collapse
|
10
|
González-Orozco BD, Kosmerl E, Jiménez-Flores R, Alvarez VB. Enhanced probiotic potential of Lactobacillus kefiranofaciens OSU-BDGOA1 through co-culture with Kluyveromyces marxianus bdgo-ym6. Front Microbiol 2023; 14:1236634. [PMID: 37601389 PMCID: PMC10434783 DOI: 10.3389/fmicb.2023.1236634] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Due to the increasing consumer demand for the development and improvement of functional foods containing probiotics, new probiotic candidates need to be explored as well as novel means to enhance their beneficial effects. Lactobacillus kefiranofaciens OSU-BDGOA1 is a strain isolated from kefir grains that has demonstrated probiotic traits. This species is the main inhabitant of kefir grains and is responsible for the production of an exopolysaccharide (EPS) whit vast technological applications and potential bioactivities. Research has shown that interkingdom interactions of yeast and lactic acid bacteria can enhance metabolic activities and promote resistance to environmental stressors. Methods Comparative genomic analyses were performed to distinguish OSU-BDGOA1 from other strains of the same species, and the genome was mined to provide molecular evidence for relevant probiotic properties. We further assessed the cumulative effect on the probiotic properties of OSU-BDGOA1 and Kluyveromyces marxianus bdgo-ym6 yeast co-culture compared to monocultures. Results Survival during simulated digestion assessed by the INFOGEST digestion model showed higher survival of OSU-BDGOA1 and bdgo-ym6 in co-culture. The adhesion to intestinal cells assessed with the Caco-2 intestinal cell model revealed enhanced adhesion of OSU-BDGOA1 in co-culture. The observed increase in survival during digestion could be associated with the increased production of EPS during the late exponential and early stationary phases of co-culture that, by enhancing co-aggregation between the yeast and the bacterium, protects the microorganisms from severe gastrointestinal conditions as observed by SEM images. Immune modulation and barrier function for recovery and prevention of flagellin-mediated inflammation by Salmonella Typhimurium heat-killed cells (HKSC) in Caco-2 cells were also measured. OSU-BDGOA1 in mono- and co-culture regulated inflammation through downregulation of pro-inflammatory cytokine expression and increased membrane barrier integrity assessed by TEER, FD4 permeability, and expression of tight junctions. Discussion The results of the study warrant further research into the application of co-cultures of yeast and LAB in functional probiotic products and the potential to increase EPS production by co-culture strategies.
Collapse
Affiliation(s)
| | | | | | - Valente B. Alvarez
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
11
|
de Oliveira LF, Filho DM, Marques BL, Maciel GF, Parreira RC, do Carmo Neto JR, Da Silva PEF, Guerra RO, da Silva MV, Santiago HDC, Birbrair A, Kihara AH, Dias da Silva VJ, Glaser T, Resende RR, Ulrich H. Organoids as a novel tool in modelling infectious diseases. Semin Cell Dev Biol 2023; 144:87-96. [PMID: 36182613 DOI: 10.1016/j.semcdb.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022]
Abstract
Infectious diseases worldwide affect human health and have important societal impacts. A better understanding of infectious diseases is urgently needed. In vitro and in vivo infection models have brought notable contributions to the current knowledge of these diseases. Organoids are multicellular culture systems resembling tissue architecture and function, recapitulating many characteristics of human disease and elucidating mechanisms of host-infectious agent interactions in the respiratory and gastrointestinal systems, the central nervous system and the skin. Here, we discuss the applicability of the organoid technology for modeling pathogenesis, host response and features, which can be explored for the development of preventive and therapeutic treatments.
Collapse
Affiliation(s)
- Lucas Felipe de Oliveira
- Departamento de Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Daniel Mendes Filho
- Departamento de Fisiologia, Escola Médica de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruno Lemes Marques
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal deGoiás, Goiânia, GO, Brazil
| | | | | | - José Rodrigues do Carmo Neto
- Departamento de Biociência e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Rhanoica Oliveira Guerra
- Departamento de Microbiologia, Imunologia eParasitologia, Instituto de Ciências Naturais e Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marcos Vinicius da Silva
- Departamento de Microbiologia, Imunologia eParasitologia, Instituto de Ciências Naturais e Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Helton da Costa Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Radiology, Columbia University Medical Center, New York, NY, USA; Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Alexandre H Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Valdo José Dias da Silva
- Departamento de Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Talita Glaser
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Henning Ulrich
- Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil; Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Zwilling JD, Whitham J, Zambrano F, Pifano A, Grunden A, Jameel H, Venditti R, Gonzalez R. Survivability of Salmonella Typhimurium (ATCC 14208) and Listeria innocua (ATCC 51742) on lignocellulosic materials for paper packaging. Heliyon 2023; 9:e14122. [PMID: 36950652 PMCID: PMC10025085 DOI: 10.1016/j.heliyon.2023.e14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Lignocellulosic materials are widely used for food packaging due to their renewable and biodegradable nature. However, their porous and absorptive properties can lead to the uptake and retention of bacteria during food processing, transportation, and storage, which pose a potential risk for outbreaks of foodborne disease. Thus, it is of great importance to understand how bacteria proliferate and survive on lignocellulosic surfaces. The aim of this research was to compare the growth and survivability of Salmonella Typhimurium and Listeria innocua on bleached and unbleached paper packaging materials. Two different paper materials were fabricated to simulate linerboard from fully bleached and unbleached market pulps and inoculated with each bacterium at high bacterial loads (107 CFU). The bacteria propagated during the first 48 h of incubation and persisted at very high levels (>107 CFU/cm2) for 40 days for all paper and bacterium types. However, the unbleached paper allowed for a greater degree of bacterial growth to occur compared to bleached paper, suspected to be due to the more hydrophobic nature of the unbleached, lignin-containing fibers. Several other considerations may also alter the behavior of bacteria on lignocellulosic materials, such as storage conditions, nutrient availability, and chemical composition of the fibers.
Collapse
Affiliation(s)
- Jacob D. Zwilling
- Department of Forest Biomaterials, North Carolina State University, Biltmore Hall, Campus Box 8005, Raleigh, NC 27695, USA
| | - Jason Whitham
- Department of Plant and Microbial Biology, 4550A Thomas Hall, Campus Box 7612, North Carolina State University, Raleigh, NC 27695, USA
| | - Franklin Zambrano
- Department of Forest Biomaterials, North Carolina State University, Biltmore Hall, Campus Box 8005, Raleigh, NC 27695, USA
| | - Alonzo Pifano
- Department of Forest Biomaterials, North Carolina State University, Biltmore Hall, Campus Box 8005, Raleigh, NC 27695, USA
| | - Amy Grunden
- Department of Plant and Microbial Biology, 4550A Thomas Hall, Campus Box 7612, North Carolina State University, Raleigh, NC 27695, USA
| | - Hasan Jameel
- Department of Forest Biomaterials, North Carolina State University, Biltmore Hall, Campus Box 8005, Raleigh, NC 27695, USA
| | - Richard Venditti
- Department of Forest Biomaterials, North Carolina State University, Biltmore Hall, Campus Box 8005, Raleigh, NC 27695, USA
| | - Ronalds Gonzalez
- Department of Forest Biomaterials, North Carolina State University, Biltmore Hall, Campus Box 8005, Raleigh, NC 27695, USA
- Corresponding author.
| |
Collapse
|
13
|
Small RNAs Activate Salmonella Pathogenicity Island 1 by Modulating mRNA Stability through the hilD mRNA 3' Untranslated Region. J Bacteriol 2023; 205:e0033322. [PMID: 36472436 PMCID: PMC9879128 DOI: 10.1128/jb.00333-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is an enteric pathogen associated with foodborne disease. Salmonella invades the intestinal epithelium using a type three secretion system encoded on Salmonella pathogenicity island 1 (SPI-1). SPI-1 genes are tightly regulated by a complex feed-forward loop to ensure proper spatial and temporal expression. Most regulatory input is integrated at HilD, through control of hilD mRNA translation or HilD protein activity. The hilD mRNA possesses a 310-nucleotide 3' untranslated region (UTR) that influences HilD and SPI-1 expression, and this regulation is dependent on Hfq and RNase E, cofactors known to mediate small RNA (sRNA) activities. Thus, we hypothesized that the hilD mRNA 3' UTR is a target for sRNAs. Here, we show that two sRNAs, SdsR and Spot 42, regulate SPI-1 by targeting different regions of the hilD mRNA 3' UTR. Regulatory activities of these sRNAs depended on Hfq and RNase E, in agreement with previous roles found for both at the hilD 3' UTR. Salmonella mutants lacking SdsR and Spot 42 had decreased virulence in a mouse model of infection. Collectively, this work suggests that these sRNAs targeting the hilD mRNA 3' UTR increase hilD mRNA levels by interfering with RNase E-dependent mRNA degradation and that this regulatory effect is required for Salmonella invasiveness. Our work provides novel insights into mechanisms of sRNA regulation at bacterial mRNA 3' UTRs and adds to our knowledge of post-transcriptional regulation of the SPI-1 complex feed-forward loop. IMPORTANCE Salmonella enterica serovar Typhimurium is a prominent foodborne pathogen, infecting millions of people a year. To express virulence genes at the correct time and place in the host, Salmonella uses a complex regulatory network that senses environmental conditions. Known for their role in allowing quick responses to stress and virulence conditions, we investigated the role of small RNAs in facilitating precise expression of virulence genes. We found that the 3' untranslated region of the hilD mRNA, encoding a key virulence regulator, is a target for small RNAs and RNase E. The small RNAs stabilize hilD mRNA to allow proper expression of Salmonella virulence genes in the host.
Collapse
|
14
|
Singh V, Lee G, Son H, Koh H, Kim ES, Unno T, Shin JH. Butyrate producers, "The Sentinel of Gut": Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front Microbiol 2023; 13:1103836. [PMID: 36713166 PMCID: PMC9877435 DOI: 10.3389/fmicb.2022.1103836] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Gut-microbial butyrate is a short-chain fatty acid (SCFA) of significant physiological importance than the other major SCFAs (acetate and propionate). Most butyrate producers belong to the Clostridium cluster of the phylum Firmicutes, such as Faecalibacterium, Roseburia, Eubacterium, Anaerostipes, Coprococcus, Subdoligranulum, and Anaerobutyricum. They metabolize carbohydrates via the butyryl-CoA: acetate CoA-transferase pathway and butyrate kinase terminal enzymes to produce most of butyrate. Although, in minor fractions, amino acids can also be utilized to generate butyrate via glutamate and lysine pathways. Butyrogenic microbes play a vital role in various gut-associated metabolisms. Butyrate is used by colonocytes to generate energy, stabilizes hypoxia-inducible factor to maintain the anaerobic environment in the gut, maintains gut barrier integrity by regulating Claudin-1 and synaptopodin expression, limits pro-inflammatory cytokines (IL-6, IL-12), and inhibits oncogenic pathways (Akt/ERK, Wnt, and TGF-β signaling). Colonic butyrate producers shape the gut microbial community by secreting various anti-microbial substances, such as cathelicidins, reuterin, and β-defensin-1, and maintain gut homeostasis by releasing anti-inflammatory molecules, such as IgA, vitamin B, and microbial anti-inflammatory molecules. Additionally, butyrate producers, such as Roseburia, produce anti-carcinogenic metabolites, such as shikimic acid and a precursor of conjugated linoleic acid. In this review, we summarized the significance of butyrate, critically examined the role and relevance of butyrate producers, and contextualized their importance as microbial therapeutics.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hong Koh
- Department of Pediatrics, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju National University, Jeju, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
15
|
Elias SC, Muthumbi E, Mwanzu A, Wanjiku P, Mutiso A, Simon R, MacLennan CA. Complementary measurement of nontyphoidal Salmonella-specific IgG and IgA antibodies in oral fluid and serum. Heliyon 2023; 9:e12071. [PMID: 36704288 PMCID: PMC9871079 DOI: 10.1016/j.heliyon.2022.e12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/07/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Immuno-epidemiological studies of orally acquired, enteric pathogens such as nontyphoidal Salmonella (NTS) often focus on serological measures of immunity, ignoring potentially relevant oral mucosal responses. In this study we sought to assess the levels and detectability of both oral fluid and serum IgG and IgA to NTS antigens, in endemic and non-endemic populations. Methods IgG and IgA antibodies specific for Salmonella Typhimurium and Salmonella Enteritidis O antigen and phase 1 flagellin were assessed using Enzyme Linked Immunosorbent Assay (ELISA). Paired oral fluid and serum samples were collected from groups of 50 UK adults, Kenyan adults and Kenyan infants. Additionally, oral fluid alone was collected from 304 Kenyan individuals across a range of ages. Results Antigen-specific IgG and IgA was detectable in the oral fluid of both adults and infants. Oral fluid antibody increased with age, peaking in adulthood for both IgG and IgA but a separate peak was also observed for IgA in infants. Oral fluid and serum responses correlated for IgG but not IgA. Despite standardised collection the relationship between oral fluid volume and antibody levels varied with age and country of origin. Conclusions Measurement of NTS-specific oral fluid antibody can be used to complement measurement of serum antibody. For IgA in particular, oral fluid may offer insights into how protective immunity to NTS changes as individuals transition with age, from maternal to acquired systemic and mucosal immunity. This may prove useful in helping to guide future vaccine design.
Collapse
Affiliation(s)
- Sean C. Elias
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, UK
- Corresponding author.
| | - Esther Muthumbi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- London School of Hygiene & Tropical Medicine, UK
| | - Alfred Mwanzu
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Agnes Mutiso
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | |
Collapse
|
16
|
Podnar E, Erega A, Danevčič T, Kovačec E, Lories B, Steenackers H, Mandic-Mulec I. Nutrient Availability and Biofilm Polysaccharide Shape the Bacillaene-Dependent Antagonism of Bacillus subtilis against Salmonella Typhimurium. Microbiol Spectr 2022; 10:e0183622. [PMID: 36342318 PMCID: PMC9769773 DOI: 10.1128/spectrum.01836-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Salmonella enterica is one of the most common foodborne pathogens and, due to the spread of antibiotic resistance, new antimicrobial strategies are urgently needed to control it. In this study, we explored the probiotic potential of Bacillus subtilis PS-216 and elucidated the mechanisms that underlie the interactions between this soil isolate and the model pathogenic strain S. Typhimurium SL1344. The results reveal that B. subtilis PS-216 inhibits the growth and biofilm formation of S. Typhimurium through the production of the pks cluster-dependent polyketide bacillaene. The presence of S. Typhimurium enhanced the activity of the PpksC promoter that controls bacillaene production, suggesting that B. subtilis senses and responds to Salmonella. The level of Salmonella inhibition, overall PpksC activity, and PpksC induction by Salmonella were all higher in nutrient-rich conditions than in nutrient-depleted conditions. Although eliminating the extracellular polysaccharide production of B. subtilis via deletion of the epsA-O operon had no significant effect on inhibitory activity against Salmonella in nutrient-rich conditions, this deletion mutant showed an enhanced antagonism against Salmonella in nutrient-depleted conditions, revealing an intricate relationship between exopolysaccharide production, nutrient availability, and bacillaene synthesis. Overall, this work provides evidence on the regulatory role of nutrient availability, sensing of the competitor, and EpsA-O polysaccharide in the social outcome of bacillaene-dependent competition between B. subtilis and S. Typhimurium. IMPORTANCE Probiotic bacteria represent an alternative for controlling foodborne disease caused by Salmonella enterica, which constitutes a serious concern during food production due to its antibiotic resistance and resilience to environmental stress. Bacillus subtilis is gaining popularity as a probiotic, but its behavior in biofilms with pathogens such as Salmonella remains to be elucidated. Here, we show that the antagonism of B. subtilis is mediated by the polyketide bacillaene and that the production of bacillaene is a highly dynamic trait which depends on environmental factors such as nutrient availability and the presence of competitors. Moreover, the production of extracellular polysaccharides by B. subtilis further alters the influence of these factors. Hence, this work highlights the inhibitory effect of B. subtilis, which is condition-dependent, and the importance of evaluating probiotic strains under conditions relevant to the intended use.
Collapse
Affiliation(s)
- Eli Podnar
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andi Erega
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Danevčič
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Kovačec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Bram Lories
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Hans Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Ines Mandic-Mulec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Chair of Microprocess Engineering and Technology (COMPETE), University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
17
|
Gibbons E, Tamanna M, Cherayil BJ. The rpoS gene confers resistance to low osmolarity conditions in Salmonella enterica serovar Typhi. PLoS One 2022; 17:e0279372. [PMID: 36525423 PMCID: PMC9757558 DOI: 10.1371/journal.pone.0279372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Salmonella enterica serovars Typhimurium and Typhi are enteropathogens that differ in host range and the diseases that they cause. We found that exposure to a combination of hypotonicity and the detergent Triton X-100 significantly reduced the viability of the S. Typhi strain Ty2 but had no effect on the S. Typhimurium strain SL1344. Further analysis revealed that hypotonicity was the critical factor: incubation in distilled water alone was sufficient to kill Ty2, while the addition of sodium chloride inhibited killing in a dose-dependent manner. Ty2's loss of viability in water was modified by culture conditions: bacteria grown in well-aerated shaking cultures were more susceptible than bacteria grown under less aerated static conditions. Ty2, like many S. Typhi clinical isolates, has an inactivating mutation in the rpoS gene, a transcriptional regulator of stress responses, whereas most S. Typhimurium strains, including SL1344, have the wild-type gene. Transformation of Ty2 with a plasmid expressing wild-type rpoS, but not the empty vector, significantly increased survival in distilled water. Moreover, an S. Typhi strain with wild-type rpoS had unimpaired survival in water. Inactivation of the wild-type gene in this strain significantly reduced survival, while replacement with an arabinose-inducible allele of rpoS restored viability in water under inducing conditions. Our observations on rpoS-dependent differences in susceptibility to hypotonic conditions may be relevant to the ability of S. Typhi and S. Typhimurium to tolerate the various environments they encounter during the infectious cycle. They also have implications for the handling of these organisms during experimental manipulations.
Collapse
Affiliation(s)
- Eamon Gibbons
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Mehbooba Tamanna
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Medical Sciences Program, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Bobby J. Cherayil
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Lin HC, Wu YL, Hsu CY, Lin MY, Chen LH, Shiau CW, Chiu HC. Discovery of antipsychotic loxapine derivatives against intracellular multidrug-resistant bacteria. RSC Med Chem 2022; 13:1361-1366. [PMID: 36439974 PMCID: PMC9667769 DOI: 10.1039/d2md00182a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 08/13/2023] Open
Abstract
The emergence and spread of multidrug-resistant bacteria highlight the need for new antibacterial interventions. A screening of 24 newly synthesized dibenzoxazepines identified a small molecule compound, SW14, with potent inhibitory activity against intracellular multidrug-resistant and fluoroquinolone-resistant strains of S. typhimurium in macrophages and epithelial cells. Moreover, intra-macrophagic Salmonella typhi, Yersinia enterocolitica, and Listeria monocytogenes and methicillin-resistant Staphylococcus aureus are also susceptible to SW14. Overall, our findings suggest that SW14 has a broad-spectrum activity against intracellular bacteria.
Collapse
Affiliation(s)
- Hsueh-Chun Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University Taipei 10048 Taiwan
| | - Yi-Lun Wu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University Taipei 11221 Taiwan
| | - Cheng-Yun Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University Taipei 10048 Taiwan
| | - Man-Yi Lin
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University Taipei 11221 Taiwan
| | - Ling-Han Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University Taipei 10048 Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University Taipei 11221 Taiwan
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University Taipei 10048 Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University Taipei 10021 Taiwan
| |
Collapse
|
19
|
Polyimidazolium Protects against an Invasive Clinical Isolate of Salmonella Typhimurium. Antimicrob Agents Chemother 2022; 66:e0059722. [PMID: 36094258 PMCID: PMC9578408 DOI: 10.1128/aac.00597-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Frequent outbreaks of Salmonella Typhimurium infection, in both animal and human populations and with the potential for zoonotic transmission, pose a significant threat to the public health sector. The rapid emergence and spread of more invasive multidrug-resistant clinical isolates of Salmonella further highlight the need for the development of new drugs with effective broad-spectrum bactericidal activities. The synthesis and evaluation of main-chain cationic polyimidazolium 1 (PIM1) against several Gram-positive and Gram-negative bacteria have previously demonstrated the efficacy profile of PIM1. The present study focuses on the antibacterial and anti-biofilm activities of PIM1 against Salmonella in both in vitro and in ovo settings. In vitro, PIM1 exhibited bactericidal activity against three strains of Salmonella at a low dosage of 8 μg/mL. The anti-biofilm activity of PIM1 was evident by its elimination of planktonic cells within preformed biofilms in a dose-dependent manner. During the host cell infection process, PIM1 reduces the extracellular bacterial load, which reduces adhesion and invasion to limit the establishment of infection. Once intracellular, Salmonella strains were tolerant and protected from PIM1 treatment. In a chicken egg infection model, PIM1 exhibited therapeutic activity for both Salmonella strains, using stationary-phase and exponential-phase inocula. Moreover, PIM1 showed a remarkable efficacy against the stationary-phase inocula of drug-resistant Salmonella by eliminating the bacterial burden in >50% of the infected chicken egg embryos. Collectively, our results highlight the potential for PIM1 as a replacement therapy for existing antibiotic applications on the poultry farm, given the efficiency and low toxicity profile demonstrated in our agriculturally relevant chicken embryo model.
Collapse
|
20
|
Wiradiputra MRD, Khuntayaporn P, Thirapanmethee K, Chomnawang MT. Toxin-Antitoxin Systems: A Key Role on Persister Formation in Salmonella enterica Serovar Typhimurium. Infect Drug Resist 2022; 15:5813-5829. [PMID: 36213766 PMCID: PMC9541301 DOI: 10.2147/idr.s378157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
The toxin and antitoxin modules in bacteria consist of a toxin molecule that has activity to inhibit various cellular processes and its cognate antitoxin that neutralizes the toxin. This system is considered taking part in the formation of persister cells, which are a subpopulation of recalcitrant cells able to survive antimicrobial treatment without any resistance mechanisms. Importantly, persisters have been associated with long-term infections and treatment failures in healthcare settings. It is a public health concern since persisters can be involved in the evolution and dissemination of antimicrobial resistance amidst the aggravating spread of multidrug-resistant bacteria and insufficient novel antimicrobial therapy to tackle this issue. Salmonella enterica serovar Typhimurium is one of the most prevalent Salmonella serotypes in the world and is a leading cause of food-borne salmonellosis. S. Typhimurium has been known to cause persistent infection and a wealth of investigations on Salmonella persisters indicates that toxin and antitoxin modules play a role in mediating the phenotypic switch of persisters, rendering its survival ability in the presence of antimicrobial agents. In this review, we discuss findings regarding mechanisms that underly persistence in S. Typhimurium, especially the involvement of toxin and antitoxin modules.
Collapse
Affiliation(s)
- Made Rai Dwitya Wiradiputra
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Biopharmaceutical Sciences Program, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Piyatip Khuntayaporn
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Krit Thirapanmethee
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Mullika Traidej Chomnawang
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Correspondence: Mullika Traidej Chomnawang, Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand, Tel +66 2 644 8692, Email
| |
Collapse
|
21
|
Zhan Z, Tang H, Zhang Y, Huang X, Xu M. Potential of gut-derived short-chain fatty acids to control enteric pathogens. Front Microbiol 2022; 13:976406. [PMID: 36204607 PMCID: PMC9530198 DOI: 10.3389/fmicb.2022.976406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are a very important group of metabolites located in the gut that play a crucial role in the regulation of gut function and pathogen resistance. Since many enteric pathogens respond differently to various SCFAs, substantial efforts have been made to understand the regulatory effects of SCFA types on enteric pathogens. The application of protein post-translational modifications (PTMs) in bacterial research provides a new perspective for studying the regulation of enteric pathogens by different SCFAs. Existing evidence suggests that the SCFAs acetate, propionate, and butyrate influence bacterial processes by extensively promoting the acylation of key bacterial proteins. SCFAs can also prevent the invasion of pathogenic bacteria by regulating the barrier function and immune status of the host gut. In this review, we describe the mechanisms by which different SCFAs modulate the pathogenicity of enteric pathogens from multiple perspectives. We also explore some recent findings on how enteric pathogens counteract SCFA inhibition. Lastly, we discuss the prospects and limitations of applying SCFAs to control enteric pathogens.
Collapse
Affiliation(s)
- Ziyang Zhan
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Tang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- *Correspondence: Xinxiang Huang,
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
- Min Xu,
| |
Collapse
|
22
|
Torrico M, Casino P, López A, Peiró S, Ríos M, Ríos S, Montes MJ, Guillén C, Nardi-Ricart A, García-Montoya E, Asensio D, Marqués AM, Piqué N. Improvement of Mueller-Kauffman Tetrathionate-Novobiocin (MKTTn) enrichment medium for the detection of Salmonella enterica by the addition of ex situ-generated tetrathionate. J Microbiol Methods 2022; 199:106524. [PMID: 35732231 DOI: 10.1016/j.mimet.2022.106524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 12/27/2022]
Abstract
The detection of Salmonella in food is based on the use of a selective enrichment broth such as Muller-Kauffman Tetrathionate-Novobiocin (MKTTn), in which tetrathionate plays a key role by providing Salmonella with a growth advantage. As sodium tetrathionate is unstable, it is generated in situ by the addition of iodine (Lugol's solution) before seeding. This step is cumbersome as the solution is easily spilled, compromising the performance of the medium and hindering the work of technicians. The aim of this study was to optimize MKTTn broth by generating tetrathionate ex situ through an external reaction between iodine and thiosulphate followed by lyophilization. Quality control procedures were performed to compare the modified and original media, testing pure productivity (enrichment with 50-120 CFU of Salmonella Thyphimurim ATCC 14028 and Salmonella Enteritidis ATCC 13076 and plating on Xylose Lysine Deoxycholate agar, XLD), mixed productivity (50-120 CFU of Salmonella strains and Pseudomonas aeruginosa and Escherichia coli at ≥104 CFU and XLD plating) and selectivity (≥104 CFU of P. aeruginosa and Enterococcus faecalis and plating on Tryptone Casein Soy agar, TSA). The modified MKTTn medium (S/L) performed comparably with the original medium in terms of growth of both Salmonella strains (>300 colonies in XLD), alone or with P. aeruginosa and E. coli. Quantitative assays showed no statistically significant differences in the number of colonies grown on XLD after 10-5 dilution (p = 0.7015 with S. Thyphimurim ATCC 14028 and p = 0.2387 with S. enteritidis ATCC 13076; ANOVA test). MKTTn medium (S/L) was also selective against E. coli (≤100 colonies) and E. faecalis (<10 colonies). These results suggest that adding tetrathionate as a lyophilisate (S/L) is a feasible alternative to the use of Lugol's solution for the preparation of MKTTn enrichment broth and does not affect the properties of the medium.
Collapse
Affiliation(s)
- M Torrico
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD). Josep Tura, 9H, polígon industrial Mas d'en Cisa, 08181 Sentmenat, Barcelona, Catalonia, Spain
| | - P Casino
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD). Josep Tura, 9H, polígon industrial Mas d'en Cisa, 08181 Sentmenat, Barcelona, Catalonia, Spain
| | - A López
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD). Josep Tura, 9H, polígon industrial Mas d'en Cisa, 08181 Sentmenat, Barcelona, Catalonia, Spain
| | - S Peiró
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD). Josep Tura, 9H, polígon industrial Mas d'en Cisa, 08181 Sentmenat, Barcelona, Catalonia, Spain; Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - M Ríos
- Department of Genetics, Microbiology and Statistics, Biology Faculty, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - S Ríos
- Department of Genetics, Microbiology and Statistics, Biology Faculty, Universitat de Barcelona, Barcelona, Catalonia, Spain; Department of Biochemistry and Biotechnology, Human Nutrition Unit, Universitat Rovira i Virgili, Reus, Catalonia, Spain
| | - M J Montes
- Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - C Guillén
- Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - A Nardi-Ricart
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Catalonia, Spain
| | - E García-Montoya
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Catalonia, Spain; Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology research group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Catalonia, Spain
| | - D Asensio
- Department of Quality Control, Reactivos para Diagnóstico, S.L. (RPD). Josep Tura, 9H, polígon industrial Mas d'en Cisa, 08181 Sentmenat, Barcelona, Catalonia, Spain
| | - A M Marqués
- Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - N Piqué
- Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària de la UB (INSA-UB), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
23
|
Kohne M, Li W, Ionescu A, Zhu C, Warncke K. Resolution and characterization of contributions of select protein and coupled solvent configurational fluctuations to radical rearrangement catalysis in coenzyme B 12-dependent ethanolamine ammonia-lyase. Methods Enzymol 2022; 669:229-259. [PMID: 35644173 PMCID: PMC9270175 DOI: 10.1016/bs.mie.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Coenzyme B12 (adenosylcobalamin) -dependent ethanolamine ammonia-lyase (EAL) is the signature enzyme in ethanolamine utilization metabolism associated with microbiome homeostasis and disease conditions in the human gut. The enzyme conducts a complex choreography of bond-making/bond-breaking steps that rearrange substrate to products through a radical mechanism, with themes common to other coenzyme B12-dependent and radical enzymes. The methods presented are targeted to test the hypothesis that particular, select protein and coupled solvent configurational fluctuations contribute to enzyme function. The general approach is to correlate enzyme function with an introduced perturbation that alters the properties (for example, degree of concertedness, or collectiveness) of protein and coupled solvent dynamics. Methods for sample preparation and low-temperature kinetic measurements by using temperature-step reaction initiation and time-resolved, full-spectrum electron paramagnetic resonance spectroscopy are detailed. A framework for interpretation of results obtained in ensemble systems under conditions of statistical equilibrium within the reacting, globally unstable state is presented. The temperature-dependence of the first-order rate constants for decay of the cryotrapped paramagnetic substrate radical state in EAL, through the chemical step of radical rearrangement, displays a piecewise-continuous Arrhenius dependence from 203 to 295K, punctuated by a kinetic bifurcation over 219-220K. The results reveal the obligatory contribution of a class of select collective protein and coupled solvent fluctuations to the interconversion of two resolved, sequential configurational substates, on the decay time scale. The select class of collective fluctuations also contributes to the chemical step. The methods and analysis are generally applicable to other coenzyme B12-dependent and related radical enzymes.
Collapse
Affiliation(s)
- Meghan Kohne
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Wei Li
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Alina Ionescu
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Chen Zhu
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, GA, United States.
| |
Collapse
|
24
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Pluske JR, Turpin DL, Sahibzada S, Pineda L, Han Y, Collins A. Impacts of feeding organic acid-based feed additives on diarrhea, performance, and fecal microbiome characteristics of pigs after weaning challenged with an enterotoxigenic strain of Escherichia coli. Transl Anim Sci 2021; 5:txab212. [PMID: 34909602 PMCID: PMC8665213 DOI: 10.1093/tas/txab212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
Post weaning diarrhea (PWD) caused by enterotoxigenic strains of E. coli (ETEC) remains a major problem in the industry, causing decreases in performance and survival of weaned pigs. Traditionally, antimicrobials have been used for its mitigation/control. This study tested the hypothesis that a combination of two organic acid (OA)-based commercial feed additives, Presan FX [an OA, medium-chain fatty acid (MCFA) and phenolic compound-based product] and Fysal MP (free and buffered OA based on formic acid), would reduce PWD and improve post-weaning performance in pigs challenged with an F4-ETEC. This combination was assessed against a Negative control diet without any feed additives and a diet containing amoxicillin. Combined with a reduction in temperature during the infection period, inoculation with F4-ETEC resulted in 81% of pigs developing diarrhea, but with no differences between treatments (P > 0.05). However, between days 14 to 20 of the study and due to colonization by Salmonella serovars, pigs fed the combination of Presan FX and Fysal MP showed less (P = 0.014) diarrhea commensurate with a lower (P = 0.018) proportion of Salmonella numbers relative to total bacterial numbers. This caused less (P = 0.049) therapeutic antibiotic administrations relative to the diet with amoxicillin during this time. The diversity of bacteria within amoxicillin-treated pigs was lower (P = 0.004) than the diversity in control or Presan FX + Fysal MP-treated pigs (P = 0.01). Pair-wise comparisons showed that amoxicillin-treated pigs had altered (P < 0.001) fecal microbial communities relative to both Presan FX + Fysal MP-treated pigs and control pigs. Amoxicillin-treated pigs were characterized by an increased abundance of bacterial families generally linked to inflammation and dysbiosis in the gastrointestinal tract (GIT), whereas Presan FX + Fysal MP-treated pigs had an increased abundance of bacterial families considered beneficial commensals for the GIT. Control pigs were characterized by an increased abundance of Spirochaetaceae associated with healthy piglets, as well as bacterial families associated with reduced feed intake and appetite. The combination of two OA-based feed additives did not reduce the incidence of F4 ETEC-associated diarrhea nor enhance performance. However, the combination markedly reduced diarrhea caused by Salmonella that occurred following the ETEC infection, commensurate with less therapeutic administrations relative to the diet with amoxicillin.
Collapse
Affiliation(s)
- John R Pluske
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Diana L Turpin
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Shafi Sahibzada
- Agricultural Sciences, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Lane Pineda
- Trouw Nutrition R&D, Stationsstraat 77, 3811 MH, Amersfoort, The Netherlands
| | - Yanming Han
- Trouw Nutrition R&D, Stationsstraat 77, 3811 MH, Amersfoort, The Netherlands
| | - Alison Collins
- Department of Regional NSW, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW 2568, Australia
| |
Collapse
|
26
|
Hyre A, Casanova-Hampton K, Subashchandrabose S. Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. EcoSal Plus 2021; 9:eESP00142020. [PMID: 34125582 PMCID: PMC8669021 DOI: 10.1128/ecosalplus.esp-0014-2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Copper is an essential micronutrient that also exerts toxic effects at high concentrations. This review summarizes the current state of knowledge on copper handling and homeostasis systems in Escherichia coli and Salmonella enterica. We describe the mechanisms by which transcriptional regulators, efflux pumps, detoxification enzymes, metallochaperones, and ancillary copper response systems orchestrate cellular response to copper stress. E. coli and S. enterica are important pathogens of humans and animals. We discuss the critical role of copper during killing of these pathogens by macrophages and in nutritional immunity at the bacterial-pathogen-host interface. In closing, we identify opportunities to advance our understanding of the biological roles of copper in these model enteric bacterial pathogens.
Collapse
Affiliation(s)
- Amanda Hyre
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Kaitlin Casanova-Hampton
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
27
|
Tang Z, Qin Y, Chen W, Zhao Z, Lin W, Xiao Y, Chen H, Liu Y, Chen H, Bu T, Li Q, Cai Y, Yao H, Wan Y. Diversity, Chemical Constituents, and Biological Activities of Endophytic Fungi Isolated From Ligusticum chuanxiong Hort. Front Microbiol 2021; 12:771000. [PMID: 34867905 PMCID: PMC8636053 DOI: 10.3389/fmicb.2021.771000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to evaluate the diversity of endophytic fungi of different parts of Ligusticum chuanxiong Hort (CX) and further characterize their biological activities and identify chemical compounds produced by these endophytic fungi. A total of 21 endophytic fungi were isolated and identified from CX. Penicillium oxalicum, Simplicillium sp., and Colletotrichum sp. were identified as promising strains by the color reaction. Comparing different organic extracts of the three strains, it was observed that the ethyl acetate extract of Penicillium oxalicum and Simplicillium sp. and the n-butanol extract of Colletotrichum sp. showed significant antioxidant and antibacterial activities. The ethyl acetate extracts of Penicillium oxalicum had outstanding antioxidant and antibacterial effects, and its radical scavenging rates for ABTS and DPPH were 98.43 ± 0.006% and 90.11 ± 0.032%, respectively. At the same time, their IC50 values were only 0.18 ± 0.02 mg/mL and 0.04 ± 0.003 mg/mL. The ethyl acetate extract of Penicillium oxalicum showed MIC value of only 0.5 mg/mL against Escherichia coli and Staphylococcus aureus. By liquid chromatography-mass spectrometry (LC-MS), we found that Penicillium oxalicum could produce many high-value polyphenols, such as hesperidin (36.06 μmol/g), ferulic acid (1.17 μmol/g), and alternariol (12.64 μmol/g), which can be a potential resource for the pharmaceutical industry. In conclusion, these results increase the diversity of CX endophytic fungi and the antioxidant and antibacterial activities of their secondary metabolites.
Collapse
Affiliation(s)
- Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yihan Qin
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Wenhui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Zhiqiao Zhao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Wenjie Lin
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Ya'an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yujun Wan
- Sichuan Food Fermentation Industry Research and Design Institute, Chengdu, China
| |
Collapse
|
28
|
Anil A, Apte S, Joseph J, Parthasarathy A, Madhavan S, Banerjee A. Pyruvate Oxidase as a Key Determinant of Pneumococcal Viability during Transcytosis across Brain Endothelium. J Bacteriol 2021; 203:e0043921. [PMID: 34606370 PMCID: PMC8604078 DOI: 10.1128/jb.00439-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 01/23/2023] Open
Abstract
Streptococcus pneumoniae invades a myriad of host tissues following efficient breaching of cellular barriers. However, strategies adopted by pneumococcus for evasion of host intracellular defenses governing successful transcytosis across host cellular barriers remain elusive. In this study, using brain endothelium as a model host barrier, we observed that pneumococcus containing endocytic vacuoles (PCVs), formed following S. pneumoniae internalization into brain microvascular endothelial cells (BMECs), undergo early maturation and acidification, with a major subset acquiring lysosome-like characteristics. Exploration of measures that would preserve pneumococcal viability in the lethal acidic pH of these lysosome-like vacuoles revealed a critical role of the two-component system response regulator, CiaR, which was previously implicated in induction of acid tolerance response. Pyruvate oxidase (SpxB), a key sugar-metabolizing enzyme that catalyzes oxidative decarboxylation of pyruvate to acetyl phosphate, was found to contribute to acid stress tolerance, presumably via acetyl phosphate-mediated phosphorylation and activation of CiaR, independent of its cognate kinase CiaH. Hydrogen peroxide, the by-product of an SpxB-catalyzed reaction, was also found to improve pneumococcal intracellular survival by oxidative inactivation of lysosomal cysteine cathepsins, thus compromising the degradative capacity of the host lysosomes. As expected, a ΔspxB mutant was found to be significantly attenuated in its ability to survive inside the BMEC endocytic vacuoles, reflecting its reduced transcytosis ability. Collectively, our studies establish SpxB as an important virulence determinant facilitating pneumococcal survival inside host cells, ensuring successful trafficking across host cellular barriers. IMPORTANCE Host cellular barriers have innate immune defenses to restrict microbial passage into sterile compartments. Here, by focusing on the blood-brain barrier endothelium, we investigated mechanisms that enable Streptococcus pneumoniae to traverse through host barriers. Pyruvate oxidase, a pneumococcal sugar-metabolizing enzyme, was found to play a crucial role in this via generation of acetyl phosphate and hydrogen peroxide. A two-pronged approach consisting of acetyl phosphate-mediated activation of acid tolerance response and hydrogen peroxide-mediated inactivation of lysosomal enzymes enabled pneumococci to maintain viability inside the degradative vacuoles of the brain endothelium for successful transcytosis across the barrier. Thus, pyruvate oxidase is a key virulence determinant and can potentially serve as a viable candidate for therapeutic interventions for better management of invasive pneumococcal diseases.
Collapse
Affiliation(s)
- Anjali Anil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Shruti Apte
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Jincy Joseph
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Akhila Parthasarathy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Shilpa Madhavan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| |
Collapse
|
29
|
Masamba P, Kappo AP. Parasite Survival and Disease Persistence in Cystic Fibrosis, Schistosomiasis and Pathogenic Bacterial Diseases: A Role for Universal Stress Proteins? Int J Mol Sci 2021; 22:10878. [PMID: 34639223 PMCID: PMC8509486 DOI: 10.3390/ijms221910878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Universal stress proteins (USPs) were originally discovered in Escherichia coli over two decades ago and since then their presence has been detected in various organisms that include plants, archaea, metazoans, and bacteria. As their name suggests, they function in a series of various cellular responses in both abiotic and biotic stressful conditions such as oxidative stress, exposure to DNA damaging agents, nutrient starvation, high temperature and acidic stress, among others. Although a highly conserved group of proteins, the molecular and biochemical aspects of their functions are largely evasive. This is concerning, as it was observed that USPs act as essential contributors to the survival/persistence of various infectious pathogens. Their ubiquitous nature in various organisms, as well as their augmentation during conditions of stress, is a clear indication of their direct or indirect importance in providing resilience against such conditions. This paper seeks to clarify what has already been reported in the literature on the proposed mechanism of action of USPs in pathogenic organisms.
Collapse
Affiliation(s)
- Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa;
| | | |
Collapse
|
30
|
Celis-Giraldo CT, López-Abán J, Muro A, Patarroyo MA, Manzano-Román R. Nanovaccines against Animal Pathogens: The Latest Findings. Vaccines (Basel) 2021; 9:vaccines9090988. [PMID: 34579225 PMCID: PMC8472905 DOI: 10.3390/vaccines9090988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, safe and efficacious vaccines represent powerful and cost-effective tools for global health and economic growth. In the veterinary field, these are undoubtedly key tools for improving productivity and fighting zoonoses. However, cases of persistent infections, rapidly evolving pathogens having high variability or emerging/re-emerging pathogens for which no effective vaccines have been developed point out the continuing need for new vaccine alternatives to control outbreaks. Most licensed vaccines have been successfully used for many years now; however, they have intrinsic limitations, such as variable efficacy, adverse effects, and some shortcomings. More effective adjuvants and novel delivery systems may foster real vaccine effectiveness and timely implementation. Emerging vaccine technologies involving nanoparticles such as self-assembling proteins, virus-like particles, liposomes, virosomes, and polymeric nanoparticles offer novel, safe, and high-potential approaches to address many vaccine development-related challenges. Nanotechnology is accelerating the evolution of vaccines because nanomaterials having encapsulation ability and very advantageous properties due to their size and surface area serve as effective vehicles for antigen delivery and immunostimulatory agents. This review discusses the requirements for an effective, broad-coverage-elicited immune response, the main nanoplatforms for producing it, and the latest nanovaccine applications for fighting animal pathogens.
Collapse
Affiliation(s)
- Carmen Teresa Celis-Giraldo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá 110231, Colombia
- Correspondence: (M.A.P.); (R.M.-R.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
- Correspondence: (M.A.P.); (R.M.-R.)
| |
Collapse
|
31
|
Zhou Y, Ye X, Wang B, Ying J, Zeng Z, Tang L, Wang Q, Zou P, Zhan X, Fu L. Protective Effects of Pidotimod Against Salmonella Infections. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Dias EDJS, Cantanhede Filho AJ, Carneiro FJC, da Rocha CQ, da Silva LCN, Santos JCB, Barros TF, Santos DM. Antimicrobial Activity of Extracts from the Humiria balsamifera (Aubl). PLANTS (BASEL, SWITZERLAND) 2021; 10:1479. [PMID: 34371681 PMCID: PMC8309364 DOI: 10.3390/plants10071479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022]
Abstract
Humiria balsamifera (Aubl), commonly known as "mirim", is a plant of the Humiriaceae family, which consists of 39 species divided between eight genera: Duckesia, Endopleura, Humiria, Humiriastrum, Hylocara, Sacoglottis, Schistostemon, and Vantenea. This study aimed to characterize H. balsamifera extracts by LC-MS/MS and evaluate their antimicrobial potential through in vitro and in vivo assays. The leaves and stem bark of H. balsamifera were collected and dried at room temperature and then ground in a knife mill. The extracts were prepared with organic solvents in order to increase the polarity index (hexane, ethyl acetate, and methanol). The antimicrobial effects of these extracts were evaluated against the following bacterial strains: Escherichia coli ATCC 25922, Listeria monocytogenes ATCC 15313, Salmonella enterica Typhimurium ATCC 14028, and Staphylococcus aureus ATCC 6538. The best activity was observed in the ethyl acetate (EALE = 780 µg/mL), methanol (MLE = 780 µg/mL), and hexane (HLE = 1560 µg/mL) leaf extracts against S. aureus. Considering the results for both antimicrobial and antibiofilm activities, the EALE extract was chosen to proceed to the infection assays, which used Tenebrio molitor larvae. The EALE treatment was able to extend the average lifespan of the larvae (6.5 days) in comparison to S. aureus-infected larvae (1 day). Next, the samples were characterized by High-Performance Liquid Chromatography coupled to a mass spectrometer, allowing the identification of 11 substances, including seven flavonoids, substances whose antimicrobial activity is already well-reported in the literature. The number of bioactive compounds found in the chemical composition of H. balsamifera emphasizes its significance in both traditional medicine and scientific research that studies new treatments based on substances from the Brazilian flora.
Collapse
Affiliation(s)
- Edelson de J. S. Dias
- Chemistry Graduate Program, Federal Institute of Education, Science and Technology of Maranhão, Avenida Getúlio Vargas 04, Monte Castelo, São Luís 65030-005, MA, Brazil; (A.J.C.F.); (F.J.C.C.)
| | - Antônio J. Cantanhede Filho
- Chemistry Graduate Program, Federal Institute of Education, Science and Technology of Maranhão, Avenida Getúlio Vargas 04, Monte Castelo, São Luís 65030-005, MA, Brazil; (A.J.C.F.); (F.J.C.C.)
| | - Fernando J. C. Carneiro
- Chemistry Graduate Program, Federal Institute of Education, Science and Technology of Maranhão, Avenida Getúlio Vargas 04, Monte Castelo, São Luís 65030-005, MA, Brazil; (A.J.C.F.); (F.J.C.C.)
| | - Cláudia Q. da Rocha
- Chemistry Graduate Program, Federal University of Maranhão, Av. dos Portugueses, 1966—Vila Bacanga, São Luís 65080-805, MA, Brazil;
| | - Luís Cláudio N. da Silva
- Graduate Program in Microbial Biology, CEUMA University, Rua Josué Montello, 1—Renascença II, São Luís 65075-120, MA, Brazil; (L.C.N.d.S.); (J.C.B.S.); (T.F.B.); (D.M.S.)
| | - Joice C. B. Santos
- Graduate Program in Microbial Biology, CEUMA University, Rua Josué Montello, 1—Renascença II, São Luís 65075-120, MA, Brazil; (L.C.N.d.S.); (J.C.B.S.); (T.F.B.); (D.M.S.)
| | - Thayná F. Barros
- Graduate Program in Microbial Biology, CEUMA University, Rua Josué Montello, 1—Renascença II, São Luís 65075-120, MA, Brazil; (L.C.N.d.S.); (J.C.B.S.); (T.F.B.); (D.M.S.)
| | - Deivid M. Santos
- Graduate Program in Microbial Biology, CEUMA University, Rua Josué Montello, 1—Renascença II, São Luís 65075-120, MA, Brazil; (L.C.N.d.S.); (J.C.B.S.); (T.F.B.); (D.M.S.)
| |
Collapse
|
33
|
Zahid MSH, Varma DM, Johnson MM, Landavazo A, Bachelder EM, Blough BE, Ainslie KM. Overcoming reduced antibiotic susceptibility in intracellular Salmonella enterica serovar Typhimurium using AR-12. FEMS Microbiol Lett 2021; 368:6293843. [PMID: 34089315 DOI: 10.1093/femsle/fnab062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/02/2021] [Indexed: 11/14/2022] Open
Abstract
Host-directed therapies (HDTs) could enhance the activity of traditional antibiotics. AR-12 is a promising HDT against intracellular pathogens including Salmonella enterica serovar Typhimurium, and has been shown to act through modulation of autophagy and the Akt kinase pathway. Since AR-12 does not inhibit the growth of planktonic bacteria but only works in conjunction with the infected host-cell, we hypothesized that AR-12 could enhance the activity of antibiotics in less-susceptible strains in the intracellular host environment. We found that repetitive passaging of S. typhimurium in macrophages in the absence of antibiotics led to a 4-fold reduction in their intracellular susceptibility to streptomycin (STR), but had no effect on the bacteria's sensitivity to AR-12. Moreover, when the host-passaged strains were treated with a combined therapy of AR-12 and STR, there was a significant reduction of intracellular bacterial burden compared to STR monotherapy. Additionally, co-treatment of macrophages infected with multi-drug resistant S. typhimurium with AR-12 and STR or ampicillin showed enhanced clearance of the intracellular bacteria. The drug combination did not elicit this effect on planktonic bacteria. Overall, AR-12 enhanced the clearance of less susceptible S. typhimurium in an intracellular environment.
Collapse
Affiliation(s)
- M Shamim Hasan Zahid
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Devika M Varma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Monica M Johnson
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Antonio Landavazo
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC 27709, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC 27709, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,School of Medicine, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, NC, USA
| |
Collapse
|
34
|
Yang Z, Ma X, Li Y, Xu H, Han X, Wang R, Zhao P, Li Z, Shi C. Antimicrobial Activity and Antibiofilm Potential of Coenzyme Q 0 against Salmonella Typhimurium. Foods 2021; 10:foods10061211. [PMID: 34071975 PMCID: PMC8230291 DOI: 10.3390/foods10061211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Coenzyme Q0 (CoQ0) has anti-inflammatory and anti-tumor effects; however, the antimicrobial and antibiofilm activities of CoQ0 against Salmonella enterica serovar Typhimurium are unknown. Thus, we investigated the bacteriostatic and antibiofilm activities, along with the underlying mechanism, of CoQ0 against S. Typhimurium. The minimum inhibitory concentration (MIC) of CoQ0 against S. enterica serovars Typhimurium was 0.1–0.2 mg/mL (549–1098 µM), and CoQ0 at MIC and 2MIC decreased viable S. Typhimurium counts below detectable limits within 6 and 4 h, respectively. CoQ0 at 20MIC (4 mg/mL) reduced S. Typhimurium on raw chicken by 1.5 log CFU/cm3 within 6 h. CoQ0 effectively disrupted cell membrane integrity and induced morphological changes in the cell, resulting in hyperpolarization, decreased intracellular ATP concentrations, and cellular constituents leakage. Biofilm-associated S. Typhimurium cells were killed by CoQ0 treatment. These findings suggest that CoQ0 could be applied as a natural antibacterial substance for use against S. Typhimurium by the food industry.
Collapse
Affiliation(s)
- Zhuokai Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.M.); (X.H.); (R.W.); (P.Z.)
| | - Xiaoyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.M.); (X.H.); (R.W.); (P.Z.)
| | - Yan Li
- College of Innovation and Experiment, Northwest A&F University, Yangling 712100, China; (Y.L.); (H.X.); (Z.L.)
| | - Huidong Xu
- College of Innovation and Experiment, Northwest A&F University, Yangling 712100, China; (Y.L.); (H.X.); (Z.L.)
| | - Xinyi Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.M.); (X.H.); (R.W.); (P.Z.)
| | - Ruixia Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.M.); (X.H.); (R.W.); (P.Z.)
| | - Pengyu Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.M.); (X.H.); (R.W.); (P.Z.)
| | - Ziyi Li
- College of Innovation and Experiment, Northwest A&F University, Yangling 712100, China; (Y.L.); (H.X.); (Z.L.)
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.M.); (X.H.); (R.W.); (P.Z.)
- Correspondence: ; Tel.: +86-29-8709-2486; Fax: +86-29-8709-1391
| |
Collapse
|
35
|
Gomes NGM, Madureira-Carvalho Á, Dias-da-Silva D, Valentão P, Andrade PB. Biosynthetic versatility of marine-derived fungi on the delivery of novel antibacterial agents against priority pathogens. Biomed Pharmacother 2021; 140:111756. [PMID: 34051618 DOI: 10.1016/j.biopha.2021.111756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022] Open
Abstract
Despite the increasing number of novel marine natural products being reported from fungi in the last three decades, to date only the broad-spectrum cephalosporin C can be tracked back as marine fungal-derived drug. Cephalosporins were isolated in the early 1940s from a strain of Acremonium chrysogenum obtained in a sample collected in sewage water in the Sardinian coast, preliminary findings allowing the discovery of cephalosporin C. Since then, bioprospection of marine fungi has been enabling the identification of several metabolites with antibacterial effects, many of which proving to be active against multi-drug resistant strains, available data suggesting also that some might fuel the pharmaceutical firepower towards some of the bacterial pathogens classified as a priority by the World Health Organization. Considering the success of their terrestrial counterparts on the discovery and development of several antibiotics that are nowadays used in the clinical setting, marine fungi obviously come into mind as producers of new prototypes to counteract antibiotic-resistant bacteria that are no longer responding to available treatments. We mainly aim to provide a snapshot on those metabolites that are likely to proceed to advanced preclinical development, not only based on their antibacterial potency, but also considering their targets and modes of action, and activity against priority pathogens.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Áurea Madureira-Carvalho
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal.
| | - Diana Dias-da-Silva
- IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| |
Collapse
|
36
|
Ionescu A, Li W, Nforneh B, Warncke K. Coupling of ethanolamine ammonia-lyase protein and solvent dynamics characterized by the temperature-dependence of EPR spin probe mobility and dielectric permittivity. J Chem Phys 2021; 154:175101. [PMID: 34241057 DOI: 10.1063/5.0040341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is used to address the remarkable persistence of the native Arrhenius dependence of the 2-aminopropanol substrate radical rearrangement reaction in B12-dependent ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium from physiological to cryogenic (220 K) temperatures. Two-component TEMPOL spin probe mobility in the presence of 10 mM (0.08% v/v) 2-aminopropanol over 200-265 K demonstrates characteristic concentric aqueous-cosolvent mesodomain and protein-associated domain (PAD, hydration layer) solvent phases around EAL in the frozen solution. The mesodomain formed by the relatively small amount of 2-aminopropanol is highly confined, as shown by an elevated temperature for the order-disorder transition (ODT) in the PAD (230-235 K) and large activation energy for TEMPOL rotation. Addition of 2% v/v dimethylsulfoxide expands the mesodomain, partially relieves PAD confinement, and leads to an ODT at 205-210 K. The ODT is also manifested as a deviation of the temperature-dependence of the EPR amplitude of cob(II)alamin and the substrate radical, bound in the enzyme active site, from Curie law behavior. This is attributed to an increase in sample dielectric permittivity above the ODT at the microwave frequency of 9.5 GHz. The relatively high frequency dielectric response indicates an origin in coupled protein surface group-water fluctuations of the Johari-Goldstein β type that span spatial scales of ∼0.1-10 Å on temporal scales of 10-10-10-7 s. The orthogonal EPR spin probe rotational mobility and solvent dielectric measurements characterize features of EAL protein-solvent dynamical coupling and reveal that excess substrate acts as a fluidizing cryosolvent to enable native enzyme reactivity at cryogenic temperatures.
Collapse
Affiliation(s)
- Alina Ionescu
- Department of Physics, Emory University, Atlanta, Georgia 30322-2430, USA
| | - Wei Li
- Department of Physics, Emory University, Atlanta, Georgia 30322-2430, USA
| | - Benjamen Nforneh
- Department of Physics, Emory University, Atlanta, Georgia 30322-2430, USA
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, Georgia 30322-2430, USA
| |
Collapse
|
37
|
Pérez-Morales D, Bustamante VH. Cross-kingdom metabolic manipulation promotes Salmonella replication inside macrophages. Nat Commun 2021; 12:1862. [PMID: 33767154 PMCID: PMC7994845 DOI: 10.1038/s41467-021-22198-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| |
Collapse
|
38
|
Mthembu TP, Zishiri OT, El Zowalaty ME. Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-Associated Salmonella Species. Animals (Basel) 2021; 11:872. [PMID: 33803844 PMCID: PMC8003163 DOI: 10.3390/ani11030872] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
The rising trend of antimicrobial resistance (AMR) by foodborne bacteria is a public health concern as these pathogens are easily transmitted to humans through the food chain. Non-typhoid Salmonella spp. is one of the leading foodborne pathogens which infect humans worldwide and is associated with food and livestock. Due to the lack of discovery of new antibiotics and the pressure exerted by antimicrobial resistance in the pharmaceutical industry, this review aimed to address the issue of antibiotic use in livestock which leads to AMR in Salmonella. Much attention was given to resistance to carbapenems and colistin which are the last-line antibiotics used in cases of multi drug resistant bacterial infections. In the present review, we highlighted data published on antimicrobial resistant Salmonella species and serovars associated with livestock and food chain animals. The importance of genomic characterization of carbapenem and colistin resistant Salmonella in determining the relationship between human clinical isolates and food animal isolates was also discussed in this review. Plasmids, transposons, and insertion sequence elements mediate dissemination of not only AMR genes but also genes for resistance to heavy metals and disinfectants, thus limiting the therapeutic options for treatment and control of Salmonella. Genes for resistance to colistin (mcr-1 to mcr-9) and carbapenem (blaVIM-1, blaDNM-1, and blaNDM-5) have been detected from poultry, pig, and human Salmonella isolates, indicating food animal-associated AMR which is a threat to human public health. Genotyping, plasmid characterization, and phylogenetic analysis is important in understanding the epidemiology of livestock-related Salmonella so that measures of preventing foodborne threats to humans can be improved.
Collapse
Affiliation(s)
- Thobeka P. Mthembu
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (T.P.M.); (O.T.Z.)
| | - Oliver T. Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (T.P.M.); (O.T.Z.)
| | - Mohamed E. El Zowalaty
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala SE 751 23, Sweden
| |
Collapse
|
39
|
Copper Handling in the Salmonella Cell Envelope and Its Impact on Virulence. Trends Microbiol 2021; 29:384-387. [PMID: 33516594 DOI: 10.1016/j.tim.2021.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Abstract
Copper (Cu) plays a key role at the host-pathogen interface as both an essential element and a toxic element. Intracellular strains of pathogenic Salmonella have acquired the periplasmic Cu chaperone, CueP, and the thiol oxidoreductases complex Scs, while losing the ancestral Cu-detoxification Cus system. Coregulation of these species-specific factors link Cu with redox stress and allows Salmonella to counteract Cu toxicity during infection.
Collapse
|
40
|
Kushwaha SK, Bhavesh NLS, Abdella B, Lahiri C, Marathe SA. The phylogenomics of CRISPR-Cas system and revelation of its features in Salmonella. Sci Rep 2020; 10:21156. [PMID: 33273523 PMCID: PMC7712790 DOI: 10.1038/s41598-020-77890-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/18/2020] [Indexed: 01/26/2023] Open
Abstract
Salmonellae display intricate evolutionary patterns comprising over 2500 serovars having diverse pathogenic profiles. The acquisition and/or exchange of various virulence factors influences the evolutionary framework. To gain insights into evolution of Salmonella in association with the CRISPR-Cas genes we performed phylogenetic surveillance across strains of 22 Salmonella serovars. The strains differed in their CRISPR1-leader and cas operon features assorting into two main clades, CRISPR1-STY/cas-STY and CRISPR1-STM/cas-STM, comprising majorly typhoidal and non-typhoidal Salmonella serovars respectively. Serovars of these two clades displayed better relatedness, concerning CRISPR1-leader and cas operon, across genera than between themselves. This signifies the acquisition of CRISPR1/Cas region could be through a horizontal gene transfer event owing to the presence of mobile genetic elements flanking CRISPR1 array. Comparison of CRISPR and cas phenograms with that of multilocus sequence typing (MLST) suggests differential evolution of CRISPR/Cas system. As opposed to broad-host-range, the host-specific serovars harbor fewer spacers. Mapping of protospacer sources suggested a partial correlation of spacer content with habitat diversity of the serovars. Some serovars like serovar Enteritidis and Typhimurium that inhabit similar environment/infect similar hosts hardly shared their protospacer sources.
Collapse
Affiliation(s)
- Simran Krishnakant Kushwaha
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Narra Lakshmi Sai Bhavesh
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Bahaa Abdella
- Department of Biological Sciences, Sunway University, Petaling Jaya, Selangor, Malaysia.,Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Chandrajit Lahiri
- Department of Biological Sciences, Sunway University, Petaling Jaya, Selangor, Malaysia
| | - Sandhya Amol Marathe
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| |
Collapse
|
41
|
Liu Y, Shi D, Wang J, Chen X, Zhou M, Xi X, Cheng J, Ma C, Chen T, Shaw C, Wang L. A Novel Amphibian Antimicrobial Peptide, Phylloseptin-PV1, Exhibits Effective Anti- staphylococcal Activity Without Inducing Either Hepatic or Renal Toxicity in Mice. Front Microbiol 2020; 11:565158. [PMID: 33193152 PMCID: PMC7649123 DOI: 10.3389/fmicb.2020.565158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/08/2020] [Indexed: 01/26/2023] Open
Abstract
In order to part address the problem of drug-resistant pathogens, antimicrobial peptides (AMPs) have been proposed as alternatives to traditional antibiotics. Herein, a novel phylloseptin peptide, named phylloseptin-PV1 (PPV1), is described from the defensive skin secretion of the Neotropical white-lined leaf frog, Phyllomedusa vaillantii. The peptide was synthesized by solid phase peptide synthesis (SPPS) and purified by RP-HPLC, prior to assessment of its biological activities. PPV1 not only demonstrated potent antimicrobial activity against planktonic ESKAPE microorganisms and the yeast, Candida albicans, but also inhibited and eradicated Staphylococcus aureus and MRSA biofilms. The antimicrobial mechanism was shown to include permeabilization of target cell membranes. The in vivo antimicrobial activity of the peptide was then evaluated using mice. PPV1 also exhibited antiproliferative activity against the cancer cell lines, H157, MCF-7, and U251MG, but had a lower potency against the normal cell line, HMEC-1. Although, the peptide possessed a moderate hemolytic action on mammalian red blood cells in vitro, it did not induce significant hepatic or renal toxicity in injected infected mice. These studies have thus found PPV1 to be a potent phylloseptin group AMP, which can effectively inhibit staphylococci, both in vitro and in vivo, without eliciting toxicity. These data thus provide support for further evaluation of PPV1 as a novel antimicrobial agent with therapeutic potential.
Collapse
Affiliation(s)
- Yue Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Daning Shi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom.,School of Government, Peking University, Beijing, China
| | - Jin Wang
- Department of Chinese Medicine, Pizhou People's Hospital, Pizhou, China
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Jianming Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
42
|
Andrian T, Bakkum T, van Elsland DM, Bos E, Koster AJ, Albertazzi L, van Kasteren SI, Pujals S. Super-resolution correlative light-electron microscopy using a click-chemistry approach for studying intracellular trafficking. Methods Cell Biol 2020; 162:303-331. [PMID: 33707017 DOI: 10.1016/bs.mcb.2020.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Correlative light and electron microscopy (CLEM) entails a group of multimodal imaging techniques that are combined to pinpoint to the location of fluorescently labeled molecules in the context of their ultrastructural cellular environment. Here we describe a detailed workflow for STORM-CLEM, in which STochastic Optical Reconstruction Microscopy (STORM), an optical super-resolution technique, is correlated with transmission electron microscopy (TEM). This protocol has the advantage that both imaging modalities have resolution at the nanoscale, bringing higher synergies on the information obtained. The sample is prepared according to the Tokuyasu method followed by click-chemistry labeling and STORM imaging. Then, after heavy metal staining, electron microscopy imaging is performed followed by correlation of the two images. The case study presented here is on intracellular pathogens, but the protocol is versatile and could potentially be applied to many types of samples.
Collapse
Affiliation(s)
- Teodora Andrian
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Thomas Bakkum
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands
| | - Daphne M van Elsland
- Department of Cell and Chemical Biology, The Institute for Chemical Immunology, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Erik Bos
- Department of Cell and Chemical Biology, Section Electron Microscopy, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Section Electron Microscopy, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Lorenzo Albertazzi
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Sander I van Kasteren
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands.
| | - Sílvia Pujals
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
43
|
RIPK3-Dependent Recruitment of Low-Inflammatory Myeloid Cells Does Not Protect from Systemic Salmonella Infection. mBio 2020; 11:mBio.02588-20. [PMID: 33024046 PMCID: PMC7542371 DOI: 10.1128/mbio.02588-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macrophages employ multiple strategies to limit pathogen infection. For example, macrophages may undergo regulated cell death, including RIPK3-dependent necroptosis, as a means of combatting intracellular bacterial pathogens. However, bacteria have evolved mechanisms to evade or exploit immune responses. Salmonella is an intracellular pathogen that avoids and manipulates immune detection within macrophages. We examined the contribution of RIPK3 to Salmonella-induced macrophage death. Our findings indicate that noninvasive Salmonella does not naturally induce necroptosis, but it does so when caspases are inhibited. Moreover, RIPK3 induction (following caspase inhibition) does not impact host survival following Salmonella systemic infection. Finally, our data show that RIPK3 induction results in recruitment of low-inflammatory myeloid cells, which was unexpected, as necroptosis is typically described as highly inflammatory. Collectively, these data improve our understanding of pathogen-macrophage interactions, including outcomes of regulated cell death during infection in vivo, and reveal a potential new role for RIPK3 in resolving inflammation. Regulated macrophage death has emerged as an important mechanism to defend against intracellular pathogens. However, the importance and consequences of macrophage death during bacterial infection are poorly resolved. This is especially true for the recently described RIPK3-dependent lytic cell death, termed necroptosis. Salmonella enterica serovar Typhimurium is an intracellular pathogen that precisely regulates virulence expression within macrophages to evade and manipulate immune responses, which is a key factor in its ability to cause severe systemic infections. We combined genetic and pharmacological approaches to examine the importance of RIPK3 for S. Typhimurium-induced macrophage death using conditions that recapitulate bacterial gene expression during systemic infection in vivo. Our findings indicate that noninvasive S. Typhimurium does not naturally induce macrophage necroptosis but does so in the presence of pan-caspase inhibition. Moreover, our data suggest that RIPK3 induction (following caspase inhibition) does not impact host survival following S. Typhimurium infection, which differs from previous findings based on inert lipopolysaccharide (LPS) injections. Finally, although necroptosis is typically characterized as highly inflammatory, our data suggest that RIPK3 skews the peritoneal myeloid population away from an inflammatory profile to that of a classically noninflammatory profile. Collectively, these data improve our understanding of S. Typhimurium-macrophage interactions, highlight the possibility that purified bacterial components may not accurately recapitulate the complexity of host-pathogen interactions, and reveal a potential and unexpected role for RIPK3 in resolving inflammation.
Collapse
|
44
|
Bao H, Wang S, Zhao JH, Liu SL. Salmonella secretion systems: Differential roles in pathogen-host interactions. Microbiol Res 2020; 241:126591. [PMID: 32932132 DOI: 10.1016/j.micres.2020.126591] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/26/2022]
Abstract
The bacterial genus Salmonella includes a large group of food-borne pathogens that cause a variety of gastrointestinal or systemic diseases in hosts. Salmonella use several secretion devices to inject various effectors targeting eukaryotic hosts, or bacteria. In the past few years, considerable progress has been made towards understanding the structural features and molecular mechanisms of the secretion systems of Salmonella, particularly regarding their roles in host-pathogen interactions. In this review, we summarize the current advances about the main characteristics of the Salmonella secretion systems. Clarifying the roles of the secretion systems in the process of infecting various hosts will broaden our understanding of the importance of microbial interactions in maintaining human health and will provide information for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Hongxia Bao
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Shuang Wang
- Department of Biopharmaceutical Sciences (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jian-Hua Zhao
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, College of Pharmacy, Harbin Medical University, Harbin, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.
| |
Collapse
|
45
|
Perry F, Johnson C, Aylward B, Arsenault RJ. The Differential Phosphorylation-Dependent Signaling and Glucose Immunometabolic Responses Induced during Infection by Salmonella Enteritidis and Salmonella Heidelberg in Chicken Macrophage-like cells. Microorganisms 2020; 8:E1041. [PMID: 32674261 PMCID: PMC7409154 DOI: 10.3390/microorganisms8071041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
Salmonella is a burden to the poultry, health, and food safety industries, resulting in illnesses, food contamination, and recalls. Salmonella enterica subspecies enterica Enteritidis (S. Enteritidis) is one of the most prevalent serotypes isolated from poultry. Salmonella enterica subspecies enterica Heidelberg (S. Heidelberg), which is becoming as prevalent as S. Enteritidis, is one of the five most isolated serotypes. Although S. Enteritidis and S. Heidelberg are almost genetically identical, they both are capable of inducing different immune and metabolic responses in host cells to successfully establish an infection. Therefore, using the kinome peptide array, we demonstrated that S. Enteritidis and S. Heidelberg infections induced differential phosphorylation of peptides on Rho proteins, caspases, toll-like receptors, and other proteins involved in metabolic- and immune-related signaling of HD11 chicken macrophages. Metabolic flux assays measuring extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) demonstrated that S. Enteritidis at 30 min postinfection (p.i.) increased glucose metabolism, while S. Heidelberg at 30 min p.i. decreased glucose metabolism. S. Enteritidis is more invasive than S. Heidelberg. These results show different immunometabolic responses of HD11 macrophages to S. Enteritidis and S. Heidelberg infections.
Collapse
Affiliation(s)
| | | | | | - Ryan J. Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA; (F.P.); (C.J.); (B.A.)
| |
Collapse
|
46
|
Barretto LAF, Fowler CC. Identification of A Putative T6SS Immunity Islet in Salmonella Typhi. Pathogens 2020; 9:pathogens9070559. [PMID: 32664482 PMCID: PMC7400221 DOI: 10.3390/pathogens9070559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Typhoid fever is a major global health problem and is the result of systemic infections caused by the human-adapted bacterial pathogen Salmonella enterica serovar Typhi (S. Typhi). The pathology underlying S. Typhi infections significantly differ from infections caused by broad host range serovars of the same species, which are a common cause of gastroenteritis. Accordingly, identifying S. Typhi genetic factors that impart functionality absent from broad host range serovars offers insights into its unique biology. Here, we used an in-silico approach to explore the function of an uncharacterized 14-gene S. Typhi genomic islet. Our results indicated that this islet was specific to the S. enterica species, where it was encoded by the Typhi and Paratyphi A serovars, but was generally absent from non-typhoidal serovars. Evidence was gathered using comparative genomics and sequence analysis tools, and indicated that this islet was comprised of Type VI secretion system (T6SS) and contact-dependent growth inhibition (CDI) genes, the majority of which appeared to encode orphan immunity proteins that protected against the activities of effectors and toxins absent from the S. Typhi genome. We herein propose that this islet represents an immune system that protects S. Typhi against competing bacteria within the human gut.
Collapse
|
47
|
Diversity, Chemical Constituents and Biological Activities of Endophytic Fungi Isolated from Schinus terebinthifolius Raddi. Microorganisms 2020; 8:microorganisms8060859. [PMID: 32517286 PMCID: PMC7356110 DOI: 10.3390/microorganisms8060859] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022] Open
Abstract
Schinus terebinthifolius Raddi is a medicinal plant widely used for the treatment of various diseases. The secondary metabolites responsible for the pharmacological properties can be produced directly by the plant or by endophytic fungi. The objective of this study was to evaluate the diversity of endophytic fungi of different parts of S. terebinthifolius and to identify chemical compounds produced by endophytes and their antioxidant and antibacterial activities. For this, fruits, stem bark and roots were dried, ground and placed in fungal growth medium. The selected endophytes were grown and subjected to extraction with ethyl acetate. DPPH, FRAP, β-carotene bleaching and antimicrobial assays were performed. The phylogenetic tree was elaborated, encompassing 15 different species. The fungal extracts showed hydroxybenzoic acids and 1-dodecanol as predominant compounds. All fungal extracts exhibited antioxidant activity. The fungal extracts exhibited bactericidal and bacteriostatic activities against Gram-positive and Gram-negative bacterial ATCC strains and against methicillin-resistant nosocomial bacteria. Among the 10 endophytic fungi evaluated, the extract of the fungus Ochrocladosporium elatum showed higher phenolic content and exhibited higher antioxidant and antibacterial activities in all tests. Together, the results increase the known diversity of S. terebinthifolius endophytic fungi, secondary metabolites produced and their antioxidant and antibacterial activities.
Collapse
|
48
|
Fan J, Ma L, Zhao C, Yan J, Che S, Zhou Z, Wang H, Yang L, Hu B. Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response. MOLECULAR PLANT PATHOLOGY 2020; 21:871-891. [PMID: 32267092 PMCID: PMC7214478 DOI: 10.1111/mpp.12936] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Bacterial pathogens from the genus Pectobacterium cause soft rot in various plants, and result in important economic losses worldwide. We understand much about how these pathogens digest their hosts and protect themselves against plant defences, as well as some regulatory networks in these processes. However, the spatiotemporal expression of genome-wide infection of Pectobacterium remains unclear, although researchers analysed this in some phytopathogens. In the present work, comparing the transcriptome profiles from cellular infection with growth in minimal and rich media, RNA-Seq analyses revealed that the differentially expressed genes (log2 -fold ratio ≥ 1.0) in the cells of Pectobacterium carotovorum subsp. carotovorum PccS1 recovered at a series of time points after inoculation in the host in vivo covered approximately 50% of genes in the genome. Based on the dynamic expression changes in infection, the significantly differentially expressed genes (log2 -fold ratio ≥ 2.0) were classified into five types, and the main expression pattern of the genes for carbohydrate metabolism underlying the processes of infection was identified. The results are helpful to our understanding of the inducement of host plant and environmental adaption of Pectobacterium. In addition, our results demonstrate that maceration caused by PccS1 is due to the depression of callose deposition in the plant for resistance by the pathogenesis-related genes and the superlytic ability of pectinolytic enzymes produced in PccS1, rather than the promotion of plant cell death elicited by the T3SS of bacteria as described in previous work.
Collapse
Affiliation(s)
- Jiaqin Fan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Lin Ma
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Chendi Zhao
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Jingyuan Yan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Shu Che
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Zhaowei Zhou
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Huan Wang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Liuke Yang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Baishi Hu
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
49
|
Nagy TA, Crooks AL, Quintana JLJ, Detweiler CS. Clofazimine Reduces the Survival of Salmonella enterica in Macrophages and Mice. ACS Infect Dis 2020; 6:1238-1249. [PMID: 32272013 DOI: 10.1021/acsinfecdis.0c00023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug resistant pathogens are on the rise, and new treatments are needed for bacterial infections. Efforts toward antimicrobial discovery typically identify compounds that prevent bacterial growth in microbiological media. However, the microenvironments to which pathogens are exposed during infection differ from rich media and alter the biology of the pathogen. We and others have therefore developed screening platforms that identify compounds that disrupt pathogen growth within cultured mammalian cells. Our platform focuses on Gram-negative bacterial pathogens, which are of particular clinical concern. We screened a panel of 707 drugs to identify those with efficacy against Salmonella enterica Typhimurium growth within macrophages. One of the drugs identified, clofazimine (CFZ), is an antibiotic used to treat mycobacterial infections that is not recognized for potency against Gram-negative bacteria. We demonstrated that in macrophages CFZ enabled the killing of S. Typhimurium at single digit micromolar concentrations, and in mice, CFZ reduced tissue colonization. We confirmed that CFZ does not inhibit the growth of S. Typhimurium and E. coli in standard microbiological media. However, CFZ prevents bacterial replication under conditions consistent with the microenvironment of macrophage phagosomes, in which S. Typhimurium resides during infection: low pH, low magnesium and phosphate, and the presence of certain cationic antimicrobial peptides. These observations suggest that in macrophages and mice the efficacy of CFZ against S. Typhimurium is facilitated by multiple aspects of soluble innate immunity. Thus, systematic screens of existing drugs for infection-based potency are likely to identify unexpected opportunities for repurposing drugs to treat difficult pathogens.
Collapse
Affiliation(s)
- Toni A. Nagy
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Amy L. Crooks
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Joaquin L. J. Quintana
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Corrella S. Detweiler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
50
|
Hołówka J, Zakrzewska-Czerwińska J. Nucleoid Associated Proteins: The Small Organizers That Help to Cope With Stress. Front Microbiol 2020; 11:590. [PMID: 32373086 PMCID: PMC7177045 DOI: 10.3389/fmicb.2020.00590] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
The bacterial chromosome must be efficiently compacted to fit inside the small and crowded cell while remaining accessible for the protein complexes involved in replication, transcription, and DNA repair. The dynamic organization of the nucleoid is a consequence of both intracellular factors (i.e., simultaneously occurring cell processes) and extracellular factors (e.g., environmental conditions, stress agents). Recent studies have revealed that the bacterial chromosome undergoes profound topological changes under stress. Among the many DNA-binding proteins that shape the bacterial chromosome structure in response to various signals, NAPs (nucleoid associated proteins) are the most abundant. These small, basic proteins bind DNA with low specificity and can influence chromosome organization under changing environmental conditions (i.e., by coating the chromosome in response to stress) or regulate the transcription of specific genes (e.g., those involved in virulence).
Collapse
Affiliation(s)
- Joanna Hołówka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|