1
|
Pan J, Geng X, Cai Y, Yu Y, Hou Y, Liu Y, Ya C, Liu Q. Identification, fermentation optimization, and biocontrol efficacy of actinomycete YG-5 for the prevention of Alternaria leaf spot disease in star anise. Sci Rep 2024; 14:18621. [PMID: 39127793 PMCID: PMC11316780 DOI: 10.1038/s41598-024-69733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024] Open
Abstract
Star anise (Illicium verum), a valuable spice tree, faces significant threats from fungal diseases, particularly Alternaria leaf spot. This study investigates the potential of a soil-derived actinomycete strain, YG-5, as a biocontrol agent against Alternaria tenuissima, the causative pathogen on Alternaria leaf spot in star anise. Through comprehensive morphology, physiology, biochemistry, and genetic analyses, we identified the isolate as Streptomyces sp. YG-5. The strain exhibited broad-spectrum antimicrobial activity against several plant pathogens, with inhibition rates ranging between 36.47 to 80.34%. We systematically optimized the fermentation conditions for YG-5, including medium composition and cultivation parameters. The optimized process resulted in an 89.56% inhibition rate against A. tenuissima, a 14.72% improvement over non-optimized conditions. Notably, the antimicrobial compounds produced by YG-5 demonstrated stability across various temperatures, pH levels, and UV irradiation. In vivo efficacy trials showed promising results, with YG-5 fermentation broth reducing Alternaria leaf spot incidence on star anise leaves by 56.95%. These findings suggest that Streptomyces sp. YG-5 holds significant potential as a biocontrol agent against Alternaria leaf spot in star anise cultivation, offering a sustainable approach to disease management in this valuable crop.
Collapse
Affiliation(s)
- Jieming Pan
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
- Guangxi Agricultural Vocational Technical University, Nanning, 530007, Guangxi, China
| | - Xiaoshan Geng
- Guangxi Agricultural Vocational Technical University, Nanning, 530007, Guangxi, China
| | - Yujing Cai
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Ye Yu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Yanrong Hou
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Yao Liu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Caina Ya
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Qin Liu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China.
- Guangxi Agricultural Vocational Technical University, Nanning, 530007, Guangxi, China.
| |
Collapse
|
2
|
Sena L, Mica E, Valè G, Vaccino P, Pecchioni N. Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1349401. [PMID: 38571718 PMCID: PMC10988515 DOI: 10.3389/fpls.2024.1349401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Climate change poses a major threat to global food security, significantly reducing crop yields as cause of abiotic stresses, and for boosting the spread of new and old pathogens and pests. Sustainable crop management as a route to mitigation poses the challenge of recruiting an array of solutions and tools for the new aims. Among these, the deployment of positive interactions between the micro-biotic components of agroecosystems and plants can play a highly significant role, as part of the agro-ecological revolution. Endophytic microorganisms have emerged as a promising solution to tackle this challenge. Among these, Arbuscular Mycorrhizal Fungi (AMF) and endophytic bacteria and fungi have demonstrated their potential to alleviate abiotic stresses such as drought and heat stress, as well as the impacts of biotic stresses. They can enhance crop yields in a sustainable way also by other mechanisms, such as improving the nutrient uptake, or by direct effects on plant physiology. In this review we summarize and update on the main types of endophytes, we highlight several studies that demonstrate their efficacy in improving sustainable yields and explore possible avenues for implementing crop-microbiota interactions. The mechanisms underlying these interactions are highly complex and require a comprehensive understanding. For this reason, omic technologies such as genomics, transcriptomics, proteomics, and metabolomics have been employed to unravel, by a higher level of information, the complex network of interactions between plants and microorganisms. Therefore, we also discuss the various omic approaches and techniques that have been used so far to study plant-endophyte interactions.
Collapse
Affiliation(s)
- Lorenzo Sena
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Erica Mica
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Giampiero Valè
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Patrizia Vaccino
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Nicola Pecchioni
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Foggia, Italy
| |
Collapse
|
3
|
Li G, Liu T, Whalen JK, Wei Z. Nematodes: an overlooked tiny engineer of plant health. TRENDS IN PLANT SCIENCE 2024; 29:52-63. [PMID: 37468419 DOI: 10.1016/j.tplants.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023]
Abstract
Nematodes are a crucial component of rhizosphere biodiversity, affecting plant health as the most abundant and functionally diverse soil animals. Plant-parasitic nematodes are generally considered harmful, which may overlook their potential benefits to plants when coexisting with free-living nematodes in soil. We provide new insights into nematodes as vital plant partners. Plant root damage by plant-parasitic nematodes creates opportunities for pathogens and beneficial microbiota to colonize the rhizosphere. Free-living nematodes coordinate microbiota to suppress plant diseases, but they are susceptible to mortality from plant pathogens, potentially favoring pathogen release in the root zone. We conclude that the nematode's role in regulating plant pathogens represents a missing link, constraining our ability to predict and control soil-borne diseases in healthy plants.
Collapse
Affiliation(s)
- Gen Li
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Liu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Joann K Whalen
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada; Chair of Soil Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Zhong Wei
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Kumar G, Gan HM, Popielarz H, Steele J, Parthasarathy A, Hudson AO, Savka MA. Endophytic bacteria associated with wild-type banana seed ( Musa balbisiana): whole genome sequencing. Microbiol Resour Announc 2023; 12:e0065023. [PMID: 37921458 PMCID: PMC10720562 DOI: 10.1128/mra.00650-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
We present the whole-genome sequences of five endophytic bacteria isolated from Musa balbisiana seeds. These strains represent five different genera: Bacillus, Brachybacterium, Enterobacter, Enterococcus, and Pantoea. Among these, three genera (Bacillus, Pantoea, and Enterobacter) were previously recognized for their antagonistic effects against Fusarium wilt, a highly destructive disease that affects banana plants.
Collapse
Affiliation(s)
- Girish Kumar
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Han Ming Gan
- Department of Biological Sciences, Sunway University, Petaling Jaya, Malaysia
- Patriot Biotech Sdn Bhd, Subang Jaya, Malaysia
| | - Hailey Popielarz
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Julia Steele
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Michael A. Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
5
|
Duan Y, Pang Z, Yin S, Xiao W, Hu H, Xie J. Screening and Analysis of Antifungal Strains Bacillus subtilis JF-4 and B. amylum JF-5 for the Biological Control of Fusarium Wilt of Banana. J Fungi (Basel) 2023; 9:886. [PMID: 37754994 PMCID: PMC11340694 DOI: 10.3390/jof9090886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
PURPOSE This study aimed to identify the antagonistic bacteria from the rhizosphere of healthy bananas that can effectively suppress the Fusarium wilt of banana, and to further investigate the inhibitory mechanism. METHOD The primary and secondary screening techniques were implemented using the double-plate and fermentation antagonism methods. The strain was identified based on physiological and biochemical tests, 16S rRNA gene sequencing, and specific gene amplification. The effects of crude extract on the protein content, lipid peroxidation, and pectinase activity of mycelia were determined from the identified isolates. RESULTS Two antagonistic bacteria, JF-4 and JF-5, were screened and initially identified as Bacillus subtilis (GenBank: OR125631) and B. amylum (GenBank: OR125632). The greenhouse experiment showed that the biological control efficiency of the two antagonists against the Fusarium wilt of banana was 48.3% and 40.3%, respectively. The catalase content produced by lipid peroxidation increased significantly after treatment with the crude extracts of JF-4 and JF-5 at concentrations of 0.69 μmol/L and 0.59 μmol/L, respectively. The protein and ergosterol content and pectinase activity decreased significantly. The two antagonistic bacteria might inhibit the growth of pathogens by enhancing lipid peroxidation and decreasing the synthesis of cell metabolites. Twenty compounds were identified by gas chromatography-mass spectrometry (GC-MS). B. subtilis JF-4 was further sequenced and assembled to obtain a complete circular chromosome genome of 681,804,824 bp. The genome consisted of a 4,310,825-bp-long scaffold. CONCLUSION The findings of this study may help elucidate the mechanism behind this biocontrol isolate.
Collapse
Affiliation(s)
- Yajie Duan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhencai Pang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Shunli Yin
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China
| | - Weijun Xiao
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Huigang Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Jianghui Xie
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| |
Collapse
|
6
|
Banihashemian SN, Jamali S, Golmohammadi M, Noorizadeh S, Atighi MR. Reaction of Commercial Cultivars of Kiwifruit to Infection by Root-knot Nematode and Its Biocontrol Using Endophytic Bacteria. J Nematol 2023; 55:20230020. [PMID: 37284000 PMCID: PMC10241307 DOI: 10.2478/jofnem-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 06/08/2023] Open
Abstract
Root-knot nematodes (RKN) cause considerable economic losses to kiwifruit production annually. Screening of resistant cultivars has been one of the long-standing methods to manage root-knot nematodes. Here, the reaction of the four most common commercial cultivars of kiwifruit, namely, Actinidia chinensis var. deliciosa cv. Hayward, A. chinensis var. deliciosa cv. Abbott, A. chinensis var. deliciosa cv. Bruno, and A. chinensis var. chinensis cv. Haegeum (commonly known as 'Golden' kiwifruit) to infection by the RKN, Meloidogyne incognita, was evaluated. Among examined cultivars 'Golden' was the most susceptible, having on average 52.8 galls, 56.1 egg masses per gram of root, and 642 J2 population per 200 gram of soil. 'Bruno' showed the highest resistance, with 3.3 galls, 4.1 egg masses per gram of root, and 79 J2 in 200 g of soil. Then, two potential biological control agents, namely Priestia megaterium 31.en and Agrobacterium tumefaciens 19.en were used on 'Hayward' seedlings against M. incognita and showed a significant reduction in the number of galls and egg masses on roots, juvenile population in the soil, and increased the growth parameters of the plants compared to non-treated seedlings. We demonstrated that integrated management using resistant cultivars and biological control can provide a safe and economic method to control RKN, and these resistant cultivars can be used in breeding programs.
Collapse
Affiliation(s)
| | - Salar Jamali
- Plant Protection Department, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Morteza Golmohammadi
- Horticultural Science Research Institute, Citrus and Subtropical Fruits Research Center, Agricultural Research Education and Extension Organization (AREEO), Ramsar, Iran
| | - Sina Noorizadeh
- Plant Protection Department, Agriculture Faculty, Tabriz University, Tabriz, Iran
| | - Mohammad Reza Atighi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Tiwari P, Kang S, Bae H. Plant-endophyte associations: Rich yet under-explored sources of novel bioactive molecules and applications. Microbiol Res 2023; 266:127241. [DOI: 10.1016/j.micres.2022.127241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
|
8
|
Singh RR, Wesemael WML. Endophytic Paenibacillus polymyxa LMG27872 inhibits Meloidogyne incognita parasitism, promoting tomato growth through a dose-dependent effect. FRONTIERS IN PLANT SCIENCE 2022; 13:961085. [PMID: 36186028 PMCID: PMC9516289 DOI: 10.3389/fpls.2022.961085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
The root-knot nematode, Meloidogyne incognita, is a major pest in tomato production. Paenibacillus polymyxa, which is primarily found in soil and colonizing roots, is considered a successful biocontrol organism against many pathogens. To evaluate the biocontrol capacity of P. polymyxa LMG27872 against M. incognita in tomato, experiments were conducted both in vitro and in vivo. A dose-response effect [30, 50, and 100% (108 CFU/mL)] of bacterial suspensions (BSs) on growth and tomato susceptibility to M. incognita with soil drenching as a mode of application was first evaluated. The results show that the biological efficacy of P. polymyxa LMG27872 against M. incognita parasitism in tomato was dose-dependent. A significantly reduced number of galls, egg-laying females (ELF), and second-stage juveniles (J2) were observed in BS-treated plants, in a dose-dependent manner. The effect of P. polymyxa on tomato growth was also dose-dependent. A high dose of BSs had a negative effect on growth; however, this negative effect was not observed when the BS-treated plants were challenged with M. incognita, indicating tolerance or a defense priming mechanism. In subsequent in vivo experiments, the direct effect of BSs was evaluated on J2 mortality and egg hatching of M. incognita. The effect of BS on J2 mortality was observed from 12 to 24 h, whereby M. incognita J2 was significantly inhibited by the BS treatment. The effect of P. polymyxa on M. incognita egg hatching was also dependent on the BS dose. The results show a potential of P. polymyxa LMG27872 to protect plants from nematode parasitism and its implementation in integrated nematode management suitable for organic productions.
Collapse
Affiliation(s)
- Richard Raj Singh
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wim M. L. Wesemael
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Plant Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| |
Collapse
|
9
|
Wang H, Zhang R, Duan Y, Jiang W, Chen X, Shen X, Yin C, Mao Z. The Endophytic Strain Trichoderma asperellum 6S-2: An Efficient Biocontrol Agent against Apple Replant Disease in China and a Potential Plant-Growth-Promoting Fungus. J Fungi (Basel) 2021; 7:jof7121050. [PMID: 34947033 PMCID: PMC8705406 DOI: 10.3390/jof7121050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 01/24/2023] Open
Abstract
A study was conducted for endophytic antagonistic fungi obtained from the roots of healthy apple trees growing in nine replanted orchards in Shandong Province, China. The fungi were assessed for their ability to inhibit Fusarium proliferatum f. sp. malus domestica MR5, a fungal strain associated with apple replant disease (ARD). An effective endophyte, designated as strain 6S-2, was isolated and identified as Trichoderma asperellum. Strain 6S-2 demonstrated protease, amylase, cellulase, and laccase activities, which are important for the parasitic and antagonistic functions of pathogenic fungi. The inhibition rate of 6S-2 against Fusarium proliferatum f. sp. malus domestica MR5 was 52.41%. Strain 6S-2 also secreted iron carriers, auxin, ammonia and was able to solubilize phosphorus. Its fermentation extract and volatile substances inhibited the growth of MR5, causing its hyphae to twist, shrink, swell, and rupture. The antifungal activity of the 6S-2 fermentation extract increased with increasing concentrations. It promoted the production and elongation of Arabidopsis thaliana lateral roots, and the strongest effects were seen at a concentration of 50 mg/mL. A GC-MS analysis of the 6S-2 fermentation extract and volatile substances showed that they comprised mainly alkanes, alcohols, and furanones, as well as the specific volatile substance 6-PP. The application of 6S-2 spore suspension to replanted apple orchard soils reduced plant oxidative damage and promoted plant growth in a pot experiment. Therefore, the endophytic strain T. asperellum 6S-2 has the potential to serve as an effective biocontrol fungus for the prevention of ARD in China, and appears to promote plant growth.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chengmiao Yin
- Correspondence: (C.Y.); (Z.M.); Tel.: +86-186-5388-0060 (C.Y.); +86-139-5382-2958 (Z.M.)
| | - Zhiquan Mao
- Correspondence: (C.Y.); (Z.M.); Tel.: +86-186-5388-0060 (C.Y.); +86-139-5382-2958 (Z.M.)
| |
Collapse
|
10
|
Nakkeeran S, Rajamanickam S, Saravanan R, Vanthana M, Soorianathasundaram K. Bacterial endophytome-mediated resistance in banana for the management of Fusarium wilt. 3 Biotech 2021; 11:267. [PMID: 34017673 DOI: 10.1007/s13205-021-02833-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Banana (Musa spp.), a major cash and staple fruit crop in many parts of the world, is infected by Fusarium wilt, which contributes up to 100% yield loss and causes social consequences. Race 1 and race 2 of Panama wilt caused by Fusarium oxysporum f. sp. cubense (Foc) are prevalent worldwide and seriously affect many traditional varieties. The threat of Foc tropical race 4 (Foc TR4) is looming large in African counties. However, its incidence in India has been confined to Bihar (Katihar and Purnea), Uttar Pradesh (Faizabad), Madhya Pradesh (Burhanpur) and Gujarat (Surat). Management of Foc races by employing fungicides is often not a sustainable option as the disease spread is rapid and they negatively alter the biodiversity of beneficial ectophytes and endophytes. Besides, soil drenching with carbendazim/trifloxystrobin + tebuconazole is also not effective in suppressing the Fusarium wilt of banana. Improvement of resistance to Fusarium wilt in susceptible cultivars is being addressed through both conventional and advanced breeding approaches. However, engineering of banana endosphere with bacterial endophytes from resistant genotypes like Pisang lilly and YKM5 will induce the immune response against Foc, irrespective of races. The composition of the bacterial endomicrobiome in different banana cultivars is dominated by the phyla Proteobacteria, Bacteroidetes and Actinobacteria. The major bacterial endophytic genera antagonistic to Foc are Bacillus, Brevibacillus, Paenibacillus, Virgibacillus, Staphylococcus, Cellulomonas, Micrococcus, Corynebacterium, Kocuria spp., Paracoccus sp., Acinetobacter spp. Agrobacterium, Aneurinibacillus, Enterobacter, Klebsiella, Lysinibacillus, Micrococcus, Rhizobium, Sporolactobacillus, Pantoea, Pseudomonas, Serratia, Microbacterium, Rhodococcus, Stenotrophomonas, Pseudoxanthomonas, Luteimonas, Dokdonella, Rhodanobacter, Luteibacter, Steroidobacter, Nevskia, Aquicella, Rickettsiella, Legionella, Tatlockia and Streptomyces. These bacterial endophytes promote the growth of banana plantlets by solubilising phosphate, producing indole acetic acid and siderophores. Application of banana endophytes during the hardening phase of tissue-cultured clones serves as a shield against Foc. Hitherto, MAMP molecules of endophytes including flagellin, liposaccharides, peptidoglycans, elongation factor, cold shock proteins and hairpins induce microbe-associated molecular pattern (MAMP)-triggered immunity to suppress plant pathogens. The cascade of events associated with ISR and SAR is induced through MAPK and transcription factors including WRKY and MYC. Studies are underway to exploit the potential of antagonistic bacterial endophytes against Foc isolates and to develop an understanding of the MAMP-triggered immunity and metabolomics cross talk modulating resistance. This review explores the possibility of harnessing the potential bacterial endomicrobiome against Foc and developing nanoformulations with bacterial endophytes for increased efficacy against lethal pathogenic races of Foc infecting banana. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02833-5.
Collapse
Affiliation(s)
- S Nakkeeran
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - S Rajamanickam
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - R Saravanan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | - M Vanthana
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India
| | | |
Collapse
|
11
|
Senthilkumar M, Pushpakanth P, Arul Jose P, Krishnamoorthy R, Anandham R. Diversity and functional characterization of endophytic Methylobacterium isolated from banana cultivars of South India and its impact on early growth of tissue culture banana plantlets. J Appl Microbiol 2021; 131:2448-2465. [PMID: 33891792 DOI: 10.1111/jam.15112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/28/2021] [Accepted: 04/11/2021] [Indexed: 11/27/2022]
Abstract
AIMS This study aimed at determining the distribution, colonization and growth promoting nature of Methylobacterium spp. in tissue culture banana plantlets. METHODS AND RESULTS Leaf samples from different field grown banana cultivars were used for Methylobacterium spp., isolation. Metabolic profile and functional characterization for plant growth-promoting traits of the isolates were assessed. The isolates were confirmed using 16S rRNA gene sequencing analysis, which resulted in six distinct species of Methylobacterium namely M. radiotolerans, M. salsuginis, M. thiocyanatum, M. rhodesianum, M. rhodinum and M. populi. Methylobacterium spp. inoculation experiment was conducted under hydroponic system in tissue culture banana plantlets (germ free) with eight selected isolates. A significant increase in growth parameters of Methylobacterium treated plantlets compared to uninoculated control was observed. Methylobacterium salsuginis TNMB03-gfp29 was developed and colonization micrograph was obtained using confocal laser scanning microscopy (CLSM) and scanning electron microscopy in different parts of banana plantlets (root, stem and leaves). CONCLUSION Field grown banana plants found to harbour diverse endophytic Methylobacterium population. Our finding suggests that endophytic Methylobacterium species may provide significant plant growth promoting compounds/nutrients to the banana plants. The experimental results demonstrated the efficacy of Methylobacterium spp. as a potential bioinoculant and can be exploited as a phyllosphere and rhizosphere based bioinoculant for the initial establishment and growth of tissue culture banana plantlets. SIGNIFICANCE AND IMPACT OF THE STUDY This study extended our knowledge on the distribution of Methylobacterium spp. in banana plants and endophytic colonization nature of this particular genus in plants. In addition, efficient isolate (M. salsuginis TNMB03) identified in this study may be promoted as bio-inoculants for banana plants after field evaluation.
Collapse
Affiliation(s)
- M Senthilkumar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P Pushpakanth
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P Arul Jose
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Madurai, Tamil Nadu, India
| | - R Krishnamoorthy
- Department of Crop Management, Vanavarayar Institute of Agriculture, Pollachi, Tamil Nadu, India
| | - R Anandham
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
12
|
Kumar KK, Dara SK. Fungal and Bacterial Endophytes as Microbial Control Agents for Plant-Parasitic Nematodes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4269. [PMID: 33920580 PMCID: PMC8073158 DOI: 10.3390/ijerph18084269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
Endophytes are symbiotic microorganisms that colonize plant tissues and benefit plants in multiple ways including induced systemic resistance to biotic and abiotic stresses. Endophytes can be sustainable alternatives to chemical nematicides and enhance plant health in a variety of cropping and natural environments. Several in vitro and in vivo studies demonstrated the potential of multiple species of Fusarium and Bacillus against plant-parasitic nematodes in horticultural, agricultural, and fodder crops and in forestry. While there were efforts to commercialize some of the endophytes as bionematicides, a lack of good formulations with consistent field efficacy has been a major hurdle in commercializing endophytes for nematode control. Identification of efficacious and environmentally resilient strains, a thorough understanding of their modes of action, interactions with various biotic and abiotic factors, and developing strategies that improve their effectiveness are critical areas to advance the commercialization of bionematicides based on fungal and bacterial endophytes.
Collapse
Affiliation(s)
- K. Kiran Kumar
- ICAR-Central Citrus Research Institute, Nagpur 440033, Maharashtra, India;
| | - Surendra K. Dara
- University of California Cooperative Extension, 2156 Sierra Way, Ste. C, San Luis Obispo, CA 93401, USA
| |
Collapse
|
13
|
Tao C, Li R, Xiong W, Shen Z, Liu S, Wang B, Ruan Y, Geisen S, Shen Q, Kowalchuk GA. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. MICROBIOME 2020; 8:137. [PMID: 32962766 PMCID: PMC7510105 DOI: 10.1186/s40168-020-00892-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/13/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant diseases caused by fungal pathogen result in a substantial economic impact on the global food and fruit industry. Application of organic fertilizers supplemented with biocontrol microorganisms (i.e. bioorganic fertilizers) has been shown to improve resistance against plant pathogens at least in part due to impacts on the structure and function of the resident soil microbiome. However, it remains unclear whether such improvements are driven by the specific action of microbial inoculants, microbial populations naturally resident to the organic fertilizer or the physical-chemical properties of the compost substrate. The aim of this study was to seek the ecological mechanisms involved in the disease suppressive activity of bio-organic fertilizers. RESULTS To disentangle the mechanism of bio-organic fertilizer action, we conducted an experiment tracking Fusarium wilt disease of banana and changes in soil microbial communities over three growth seasons in response to the following four treatments: bio-organic fertilizer (containing Bacillus amyloliquefaciens W19), organic fertilizer, sterilized organic fertilizer and sterilized organic fertilizer supplemented with B. amyloliquefaciens W19. We found that sterilized bioorganic fertilizer to which Bacillus was re-inoculated provided a similar degree of disease suppression as the non-sterilized bioorganic fertilizer across cropping seasons. We further observed that disease suppression in these treatments is linked to impacts on the resident soil microbial communities, specifically by leading to increases in specific Pseudomonas spp.. Observed correlations between Bacillus amendment and indigenous Pseudomonas spp. that might underlie pathogen suppression were further studied in laboratory and pot experiments. These studies revealed that specific bacterial taxa synergistically increase biofilm formation and likely acted as a plant-beneficial consortium against the pathogen. CONCLUSION Together we demonstrate that the action of bioorganic fertilizer is a product of the biocontrol inoculum within the organic amendment and its impact on the resident soil microbiome. This knowledge should help in the design of more efficient biofertilizers designed to promote soil function. Video Abstract.
Collapse
Affiliation(s)
- Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Wu Xiong
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, 3584, Utrecht, CH, Netherlands
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Shanshan Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Beibei Wang
- Hainan key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of tropical crops, Hainan University, Haikou, 570228, People's Republic of China
| | - Yunze Ruan
- Hainan key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of tropical crops, Hainan University, Haikou, 570228, People's Republic of China
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute for Ecology, (NIOO-KNAW), 6708, Wageningen, PB, Netherlands
- Laboratory of Nematology, Wageningen University, 6700, Wageningen, AA, Netherlands
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, 3584, Utrecht, CH, Netherlands
| |
Collapse
|
14
|
Papik J, Folkmanova M, Polivkova-Majorova M, Suman J, Uhlik O. The invisible life inside plants: Deciphering the riddles of endophytic bacterial diversity. Biotechnol Adv 2020; 44:107614. [PMID: 32858117 DOI: 10.1016/j.biotechadv.2020.107614] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/14/2020] [Accepted: 08/15/2020] [Indexed: 10/25/2022]
Abstract
Endophytic bacteria often promote plant growth and protect their host plant against pathogens, herbivores, and abiotic stresses including drought, increased salinity or pollution. Current agricultural practices are being challenged in terms of climate change and the ever-increasing demand for food. Therefore, the rational exploitation of bacterial endophytes to increase the productivity and resistance of crops appears to be very promising. However, the efficient and larger-scale use of bacterial endophytes for more effective and sustainable agriculture is hindered by very little knowledge on molecular aspects of plant-endophyte interactions and mechanisms driving bacterial communities in planta. In addition, since most of the information on bacterial endophytes has been obtained through culture-dependent techniques, endophytic bacterial diversity and its full biotechnological potential still remain highly unexplored. In this study, we discuss the diversity and role of endophytic populations as well as complex interactions that the endophytes have with the plant and vice versa, including the interactions leading to plant colonization. A description of biotic and abiotic factors influencing endophytic bacterial communities is provided, along with a summary of different methodologies suitable for determining the diversity of bacterial endophytes, mechanisms governing the assembly and structure of bacterial communities in the endosphere, and potential biotechnological applications of endophytes in the future.
Collapse
Affiliation(s)
- Jakub Papik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Magdalena Folkmanova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Marketa Polivkova-Majorova
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Jachym Suman
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Ondrej Uhlik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic.
| |
Collapse
|
15
|
Duan Y, Chen J, Pang Z, Ye X, Zhang C, Hu H, Xie J. Antifungal mechanism of Streptomyces ma. FS-4 on fusarium wilt of banana. J Appl Microbiol 2020; 130:196-207. [PMID: 32654413 DOI: 10.1111/jam.14784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/15/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022]
Abstract
AIM Research on prevention and cure of banana wilt is important to ensure the healthy development of the banana industry. In this study, antifungal mechanism of Streptomyces ma. FS-4 on fusarium wilt of banana was investigated. METHODS AND RESULTS The physiological strain of banana fusarium pathogen Fusarium oxysporum f. sp. cubense Race 4 (FOC.4) was used as the target fungus, and the antifungal mechanism of the crude extract of Streptomyces ma. FS-4 was investigated. Eighteen different compounds identified by gas chromatography-mass spectrometry were composed of aldehydes, methyl, hydrocarbons, amides, esters and acids. FS-4 significantly inhibited the spore germination of the target fungi, with an EC50 of 22·78 μg ml-1 . After treatment with 100 μg ml-1 FS-4 crude extract, the N-acetylglucosamine content in the mycelium increased 1·95-fold. However, the extract had no significant effect on β-1,3-glucanase. At the FS-4 crude extract dose of 100 μg ml-1 , the total sugar and protein contents decreased by 28·6 and 29·1% respectively, and the fat content was 41·3%. FS-4 significantly inhibited the activity of the mitochondrial complex III of Foc4, which was reduced by 52·45%. Moreover FS-4 reduced the activity of succinate dehydrogenase, a key enzyme in the Krebs cycle, by 60·2%. However, FS-4 had no significant effect on malate dehydrogenase. The membrane potential on the mitochondrial inner membrane was significantly reduced at the test concentration of 100 μg ml-1 . ROS gradually accumulated in the Foc4 hypha, and the burst was 3·97 times higher than the control. CONCLUSIONS This study demonstrated that the antifungal mechanism of Streptomyces ma. FS-4 against Foc4 includes the destruction of the plasma membrane and mitochondrial dysfunction and finally induction of cell apoptosis. SIGNIFICANCE AND IMPACT OF THE STUDY These results may indicate the prevention and control of banana wilt, which is of great significance to the healthy development of banana industry system.
Collapse
Affiliation(s)
- Y Duan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - J Chen
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Z Pang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - X Ye
- College of Food Science and Technology, Hainan University, Haikou, China
| | - C Zhang
- College of Food Science and Technology, Hainan University, Haikou, China
| | - H Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| | - J Xie
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang, China
| |
Collapse
|
16
|
Chi YK, Zhao W, Ye MD, Ali F, Wang T, Qi RD. Evaluation of Recombinase Polymerase Amplification Assay for Detecting Meloidogyne javanica. PLANT DISEASE 2020; 104:801-807. [PMID: 31944903 DOI: 10.1094/pdis-07-19-1473-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Meloidogyne javanica is one of the most widespread and economically important nematodes in many countries, including China. In this study, a recombinase polymerase amplification (RPA) assay was evaluated for the detection of M. javanica based on the sequences of a sequence-characterized amplified regions marker gene segment. The RPA assay specifically detected M. javanica from individual juvenile or adult female, M. javanica-induced galls, and nematodes in the soil samples. The detection limit of M. javanica RPA assay was 1 pg of purified genomic DNA, 0.01 adult female, or 0.1 second-stage juvenile, which was 10 times more sensitive than conventional PCR assay. Furthermore, combined with lateral flow dipstick (LFD), a visual detection method of LFD-RPA assay was developed, which is suitable for onsite surveys and routine diagnostics. Results indicate that the RPA assay is rapid, sensitive, and reliable for detection and molecular identification of M. javanica.
Collapse
Affiliation(s)
- Yuan-Kai Chi
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wei Zhao
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Meng-di Ye
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Farman Ali
- Department of Agriculture, Abdul Wali Khan University, Mardan, Pakistan
| | - Tao Wang
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ren-de Qi
- Institute of Plant Protection and Agro-products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
17
|
Kaushal M, Mahuku G, Swennen R. Metagenomic Insights of the Root Colonizing Microbiome Associated with Symptomatic and Non-Symptomatic Bananas in Fusarium Wilt Infected Fields. PLANTS 2020; 9:plants9020263. [PMID: 32085593 PMCID: PMC7076721 DOI: 10.3390/plants9020263] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 12/25/2022]
Abstract
Plants tissues are colonized by diverse communities of microorganisms called endophytes. They are key determinants of plant production and health, for example by facilitating nutrient exchanges or limiting disease development. Endophytic communities of banana plants have not been studied until very recently, and their potential role in disease development has not been explored so far. Roots from symptomatic and non-symptomatic banana plants were sampled from fields infected by Fusarium oxysporum f.sp. cubense race 1. The goal was to compare the endophytic microbiota between symptomatic and non-symptomatic plants through high throughput sequencing of 16s rDNA and shotgun metagenome sequencing. The results revealed that the endophytic root microbiome in bananas is dominated by Proteobacteria and Bacteroidetes followed to a lesser extent by Actinobacteria. The development of disease greatly impacted the endophytic microbial communities. For example, Flavobacteriales abundance was correlated with symptom development.
Collapse
Affiliation(s)
- Manoj Kaushal
- International Institute of Tropical Agriculture (IITA), Mikocheni B, Dar es Salaam-34441, Tanzania;
- Correspondence: ; Tel.: +255-758589012
| | - George Mahuku
- International Institute of Tropical Agriculture (IITA), Mikocheni B, Dar es Salaam-34441, Tanzania;
| | - Rony Swennen
- Bioversity International, Willem De Croylaan 42, B-3001 Leuven, Belgium;
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, B-3001 Leuven, Belgium
- International Institute of Tropical Agriculture. c/o The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha 23306, Tanzania
| |
Collapse
|
18
|
Duan Y, Chen J, He W, Chen J, Pang Z, Hu H, Xie J. Fermentation optimization and disease suppression ability of a Streptomyces ma. FS-4 from banana rhizosphere soil. BMC Microbiol 2020; 20:24. [PMID: 32005152 PMCID: PMC6995205 DOI: 10.1186/s12866-019-1688-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/17/2019] [Indexed: 12/03/2022] Open
Abstract
Background Fusarium wilt of banana is one of the most destructive diseases in banana-growing regions worldwide. Soil-borne diseases and soil microbial communities are closely related. The screening of antagonistic bacteria from soil microorganisms in areas with Fusarium wilt of banana is of great practical significance for controlling this disease. Results A strain designated FS-4 was isolated from healthy banana rhizosphere soil in an area affected by Fusarium wilt. This strain exhibited a significant antagonistic effect on the pathogen. Pot experiments revealed that the fermentation broth of strain FS-4 not only decreased the incidence of banana Fusarium wilt, but also promoted the growth of banana seedlings. The strain was identified as Streptomyces ma. by its morphological, physiological, and biochemical characteristics and 16S rRNA gene sequence analysis. The culture and fermentation conditions for this strain were optimized by single-factor and response surface experiments. The optimum culture conditions for Streptomyces ma. FS-4 were as follows: peptone 0.5%, saccharose 2.4, 0.05% K2HPO4, 0.05% MgCl2, and 0.05% NaCl at an initial pH of 7.0; 180 g at 28 °C; and inoculation size of 6% for 62 h. The diameter of bacteriostasis circle for Bacillus subtilis reached 26.7 mm. Conclusion Streptomyces ma. FS-4 is an important microbial resource as a biological agent for the control of plant pathogenic fungi and can be used to promote banana growth.
Collapse
Affiliation(s)
- Yajie Duan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Chinese Academy of Tropical Agricultural Science, South Subtropical Crop Research Institute, Zhanjiang, 524091, China
| | - Jian Chen
- College of Food Science and Technology, Hainan University, Haikou, 570228, China
| | - Wei He
- College of Food Science and Technology, Hainan University, Haikou, 570228, China
| | - Jingjing Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Chinese Academy of Tropical Agricultural Science, South Subtropical Crop Research Institute, Zhanjiang, 524091, China
| | - Zhencai Pang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Chinese Academy of Tropical Agricultural Science, South Subtropical Crop Research Institute, Zhanjiang, 524091, China
| | - Huigang Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Chinese Academy of Tropical Agricultural Science, South Subtropical Crop Research Institute, Zhanjiang, 524091, China.
| | - Jianghui Xie
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Chinese Academy of Tropical Agricultural Science, South Subtropical Crop Research Institute, Zhanjiang, 524091, China.
| |
Collapse
|
19
|
Cesa-Luna C, Baez A, Quintero-Hernández V, De la Cruz-Enríquez J, Castañeda-Antonio MD, Muñoz-Rojas J. The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n1.76867] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacteria produce antimicrobial compounds to compete for nutrients and space in a particular habitat. Antagonistic interactions can be evaluated by several methodologies including the double-layer agar and simultaneous inhibition assays. Among the well-known inhibitory substances produced by bacteria are the broad-spectrum antibiotics, organic acids, siderophores, antifungal, and bacteriocins. The most studied bacterial genera able to produce these inhibitory substances are Enterococcus, Lactococcus, Streptomyces, Bacillus, Pseudomonas, Klebsiella, Escherichia, and Burkholderia. Some beneficial bacteria can promote plant growth and degrade toxic compounds in the environment representing an attractive solution to diverse issues in agriculture and soil pollution, particularly in fields with damaged soils where pesticides and fertilizers have been indiscriminately used. Beneficial bacteria may increase plant health by inhibiting pathogenic microorganisms; some examples include Gluconacetobacter diazotrophicus, Azospirullum brasilense, Pseudomonas fluorescens, Pseudomonas protegens, and Burkholderia tropica. However, most studies showing the antagonistic potential of these bacteria have been performed in vitro, and just a few of them have been evaluated in association with plants. Several inhibitory substances involved in pathogen antagonism have not been elucidated yet; in fact, we know only 1 % of the bacterial diversity in a natural environment leading us to assume that many other inhibitory substances remain unexplored. In this review, we will describe the characteristics of some antimicrobial compounds produced by beneficial bacteria, the principal methodologies performed to evaluate their production, modes of action, and their importance for biotechnological purposes.
Collapse
|
20
|
Occurrence of endophytic bacteria in Vietnamese Robusta coffee roots and their effects on plant parasitic nematodes. Symbiosis 2019. [DOI: 10.1007/s13199-019-00649-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Zhao J, Liu D, Wang Y, Zhu X, Xuan Y, Liu X, Fan H, Chen L, Duan Y. Biocontrol potential of Microbacterium maritypicum Sneb159 against Heterodera glycines. PEST MANAGEMENT SCIENCE 2019; 75:3381-3391. [PMID: 31282045 DOI: 10.1002/ps.5546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/16/2019] [Accepted: 07/02/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND The soybean cyst nematode Heterodera glycines (Ichinohe) is the most devastating pathogen affecting soybean production worldwide. Biocontrol agents have become eco-friendly candidates to control pathogens. The aim of this study was to discover novel biocontrol agents against H. glycines. RESULTS Microbacterium maritypicum Sneb159, screened from 804 strains, effectively reduced the number of females in field experiments conducted in 2014 and 2015. The stability and efficiency of H. glycines control by Sneb159 was further assessed in growth chamber and field experiments. Sneb159 decreased H. glycines population densities, especially the number of females by 43.9%-67.7%. To confirm Sneb159 induced plant resistance, a split-root assay was conducted. Sneb159 induced local and systemic resistance to suppress the penetration and development of H. glycines, and enhanced the gene expression of PR2, PR3b, and JAZ1, involved in the salicylic acid and jasmonic acid pathways. CONCLUSION This is the first report of M. maritypicum Sneb159 suppressing H. glycines infection. This effect may be the result of Sneb159-induced resistance. Our study indicates that M. maritypicum Sneb159 is a promising biocontrol agent against H. glycines. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Zhao
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dan Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhu Xuan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiaoyu Liu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Sciences, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
22
|
Ponpandian LN, Rim SO, Shanmugam G, Jeon J, Park YH, Lee SK, Bae H. Phylogenetic characterization of bacterial endophytes from four Pinus species and their nematicidal activity against the pine wood nematode. Sci Rep 2019; 9:12457. [PMID: 31462655 PMCID: PMC6713757 DOI: 10.1038/s41598-019-48745-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/31/2019] [Indexed: 11/16/2022] Open
Abstract
Recently, bacterial endophytes (BEs) have gained importance in the agricultural sector for their use as biocontrol agents to manage plant pathogens. Outbreak of the pine wilt disease (PWD) in Korea has led researchers to test the feasibility of BEs in controlling the pine wood nematode (PWN) Bursaphelenchus xylophilus. In this study, we have reported the diversity and biocontrol activity of BEs against the PWN. By employing a culture-dependent approach, 1,622 BEs were isolated from the needle, stem, and root tissues of P. densiflora, P. rigida, P. thunbergii, and P. koraiensis across 18 sampling sites in Korea. We classified 389 members based on 16S rDNA analysis and taxonomic binning, of which, 215 operational taxonomic units (OTUs) were determined. Using Shannon’s indices, diversity across the Pinus species and tissues was estimated to reveal the composition of BEs and their tissue-specific preferences. When their ethyl acetate crude extracts were analysed for biocontrol activity, 44 candidates with nematicidal activity were obtained. Among these, Stenotrophomonas and Bacillus sp. exhibited significant inhibitory activity against PWN during their developmental stages. Altogether, our study furnishes a basic comprehension of bacterial communities found in the Pinus species and highlights the potential of BEs as biocontrol agents to combat PWD.
Collapse
Affiliation(s)
| | - Soon Ok Rim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Gnanendra Shanmugam
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Young-Hwan Park
- Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Sun-Keun Lee
- Division of Forest Insect Pests and Diseases, National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
23
|
Plant Probiotic Bacterial Endophyte, Alcaligenes faecalis, Modulates Plant Growth and Forskolin Biosynthesis in Coleus forskohlii. Probiotics Antimicrob Proteins 2019; 12:481-493. [DOI: 10.1007/s12602-019-09582-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Li X, Hu HJ, Li JY, Wang C, Chen SL, Yan SZ. Effects of the Endophytic Bacteria Bacillus cereus BCM2 on Tomato Root Exudates and Meloidogyne incognita Infection. PLANT DISEASE 2019; 103:1551-1558. [PMID: 31059388 DOI: 10.1094/pdis-11-18-2016-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Root-knot nematodes (Meloidogyne spp.) cause serious crop losses worldwide. The colonization of tomato roots by endophytic bacteria Bacillus cereus BCM2 can greatly reduce Meloidogyne incognita damage, and tomato roots carrying BCM2 were repellent to M. incognita second-stage juveniles (J2). Here, the effects of BCM2 colonization on the composition of tomato root exudates was evaluated and potential mechanisms for BCM2-mediated M. incognita control explored using a linked twin-pot assay and GC-MS. On water agar plates, J2 preferentially avoided filter paper treated with tomato root exudates (organic phase only) from plants inoculated with BCM2, visiting these 67.1% less than controls. In a linked twin-pot assay, BCM2 treatment resulted in a 42.0% reduction in the number of nematodes in the soil, a 43.3% reduction in the number of galls and a 47.7% decrease in the density of M. incognita in root tissues. Analysis of root exudate composition revealed that BCM2 inoculation increased the number of components in exudates. Among these, 2,4-di-tert-butylphenol, 3,3-dimethyloctane, and n-tridecane secretions markedly increased. In repellency trials on water agar plates, J2 avoided 2,4-di-tert-butylphenol, n-tridecane, and 3,3-dimethyloctane at concentrations of 4 mmol/liter. In a linked twin-pot assay, inoculation with 2,4-di-tert-butylphenol or 3,3-dimethyloctane reduced the number of nematodes in the soil (by 54.9 and 70.6%, respectively), the number of galls (by 53.7 and 52.4%), and the number of M. incognita in root tissues (by 67.5 and 36.3%). BCM2 colonization in tomato roots affected the composition of root exudates, increasing the secretion of substances that appear to be repellent, thus decreasing M. incognita J2 infection of roots.
Collapse
Affiliation(s)
- Xia Li
- 1 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Hai-Jing Hu
- 1 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
- 2 School of Life Science, Nanjing University, Nanjing, China
| | - Jing-Yu Li
- 1 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Cong Wang
- 1 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Shuang-Lin Chen
- 1 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Shu-Zhen Yan
- 1 Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| |
Collapse
|
25
|
Inside the plant: addressing bacterial endophytes in biotic stress alleviation. Arch Microbiol 2019; 201:415-429. [PMID: 30834947 DOI: 10.1007/s00203-019-01642-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/06/2018] [Accepted: 02/26/2019] [Indexed: 12/28/2022]
Abstract
Bacterial endophytes are the internal association of bacteria with the plants, cherished whole or any part of their life cycle inside the plant. They are reported to improve plant health against the biotic stresses via de novo synthesis of structural compounds and stimulation of plant immunity. They are found to be vital in development of host resistance against phytopathogens and capable in reducing and elimination of deleterious effects of plant pathogens. Fungal-, bacterial-, viral-, insect- and nematode-associated negative effect can be reduced by the bacterial endophytes. They are also reported to control plant pathogens through several defense mechanisms such as by producing antimicrobial compounds and antibiotics, de novo synthesis of structural compounds, keeping out of pathogens by niche competition and induction of plant immunity or induced systemic resistance. In this review, an effort is made to summarize the exploitation of endophytic bacteria as a biological substitute to control biotic stresses in agricultural practices.
Collapse
|
26
|
Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana cv. Williams (Musa acuminata Colla). Microbiol Res 2018; 220:12-20. [PMID: 30744815 DOI: 10.1016/j.micres.2018.11.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/10/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
Banana is the second largest export crop in Colombia. To meet the demand of international markets, high amounts of chemical fertilizers are required, which represent high costs and can be hazardous to the environment. Plant growth promoting rhizobacteria (PGPR) can, at least partially, replace chemical fertilizers. In this paper, we evaluated the effect of nine PGPR of the genera Bacillus and Pseudomonas on banana growth. Banana seedlings were produced through tissue culture and acclimatized in the greenhouse core. Plants were inoculated with the rhizobacteria and growth parameters (plant height, leaf number, leaf area, pseudostem thickness, root and shoot fresh weight, root and shoot dry weight) were assessed after 55 days. The two best performing PGPR, Bs006 and Ps006 previously identified as Bacillus amyloliquefaciens and Pseudomonas fluorescens, respectively, promoted banana growth similarly or even slightly superior to 100% chemical fertilization, and were selected for further characterization of root colonization by both eletron microscopy and confocal microscopy of fluorescence in situ hybridization (FISH)-stained root tissues. Both P. fluorescens Ps006 and B. amyloquifaciens Bs006 showed ability to colonize banana roots, but Bs006 appeared faster than Ps006 in the colonization dynamics. This work demonstrated that inoculation of rhizobacteria Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006 could partially replace the chemical fertilization of tissue cultured banana plants, and therefore could be used for the formulation of a new biofertilizer.
Collapse
|
27
|
Ben Mefteh F, Daoud A, Chenari Bouket A, Thissera B, Kadri Y, Cherif-Silini H, Eshelli M, Alenezi FN, Vallat A, Oszako T, Kadri A, Ros-García JM, Rateb ME, Gharsallah N, Belbahri L. Date Palm Trees Root-Derived Endophytes as Fungal Cell Factories for Diverse Bioactive Metabolites. Int J Mol Sci 2018; 19:ijms19071986. [PMID: 29986518 PMCID: PMC6073733 DOI: 10.3390/ijms19071986] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 12/24/2022] Open
Abstract
Endophytic fungi of healthy and brittle leaf diseased (BLD) date palm trees (Phoenix dactylifera L.) represent a promising source of bioactive compounds with biomedical, industrial, and pharmaceutical applications. The fungal endophytes Penicillium citrinum isolate TDPEF34, and Geotrichum candidum isolate TDPEF20 from healthy and BLD date palm trees, respectively, proved very effective in confrontation assays against three pathogenic bacteria, including two Gram-positive bacteria Bacillus thuringiensis (Bt) and Enterococcus faecalis (Ef), and one Gram-negative bacterium Salmonella enterica (St). They also inhibited the growth of three fungi Trichoderma sp. (Ti), Fusarium sporotrichioides (Fs), Trichoderma sp. (Ts). Additionally, their volatile organic compounds (VOCs) were shown to be in part responsible for the inhibition of Ti and Ts and could account for the full inhibition of Fs. Therefore, we have explored their potential as fungal cell factories for bioactive metabolites production. Four extracts of each endophyte were prepared using different solvent polarities, ethanol (EtOH), ethyl acetate (EtOAc), hexane (Hex), and methanol (MetOH). Both endophyte species showed varying degrees of inhibition of the bacterial and fungal pathogens according to the solvent used. These results suggest a good relationship between fungal bioactivities and their produced secondary metabolites. Targeting the discovery of potential anti-diabetic, anti-hemolysis, anti-inflammatory, anti-obesity, and cytotoxic activities, endophytic extracts showed promising results. The EtOAc extract of G. candidum displayed IC50 value comparable to the positive control diclofenac sodium in the anti-inflammatory assays. Antioxidant activity was evaluated using α,α-diphenyl-β-picrylhydrazyl (DPPH), β-carotene bleaching, reducing power (RP), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonique) (ABTS) radical scavenging assays. The findings revealed strong anti-oxidant power with an IC50 of 177.55 µg/mL for G. candidum EtOAc extract using DPPH assay, probably due to high polyphenol and flavonoid content in both fungal extracts. Finally, LC-HRMS (Liquid Chromatography–High Resolution Mass Spectrometry) and GC-MS (Gas Chromatography–Mass Spectrometry) analysis of G. candidum and P. citrinum extracts revealed an impressive arsenal of compounds with previously reported biological activities, partly explaining the obtained results. Finally, LC-HRMS analysis indicated the presence of new fungal metabolites that have never been reported, which represent good candidates to follow for the discovery of new bioactive molecules.
Collapse
Affiliation(s)
- Fedia Ben Mefteh
- Faculty of Science, B.P. 1171, 3000, University of Sfax, 3029 Sfax, Tunisia.
| | - Amal Daoud
- Faculty of Science, B.P. 1171, 3000, University of Sfax, 3029 Sfax, Tunisia.
| | - Ali Chenari Bouket
- Plant Protection Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, 5153715898 Tabriz, Iran.
| | - Bathini Thissera
- School of Science and Sport, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Yamina Kadri
- Labroratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax,95, 3052 Sfax, Tunisia.
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, 19000 Setif, Algeria.
| | - Manal Eshelli
- School of Science and Sport, University of the West of Scotland, Paisley PA1 2BE, UK.
- Department of Food Science & Technology, Faculty of Agriculture, University of Tripoli, 13275 Tripoli, Libya.
| | | | - Armelle Vallat
- Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | | | - Adel Kadri
- Faculty of Science, B.P. 1171, 3000, University of Sfax, 3029 Sfax, Tunisia.
| | - José María Ros-García
- Department of Food Science & Technology and Human Nutrition, University of Murcia, 30100 Murcia, Spain.
| | - Mostafa E Rateb
- School of Science and Sport, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Neji Gharsallah
- Faculty of Science, B.P. 1171, 3000, University of Sfax, 3029 Sfax, Tunisia.
| | - Lassaad Belbahri
- NextBiotech, 98 Rue Ali Belhouane, 3030 Agareb, Tunisia.
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland.
| |
Collapse
|