1
|
Chen C, Zheng Z, Wang Y, Ji X, Li D, Li P, Liu Y. Function-driven high-throughput screening and isolation of ester-producing strains for glutinous rice wine fermentation. Food Res Int 2025; 199:115393. [PMID: 39658180 DOI: 10.1016/j.foodres.2024.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Ester-producing strains are of great importance for enhancing the quality and flavor profiles of alcoholic beverages. However, traditional methods for screening ester-producing strains are labor-intensive and time-consuming, significantly impeding the development of alcoholic beverages industry. In this study, we selected five brands of Jiuqu to cultivate within different media, results showed that XB (Jiuqu) incubated with malt extract medium possessed the highest ester-producing capability, with the identification of 27 esters at the concentration of 31.44 ± 2.17 mM. Subsequently, fluorescence-activated cell sorting (FACS) was used to screen and isolate the living fungal cells which accounted for 42.80 % of total cells, followed by cultivation utilizing a culturomics approach. High-throughput screening (HTS) assays using 4-Methylumbelliferyl acetate (4-MA) were utilized to evaluate the ester-production potentials of 960 selected strains. The top10 highest ester-producing strains were sequenced, and all were identified as Saccharomyces cerevisiae, Cyberlindnera fabianii, and Wickerhamomyces anomalus. Eventually, three microbial strains were co-incubated with rice wine starter to improve the nutritional and flavor properties of glutinous rice wine. Compared to the control group, Cyberlindnera fabianii could increase reducing sugar content, up to 0.33 ± 0.01 g/mL, and significantly decrease the concentration of bitter amino acids by 55.83 %, resulting in a final concentration of 32.29 ± 1.51 mg/L. Furthermore, the glutinous rice wine with Cyberlindnera fabianii showed 38 distinct ester compounds at the content of 16.22 ± 0.51 mM, which was superior to the control group (30 ester compounds at the concentration of 11.89 ± 1.39 mM). The diversity and concentrations of flavor components, such as alcohols, aldehydes, and ketones, were also enhanced. Our findings would contribute to advancing the rapid screening of ester-producing strains, as well as providing a theoretical basis for improving the quality of glutinous rice wine.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zhaojun Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yue Wang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), China Tobacco Technology Innovation Center for Cigar, Chengdu 610000, Sichuan, People's Republic of China
| | - Xiaoying Ji
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), China Tobacco Technology Innovation Center for Cigar, Chengdu 610000, Sichuan, People's Republic of China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), China Tobacco Technology Innovation Center for Cigar, Chengdu 610000, Sichuan, People's Republic of China
| | - Pinhe Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), China Tobacco Technology Innovation Center for Cigar, Chengdu 610000, Sichuan, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Ginovart M, Carbó R, Portell X. Adaptation of Saccharomyces to High Glucose Concentrations and Its Impact on Growth Kinetics of Alcoholic Fermentations. Microorganisms 2024; 12:1449. [PMID: 39065218 PMCID: PMC11278885 DOI: 10.3390/microorganisms12071449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Prior adaptation of Saccharomyces cerevisiae to the fermentation medium ensures its implantation and success in alcoholic fermentations. Fermentation kinetics can be characterized with mathematical models to objectively measure the success of adaptation and growth. The study aims at assessing and comparing two pre-culture procedures using, respectively, one or two adaptation steps, analyzing the impact of different initial glucose concentrations on the fermentation profiles of S. cerevisiae cultures, and assessing the performance of three predictive growth models (Buchanan's, modified Gompertz, and Baranyi and Roberts models) under varied initial glucose concentrations. We concluded that both protocols produced S. cerevisiae pre-cultures with similar viability and biomass increase, which suggests that short protocols may be more cost-effective. Furthermore, the study highlights the need of inoculating a high S. cerevisiae population to minimize the depletion of dissolved oxygen in the medium and to ensure that glucose is predominantly directed toward the ethanol formation at early fermentative steps. This study shows that the relationship between kinetic parameters is model-dependent, which hinders inter-study comparisons and stresses the need for standardized growth models. We advocate for the generalized use of confidence intervals of the kinetic parameters to facilitate objective inter-study comparisons.
Collapse
Affiliation(s)
- Marta Ginovart
- Departament de Matemàtiques, Universitat Politècnica de Catalunya-BarcelonaTECH, 08860 Castelldefels, Catalunya, Spain;
| | - Rosa Carbó
- Escola d’Enginyeria Agroalimentària i de Biosistemes de Barcelona, Universitat Politècnica de Catalunya-BarcelonaTECH, 08860 Castelldefels, Catalunya, Spain;
| | - Xavier Portell
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte s/n, 22071 Huesca, Aragón, Spain
| |
Collapse
|
3
|
Guindal AM, Morales P, Tronchoni J, Gonzalez R. Reduction of ethanol content in wine with an improved combination of yeast strains and process conditions. Food Microbiol 2023; 115:104344. [PMID: 37567627 DOI: 10.1016/j.fm.2023.104344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/07/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
One interesting strategy to address the increasing alcohol content of wines, associated with climate change, is to reduce the ethanol yield during fermentation. Within this strategy, the approach that would allow the clearest reduction in alcohol content is the respiration of part of the grape sugars by yeasts. Non-Saccharomyces species can be used for this purpose but suffer from a limited ability to dominate the process and complete fermentation. In turn, Saccharomyces cerevisiae shows a high production of acetic acid under the growth conditions required for respiration. Previously proposed procedures used combinations of non-Saccharomyces and S. cerevisiae starters, or a strain of S. cerevisiae (PR1018), with unique metabolic properties. In both cases, precise management of oxygen availability was required to overcome the acetic acid problem. In this work, we have developed a laboratory scale process to take advantage of the properties of PR1018 and a strain of Metschnikowia pulcherrima. This process is more robust than the previous ones and does not rely on strict control of oxygenation or even the use of this particular strain of S. cerevisiae. Aeration can be interrupted instantly without impairing the volatile acidity. Under the selected conditions, an ethanol reduction of around 3% (v/v) was obtained compared to the standard fermentation control.
Collapse
Affiliation(s)
- Andrea M Guindal
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain.
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain.
| | - Jordi Tronchoni
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain; Universidad Internacional de Valencia - VIU, C/ Pintor Sorolla 21, 46002, Valencia, Spain.
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain.
| |
Collapse
|
4
|
Contreras-Ruiz A, Alonso-del-Real J, Barrio E, Querol A. Saccharomyces cerevisiae wine strains show a wide range of competitive abilities and differential nutrient uptake behavior in co-culture with S. kudriavzevii. Food Microbiol 2023. [DOI: 10.1016/j.fm.2023.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Isolation and Characterization of Cryotolerant Yeasts from Fiano di Avellino Grapes Fermented at Low Temperatures. Foods 2023; 12:foods12030526. [PMID: 36766056 PMCID: PMC9914108 DOI: 10.3390/foods12030526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
A fermentation of Fiano di Avellino grape must was carried out at 9°C with the aim of selecting cryotolerant yeast strains and testing their fermentative performances and volatile production following molecular characterization. A total of 20 yeast cultures were isolated at different fermentation stages. Based on molecular identification and characterization, Metschnikowia (M.) pulcherrima, Hanseniaspora (H.) uvarum, Staremerella (St.) bacillaris, Saccharomyces (S.) cerevisiae, S. kudriavzevii, and S. paradoxus were found to be the yeast species dominating the fermentation. S. paradoxus has been rarely isolated in vineyards and never in the cellar environment. Moreover, in this study, S. kudriavzevii is detected for the first time in vine-wine environments. Both S. kudriavzevii and S. paradoxus co-occurred with S. cerevisiae when grapes were micro-fermented at low temperatures. The growth kinetics of the three species were greatly affected by the fermentation temperature. As a consequence, Fiano wines obtained with S. kudriavzevii and S. paradoxus significantly differed from those made by S. cerevisiae in terms of chemical and volatile composition.
Collapse
|
6
|
Increase the Content of Ester Compounds in Blueberry Wine Fermentation with the Ester-Producing Yeast: Candida glabrata, Pichia anomala, and Wickerhamomyces anomalus. Foods 2022; 11:foods11223655. [PMID: 36429247 PMCID: PMC9689967 DOI: 10.3390/foods11223655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
The co-fermentation of Saccharomyces cerevisiae and ester-producing yeasts is considered to be an effective way to improve the flavor and quality of fruit wine. In this study, three kinds of ester-producing yeasts (Candida glabrata NCUF308.1, Pichia anomala NCUF306.1, and Wickerhamomyces anomalus NCUF307.1) and S. cerevisiae NCUF309.2 were used to simulate blueberry wine co-fermentation at different ratios. The results showed that, compared with S. cerevisiae NCUF309.2 fermentation (S), the population of S. cerevisiae NCUF309.2 in co-fermentation samples decreased to varying degrees, and the content of ethanol also decreased. The results also showed that the co-fermentation of C. glabrata NCUF308.1 and S. cerevisiae NCUF309.2 at the ratio of 1:1 (CS1), co-fermentation of P. anomala NCUF306.1 and S. cerevisiae NCUF309.2 at the ratio of 5:1 (PS5), and co-fermentation of W. anomalus NCUF307.1 and S. cerevisiae NCUF309.2 at the ratio of 5:1 (WS5) could significantly increase the content of ester compounds (p < 0.05), which was 3.29, 4.75, and 3.04 times that of the S sample, respectively. Among them, the sample of CS1 was characterized by phenethyl acetate and isoamyl acetate, while the samples of CS5 and PS5 were characterized by propyl octanoate and ethyl decanoate, and the sample of WS5 was characterized by 3-methylbutyl hexanoate. However, the contents of odor active compounds were higher in the CS1 sample. Therefore, the samples of CS1 had the potential to create the distinctive flavor of blueberry wine.
Collapse
|
7
|
Englezos V, Jolly NP, Di Gianvito P, Rantsiou K, Cocolin L. Microbial interactions in winemaking: Ecological aspects and effect on wine quality. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Physicochemical properties, antioxidant activities and microbial communities of Ethiopian honey wine, Tej. Food Res Int 2022; 152:110765. [DOI: 10.1016/j.foodres.2021.110765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023]
|
9
|
Zilelidou EA, Nisiotou A. Understanding Wine through Yeast Interactions. Microorganisms 2021; 9:microorganisms9081620. [PMID: 34442699 PMCID: PMC8399628 DOI: 10.3390/microorganisms9081620] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Wine is a product of microbial activities and microbe–microbe interactions. Yeasts are the principal microorganisms responsible for the evolution and fulfillment of alcoholic fermentation. Several species and strains coexist and interact with their environment and with each other during the fermentation course. Yeast–yeast interactions occur even from the early stages of fermentation, determining yeast community structure and dynamics during the process. Different types of microbial interactions (e.g., mutualism and commensalism or competition and amensalism) may exert positive or negative effects, respectively, on yeast populations. Interactions are intimately linked to yeast metabolic activities that influence the wine analytical profile and shape the wine character. In this context, much attention has been given during the last years to the interactions between Saccharomyces cerevisiae (SC) and non-Saccharomyces (NS) yeast species with respect to their metabolic contribution to wine quality. Yet, there is still a significant lack of knowledge on the interaction mechanisms modulating yeast behavior during mixed culture fermentation, while much less is known about the interactions between the various NS species or between SC and Saccharomyces non-cerevisiae (SNC) yeasts. There is still much to learn about their metabolic footprints and the genetic mechanisms that alter yeast community equilibrium in favor of one species or another. Gaining deeper insights on yeast interactions in the grape–wine ecosystem sets the grounds for understanding the rules underlying the function of the wine microbial system and provides means to better control and improve oenological practices.
Collapse
|
10
|
Leo VV, Viswanath V, Deka P, Zothanpuia, Ramji DR, Pachuau L, Carrie W, Malvi Y, Singh G, Singh BP. Saccharomyces and Their Potential Applications in Food and Food Processing Industries. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Bordet F, Joran A, Klein G, Roullier-Gall C, Alexandre H. Yeast-Yeast Interactions: Mechanisms, Methodologies and Impact on Composition. Microorganisms 2020; 8:E600. [PMID: 32326124 PMCID: PMC7232261 DOI: 10.3390/microorganisms8040600] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
During the winemaking process, alcoholic fermentation is carried out by a consortium of yeasts in which interactions occurs. The consequences of these interactions on the wine matrix have been widely described for several years with the aim of controlling the winemaking process as well as possible. In this review, we highlight the wide diversity of methodologies used to study these interactions, and their underlying mechanisms and consequences on the final wine composition and characteristics. The wide variety of matrix parameters, yeast couples, and culture conditions have led to contradictions between the results of the different studies considered. More recent aspects of modifications in the composition of the matrix are addressed through different approaches that have not been synthesized recently. Non-volatile and volatile metabolomics, as well as sensory analysis approaches are developed in this paper. The description of the matrix composition modification does not appear sufficient to explain interaction mechanisms, making it vital to take an integrated approach to draw definite conclusions on them.
Collapse
Affiliation(s)
- Fanny Bordet
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
- Lallemand SAS, 19, rue des Briquetiers, BP 59, 31702 Blagnac CEDEX, France
| | - Alexis Joran
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Géraldine Klein
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Chloé Roullier-Gall
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| | - Hervé Alexandre
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France-IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078 Dijon CEDEX, France
| |
Collapse
|
12
|
Parapouli M, Vasileiadis A, Afendra AS, Hatziloukas E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol 2020; 6:1-31. [PMID: 32226912 PMCID: PMC7099199 DOI: 10.3934/microbiol.2020001] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/19/2020] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae is the best studied eukaryote and a valuable tool for most aspects of basic research on eukaryotic organisms. This is due to its unicellular nature, which often simplifies matters, offering the combination of the facts that nearly all biological functions found in eukaryotes are also present and well conserved in S. cerevisiae. In addition, it is also easily amenable to genetic manipulation. Moreover, unlike other model organisms, S. cerevisiae is concomitantly of great importance for various biotechnological applications, some of which date back to several thousands of years. S. cerevisiae's biotechnological usefulness resides in its unique biological characteristics, i.e., its fermentation capacity, accompanied by the production of alcohol and CO2 and its resilience to adverse conditions of osmolarity and low pH. Among the most prominent applications involving the use of S. cerevisiae are the ones in food, beverage -especially wine- and biofuel production industries. This review focuses exactly on the function of S. cerevisiae in these applications, alone or in conjunction with other useful microorganisms involved in these processes. Furthermore, various aspects of the potential of the reservoir of wild, environmental, S. cerevisiae isolates are examined under the perspective of their use for such applications.
Collapse
Affiliation(s)
- Maria Parapouli
- Molecular Biology Laboratory, Department of Biological applications and Technology, University of Ioannina, Ioannina, Greece
| | - Anastasios Vasileiadis
- Molecular Biology Laboratory, Department of Biological applications and Technology, University of Ioannina, Ioannina, Greece
| | - Amalia-Sofia Afendra
- Genetics Laboratory, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Efstathios Hatziloukas
- Molecular Biology Laboratory, Department of Biological applications and Technology, University of Ioannina, Ioannina, Greece
| |
Collapse
|
13
|
Su Y, Gamero A, Rodríguez ME, Lopes CA, Querol A, Guillamón JM. Interspecific hybridisation among diverse Saccharomyces species: A combined biotechnological solution for low-temperature and nitrogen-limited wine fermentations. Int J Food Microbiol 2019; 310:108331. [DOI: 10.1016/j.ijfoodmicro.2019.108331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/30/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
|
14
|
Climate Changes and Food Quality: The Potential of Microbial Activities as Mitigating Strategies in the Wine Sector. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040085] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Climate change threatens food systems, with huge repercussions on food security and on the safety and quality of final products. We reviewed the potential of food microbiology as a source of biotechnological solutions to design climate-smart food systems, using wine as a model productive sector. Climate change entails considerable problems for the sustainability of oenology in several geographical regions, also placing at risk the wine typicity. The main weaknesses identified are: (i) The increased undesired microbial proliferation; (ii) the improved sugars and, consequently, ethanol content; (iii) the reduced acidity and increased pH; (iv) the imbalanced perceived sensory properties (e.g., colour, flavour); and (v) the intensified safety issues (e.g., mycotoxins, biogenic amines). In this paper, we offer an overview of the potential microbial-based strategies suitable to cope with the five challenges listed above. In terms of microbial diversity, our principal focus was on microorganisms isolated from grapes/musts/wines and on microbes belonging to the main categories with a recognized positive role in oenological processes, namely Saccharomyces spp. (e.g., Saccharomyces cerevisiae), non-Saccharomyces yeasts (e.g., Metschnikowia pulcherrima, Torulaspora delbrueckii, Lachancea thermotolerans, and Starmerella bacillaris), and malolactic bacteria (e.g., Oenococcus oeni, Lactobacillus plantarum).
Collapse
|
15
|
Canonico L, Solomon M, Comitini F, Ciani M, Varela C. Volatile profile of reduced alcohol wines fermented with selected non-Saccharomyces yeasts under different aeration conditions. Food Microbiol 2019; 84:103247. [PMID: 31421773 DOI: 10.1016/j.fm.2019.103247] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022]
Abstract
Over the last decades there has been an increase in ethanol concentration in wine. High ethanol concentration may impact negatively wine flavor and can be associated with harmful effects on human health. In this study, we investigated a microbiological approach to reduce wine ethanol concentration, using three non-Saccharomyces yeast strains (Metschnikowia pulcherrima, Torulaspora delbrueckii and Zygosaccharomyces bailii) in sequential fermentations with S. cerevisiae under different aeration conditions. At the same time, we evaluated the volatile profile of the resulting reduced alcohol Chardonnay wines. Results showed that the non-Saccharomyces yeasts tested were able to reduce wine ethanol concentration when oxygen was provided. Compared to S. cerevisiae wines, ethanol reduction was 1.6% v/v, 0.9% v/v and 1.0% v/v for M. pulcherrima, T. delbrueckii and Z. bailii sequential fermentations, respectively. Under the conditions evaluated here, aeration did not affect acetic acid production for any of the non-Saccharomyces strains tested. Although aeration affected wine volatile profiles, this was depended on yeast strain. Thus, wines produced with M. pulcherrima under aeration of 0.05 volume of air per volume of culture per minute (VVM) showed excessive ethyl acetate content, while Z. bailli wines produced with 0.05 VVM aeration had increased concentrations of higher alcohols and volatile acids. Increased concentrations of these compounds over their sensory thresholds, are likely to impact negatively on wine sensory profile. Contrarily, all three non-Saccharomyces strains under 0.025 VVM aeration conditions produced wines with reduced ethanol concentration and acceptable chemical volatile profiles.
Collapse
Affiliation(s)
- Laura Canonico
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Mark Solomon
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia, 5064, Australia
| | - Francesca Comitini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Maurizio Ciani
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, South Australia, 5064, Australia; School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Australia.
| |
Collapse
|
16
|
Wei J, Zhang Y, Yuan Y, Dai L, Yue T. Characteristic fruit wine production via reciprocal selection of juice and non-Saccharomyces species. Food Microbiol 2019; 79:66-74. [DOI: 10.1016/j.fm.2018.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 01/19/2023]
|
17
|
Macías LG, Morard M, Toft C, Barrio E. Comparative Genomics Between Saccharomyces kudriavzevii and S. cerevisiae Applied to Identify Mechanisms Involved in Adaptation. Front Genet 2019; 10:187. [PMID: 30930934 PMCID: PMC6425871 DOI: 10.3389/fgene.2019.00187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/21/2019] [Indexed: 12/02/2022] Open
Abstract
Yeasts belonging to the Saccharomyces genus play an important role in human-driven fermentations. The species S. cerevisiae has been widely studied because it is the dominant yeast in most fermentations and it has been widely used as a model eukaryotic organism. Recently, other species of the Saccharomyces genus are gaining interest to solve the new challenges that the fermentation industry are facing. One of these species is S. kudriavzevii, which exhibits interesting physiological properties compared to S. cerevisiae, such as a better adaptation to grow at low temperatures, a higher glycerol synthesis and lower ethanol production. The aim of this study is to understand the molecular basis behind these phenotypic differences of biotechnological interest by using a species-based comparative genomics approach. In this work, we sequenced, assembled and annotated two new genomes of S. kudriavzevii. We used a combination of different statistical methods to identify functional divergence, signatures of positive selection and acceleration of substitution rates at specific amino acid sites of proteins in S. kudriavzevii when compared to S. cerevisiae, and vice versa. We provide a list of candidate genes in which positive selection could be acting during the evolution of both S. cerevisiae and S. kudriavzevii clades. Some of them could be related to certain important differences in metabolism previously reported by other authors such us DAL3 and ARO4, involved in nitrogen assimilation and amino acid biosynthesis. In addition, three of those genes (FBA1, ZIP1, and RQC2) showed accelerated evolutionary rates in Sk branch. Finally, genes of the riboflavin biosynthesis were also among those genes with a significant higher rate of nucleotide substitution and those proteins have amino acid positions contributing to functional divergence.
Collapse
Affiliation(s)
- Laura G Macías
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos IATA, CSIC, Valencia, Spain
| | - Miguel Morard
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos IATA, CSIC, Valencia, Spain
| | - Christina Toft
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos IATA, CSIC, Valencia, Spain
| | - Eladio Barrio
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos IATA, CSIC, Valencia, Spain
| |
Collapse
|
18
|
Alonso-Del-Real J, Pérez-Torrado R, Querol A, Barrio E. Dominance of wine Saccharomyces cerevisiae strains over S. kudriavzevii in industrial fermentation competitions is related to an acceleration of nutrient uptake and utilization. Environ Microbiol 2019; 21:1627-1644. [PMID: 30672093 DOI: 10.1111/1462-2920.14536] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 01/01/2023]
Abstract
Grape must is a sugar-rich habitat for a complex microbiota which is replaced by Saccharomyces cerevisiae strains during the first fermentation stages. Interest on yeast competitive interactions has recently been propelled due to the use of alternative yeasts in the wine industry to respond to new market demands. The main issue resides in the persistence of these yeasts due to the specific competitive activity of S. cerevisiae. To gather deeper knowledge of the molecular mechanisms involved, we performed a comparative transcriptomic analysis during fermentation carried out by a wine S. cerevisiae strain and a strain representative of the cryophilic S. kudriavzevii, which exhibits high genetic and physiological similarities to S. cerevisiae, but also differences of biotechnological interest. In this study, we report that transcriptomic response to the presence of a competitor is stronger in S. cerevisiae than in S. kudriavzevii. Our results demonstrate that a wine S. cerevisiae industrial strain accelerates nutrient uptake and utilization to outcompete the co-inoculated yeast, and that this process requires cell-to-cell contact to occur. Finally, we propose that this competitive phenotype evolved recently, during the adaptation of S. cerevisiae to man-manipulated fermentative environments, since a non-wine S. cerevisiae strain, isolated from a North American oak, showed a remarkable low response to competition.
Collapse
Affiliation(s)
- Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain.,Departament de Genètica, Universitat de València, València, Spain
| |
Collapse
|
19
|
Varela J, Varela C. Microbiological strategies to produce beer and wine with reduced ethanol concentration. Curr Opin Biotechnol 2018; 56:88-96. [PMID: 30390603 DOI: 10.1016/j.copbio.2018.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/25/2018] [Accepted: 10/07/2018] [Indexed: 11/25/2022]
Abstract
Changes in consumer preferences, government policies and environmental conditions have driven research efforts towards producing alcoholic beverages with reduced alcohol content, namely wine and beer. While the strategies available to accomplish this goal vary for wine and beer, a common approach relies on the use of yeast strains which are less efficient at producing ethanol. Here we discuss current research on the isolation and/or generation of yeast strains able to produce beer or wine with reduced ethanol concentration. Particular consideration is given to the impact of 'low-ethanol' yeasts on volatile composition and sensory profile of beer and wine.
Collapse
Affiliation(s)
- Javier Varela
- School of Microbiology/Centre for Synthetic Biology and Biotechnology/Environmental Research Institute/APC Microbiome Institute, University College Cork, Cork T12 YN60, Ireland
| | - Cristian Varela
- The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, Adelaide, SA 5064, Australia.
| |
Collapse
|
20
|
Peng C, Viana T, Petersen MA, Larsen FH, Arneborg N. Metabolic footprint analysis of metabolites that discriminate single and mixed yeast cultures at two key time-points during mixed culture alcoholic fermentations. Metabolomics 2018; 14:93. [PMID: 30830430 DOI: 10.1007/s11306-018-1391-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION There has been a growing interest towards creating defined mixed starter cultures for alcoholic fermentations. Previously, metabolite differences between single and mixed cultures have been explored at the endpoint of fermentations rather than during fermentations. OBJECTIVES To create metabolic footprints of metabolites that discriminate single and mixed yeast cultures at two key time-points during mixed culture alcoholic fermentations. METHODS 1H NMR- and GC-MS-based metabolomics was used to identify metabolites that discriminate single and mixed cultures of Lachancea thermotolerans (LT) and Saccharomyces cerevisiae (SC) during alcoholic fermentations. RESULTS Twenty-two metabolites were found when comparing single LT and mixed cultures, including both non-volatiles (carbohydrate, amino acid and acids) and volatiles (higher alcohols, esters, ketones and aldehydes). Fifteen of these compounds were discriminatory only at the death phase initiation (T1) and fifteen were discriminatory only at the death phase termination (T2) of LT in mixed cultures. Eight metabolites were discriminatory at both T1 and T2. These results indicate that specific metabolic changes may be descriptive of different LT growth behaviors. Fifteen discriminatory metabolites were found when comparing single SC and mixed cultures. These metabolites were all volatiles, and twelve metabolites were discriminatory only at T2, indicating that LT-induced changes in volatiles occur during the death phase of LT in mixed cultures and not during their initial growth stage. CONCLUSIONS This work provides a detailed insight into yeast metabolites that differ between single and mixed cultures, and these data may be used for understanding and eventually predicting yeast metabolic changes in wine fermentations.
Collapse
Affiliation(s)
- Chuantao Peng
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Tiago Viana
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
- Chr.Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
| | - Mikael Agerlin Petersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Flemming Hofmann Larsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Nils Arneborg
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
21
|
Querol A, Pérez-Torrado R, Alonso-Del-Real J, Minebois R, Stribny J, Oliveira BM, Barrio E. New Trends in the Uses of Yeasts in Oenology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:177-210. [PMID: 29860974 DOI: 10.1016/bs.afnr.2018.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The most important factor in winemaking is the quality of the final product and the new trends in oenology are dictated by wine consumers and producers. Traditionally the red wine is the most consumed and more popular; however, in the last times, the wine companies try to attract other groups of populations, especially young people and women that prefer sweet, whites or rosé wines, very fruity and with low alcohol content. Besides the new trends in consumer preferences, there are also increased concerns on the effects of alcohol consumption on health and the effects of global climate change on grape ripening and wine composition producing wines with high alcohol content. Although S. cerevisiae is the most frequent species in wines, and the subject of most studies, S. uvarum and hybrids between Saccharomyces species such as S. cerevisiae×S. kudriavzevii and S. cerevisiae×S. uvarum are also involved in wine fermentations and can be preponderant in certain wine regions. New yeast starters of non-cerevisiae strains (S. uvarum) or hybrids (S. cerevisiae×S. uvarum and S. cerevisiae×S. kudriavzevii) can contribute to solve some problems of the wineries. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts, while fulfilling the requirements of the commercial yeasts, such as a good fermentative performance and aromatic profiles that are of great interest for the wine industry. In this review, we will analyze different applications of nonconventional yeasts to solve the current winemaking demands.
Collapse
Affiliation(s)
- Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain.
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Romain Minebois
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Jiri Stribny
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Bruno M Oliveira
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain; Departament de Genètica, Universitat de València, Valencia, Spain
| |
Collapse
|