1
|
Sun G, Kropp KA, Kirchner M, Plückebaum N, Selich A, Serrero M, Dhingra A, Cabrera JR, Ritter B, Bauerfeind R, Wyler E, Landthaler M, Schambach A, Sodeik B, Mertins P, Viejo-Borbolla A. Herpes simplex virus type 1 modifies the protein composition of extracellular vesicles to promote neurite outgrowth and neuroinfection. mBio 2024; 15:e0330823. [PMID: 38275838 PMCID: PMC10865794 DOI: 10.1128/mbio.03308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The highly prevalent herpes simplex virus type 1 (HSV-1) causes a range of diseases, including cold sores, blinding keratitis, and life-threatening encephalitis. HSV-1 initially replicates in epithelial cells, enters the peripheral nervous system via neurites, and establishes lifelong infection in the neuronal cell bodies. Neurites are highly dynamic structures that grow or retract in response to attractive or repulsive cues, respectively. Here, we show that infection with HSV-1, but not with a mutant virus lacking glycoprotein G (gG), reduced the repulsive effect of epithelial cells on neurite outgrowth and facilitated HSV-1 invasion of neurons. HSV-1 gG was required and sufficient to induce neurite outgrowth by modifying the protein composition of extracellular vesicles, increasing the amount of neurotrophic and neuroprotective proteins, including galectin-1. Antibodies directed against galectin-1 neutralized the capacity of extracellular vesicles released from HSV-1-infected cells to promote neurite outgrowth. Our study provides new insights into the neurotropism of HSV-1 and identifies a viral protein that modifies the protein composition of extracellular vesicles to stimulate neurite outgrowth and invasion of the nervous system.IMPORTANCEHerpes simplex virus type 1 (HSV-1) must infect neurites (or nerve endings) to establish a chronic infection in neurons. Neurites are highly dynamic structures that retract or grow in the presence of repulsive or attractive proteins. Some of these proteins are released by epithelial cells in extracellular vesicles and act upon interaction with their receptor present on neurites. We show here that HSV-1 infection of epithelial cells modulated their effect on neurites, increasing neurite growth. Mechanistically, HSV-1 glycoprotein G (gG) modifies the protein composition of extracellular vesicles released by epithelial cells, increasing the amount of attractive proteins that enhance neurite outgrowth and facilitate neuronal infection. These results could inform of therapeutic strategies to block HSV-1 induction of neurite outgrowth and, thereby, neuronal infection.
Collapse
Affiliation(s)
- Guorong Sun
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Marieluise Kirchner
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Nina Plückebaum
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Manutea Serrero
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Akshay Dhingra
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jorge Rubén Cabrera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas—Universidad Autónoma de Madrid, Madrid, Spain
| | - Birgit Ritter
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Rudolf Bauerfeind
- Research Core Unit for Laser Microscopy, Hannover Medical School, Hannover, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Biology, Humboldt University of Berlin, Berlin, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Philipp Mertins
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence-Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Naqvi RA, Valverde A, Yadavalli T, Bobat FI, Capistrano KJ, Shukla D, Naqvi AR. Viral MicroRNAs in Herpes Simplex Virus 1 Pathobiology. Curr Pharm Des 2024; 30:649-665. [PMID: 38347772 DOI: 10.2174/0113816128286469240129100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/17/2024] [Indexed: 06/01/2024]
Abstract
Simplexvirus humanalpha1 (Herpes simplex virus type 1 [HSV-1]) infects millions of people globally, manifesting as vesiculo-ulcerative lesions of the oral or genital mucosa. After primary infection, the virus establishes latency in the peripheral neurons and reactivates sporadically in response to various environmental and genetic factors. A unique feature of herpesviruses is their ability to encode tiny noncoding RNAs called microRNA (miRNAs). Simplexvirus humanalpha1 encodes eighteen miRNA precursors that generate twentyseven different mature miRNA sequences. Unique Simplexvirus humanalpha1 miRNAs repertoire is expressed in lytic and latent stages and exhibits expressional disparity in various cell types and model systems, suggesting their key pathological functions. This review will focus on elucidating the mechanisms underlying the regulation of host-virus interaction by HSV-1 encoded viral miRNAs. Numerous studies have demonstrated sequence- specific targeting of both viral and host transcripts by Simplexvirus humanalpha1 miRNAs. While these noncoding RNAs predominantly target viral genes involved in viral life cycle switch, they regulate host genes involved in antiviral immunity, thereby facilitating viral evasion and lifelong viral persistence inside the host. Expression of Simplexvirus humanalpha1 miRNAs has been associated with disease progression and resolution. Systemic circulation and stability of viral miRNAs compared to viral mRNAs can be harnessed to utilize their potential as diagnostic and prognostic markers. Moreover, functional inhibition of these enigmatic molecules may allow us to devise strategies that have therapeutic significance to contain Simplexvirus humanalpha1 infection.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, Medical Center, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Fatima Ismail Bobat
- Department of Ophthalmology and Visual Sciences, Medical Center, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Kristelle J Capistrano
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, Medical Center, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
3
|
Döhner K, Serrero MC, Sodeik B. The role of nuclear pores and importins for herpes simplex virus infection. Curr Opin Virol 2023; 62:101361. [PMID: 37672874 DOI: 10.1016/j.coviro.2023.101361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
Microtubule transport and nuclear import are functionally connected, and the nuclear pore complex (NPC) can interact with microtubule motors. For several alphaherpesvirus proteins, nuclear localization signals (NLSs) and their interactions with specific importin-α proteins have been characterized. Here, we review recent insights on the roles of microtubule motors, capsid-associated NLSs, and importin-α proteins for capsid transport, capsid docking to NPCs, and genome release into the nucleoplasm, as well as the role of importins for nuclear viral transcription, replication, capsid assembly, genome packaging, and nuclear capsid egress. Moreover, importin-α proteins exert antiviral effects by promoting the nuclear import of transcription factors inducing the expression of interferons (IFN), cytokines, and IFN-stimulated genes, and the IFN-inducible MxB restricts capsid docking to NPCs.
Collapse
Affiliation(s)
- Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany; Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany.
| | - Manutea C Serrero
- Institute of Virology, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany; RESIST - Cluster of Excellence, Hannover Medical School, Hannover, Germany; DZIF - German Centre for Infection Research, Braunschweig, Hannover, Germany.
| |
Collapse
|
4
|
Alt M, Wolf S, van de Sand L, Dittrich R, Tertel T, Brochhagen L, Dirks M, Aufderhorst UW, Thümmler L, Otte M, Rainer K, Dittmer U, Giebel B, Trilling M, Silke Heilingloh C, Lotfi R, Roggendorf M, Witzke O, Krawczyk A. Cell-to-cell spread inhibiting antibodies constitute a correlate of protection against herpes simplex virus type 1 reactivations: A retrospective study. Front Immunol 2023; 14:1143870. [PMID: 37006290 PMCID: PMC10061111 DOI: 10.3389/fimmu.2023.1143870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundHerpes simplex viruses (HSV) cause ubiquitous human infections. For vaccine development, knowledge concerning correlates of protection is essential. Therefore, we investigated (I) if humans are in principle capable producing cell-to-cell spread inhibiting antibodies against HSV and (II) whether this capacity is associated with a reduced HSV-1 reactivation risk.MethodsWe established a high-throughput HSV-1-ΔgE-GFP reporter virus-based assay and evaluated 2,496 human plasma samples for HSV-1 glycoprotein E (gE) independent cell-to-cell spread inhibiting antibodies. Subsequently, we conducted a retrospective survey among the blood donors to analyze the correlation between the presence of cell-to-cell spread inhibiting antibodies in plasma and the frequency of HSV reactivations.ResultsIn total, 128 of the 2,496 blood donors (5.1%) exhibited high levels of HSV-1 gE independent cell-to-cell spread inhibiting antibodies in the plasma. None of the 147 HSV-1 seronegative plasmas exhibited partial or complete cell-to-cell spread inhibition, demonstrating the specificity of our assay. Individuals with cell-to-cell spread inhibiting antibodies showed a significantly lower frequency of HSV reactivations compared to subjects without sufficient levels of such antibodies.ConclusionThis study contains two important findings: (I) upon natural HSV infection, some humans produce cell-to-cell spread inhibiting antibodies and (II) such antibodies correlate with protection against recurrent HSV-1. Moreover, these elite neutralizers may provide promising material for immunoglobulin therapy and information for the design of a protective vaccine against HSV-1.
Collapse
Affiliation(s)
- Mira Alt
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Susanne Wolf
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lukas van de Sand
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robin Dittrich
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Leonie Brochhagen
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Miriam Dirks
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Wilhelm Aufderhorst
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Laura Thümmler
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mona Otte
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kordula Rainer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Michael Roggendorf
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Adalbert Krawczyk,
| |
Collapse
|
5
|
Engineering antiviral immune-like systems for autonomous virus detection and inhibition in mice. Nat Commun 2022; 13:7629. [PMID: 36494373 PMCID: PMC9734111 DOI: 10.1038/s41467-022-35425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The ongoing COVID-19 pandemic has demonstrated that viral diseases represent an enormous public health and economic threat to mankind and that individuals with compromised immune systems are at greater risk of complications and death from viral diseases. The development of broad-spectrum antivirals is an important part of pandemic preparedness. Here, we have engineer a series of designer cells which we term autonomous, intelligent, virus-inducible immune-like (ALICE) cells as sense-and-destroy antiviral system. After developing a destabilized STING-based sensor to detect viruses from seven different genera, we have used a synthetic signal transduction system to link viral detection to the expression of multiple antiviral effector molecules, including antiviral cytokines, a CRISPR-Cas9 module for viral degradation and the secretion of a neutralizing antibody. We perform a proof-of-concept study using multiple iterations of our ALICE system in vitro, followed by in vivo functionality testing in mice. We show that dual output ALICESaCas9+Ab system delivered by an AAV-vector inhibited viral infection in herpetic simplex keratitis (HSK) mouse model. Our work demonstrates that viral detection and antiviral countermeasures can be paired for intelligent sense-and-destroy applications as a flexible and innovative method against virus infection.
Collapse
|
6
|
Gueudry J, Bodaghi B. Advances in the microbiological diagnosis of herpetic retinitis. FRONTIERS IN OPHTHALMOLOGY 2022; 2:990240. [PMID: 38983563 PMCID: PMC11182275 DOI: 10.3389/fopht.2022.990240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/24/2022] [Indexed: 07/11/2024]
Abstract
Viral retinitis associated with herpesvirus is one of the most severe forms of uveitis and is a potentially sight-threatening ophthalmologic disease. The prognosis is poor and a rapid and aggressive management is necessary to improve the visual and sometimes vital prognosis of these patients. The treatments used are not without side effects, while many differential diagnoses exist, such as toxoplasmic retinochoroiditis, syphilitic retinitis, endogenous endophthalmitis and intraocular lymphoma. Causatives viruses are herpes simplex virus, varicella-zoster virus, and cytomegalovirus, which require rapid detection in ocular fluid, mainly aqueous humor. However, only a small amount of intraocular fluid is available for analysis. Advances in microbiological diagnostic techniques therefore were key factors in improving the management of these diseases. Historically, the diagnosis was based on immunological tests but more recently advances in molecular biology, in particular polymerase chain reaction, have played a crucial role to obtain a reliable and rapid diagnosis of viral retinitis associated with herpesvirus, as discussed in this review.
Collapse
Affiliation(s)
- Julie Gueudry
- Department of Ophthalmology - Charles Nicolle University Hospital, CHU Charles Nicolle, Rouen, France
| | - Bahram Bodaghi
- Department of Ophthalmology, DHU ViewRestore, Sorbonne Université, Pitié Salpêtrière Hospital, Paris, France
| |
Collapse
|
7
|
Sadaoka T, Depledge DP, Rajbhandari L, Breuer J, Venkatesan A, Cohen JI. A Variant Allele in Varicella-Zoster Virus Glycoprotein B Selected during Production of the Varicella Vaccine Contributes to Its Attenuation. mBio 2022; 13:e0186422. [PMID: 35916400 PMCID: PMC9426484 DOI: 10.1128/mbio.01864-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Attenuation of the live varicella Oka vaccine (vOka) has been attributed to mutations in the genome acquired during cell culture passage of pOka (parent strain); however, the precise mechanisms of attenuation remain unknown. Comparative sequence analyses of several vaccine batches showed that over 100 single-nucleotide polymorphisms (SNPs) are conserved across all vaccine batches; 6 SNPs are nearly fixed, suggesting that these SNPs are responsible for attenuation. By contrast, prior analysis of chimeric vOka and pOka recombinants indicates that loci other than these six SNPs contribute to attenuation. Here, we report that pOka consists of a heterogenous population of virus sequences with two nearly equally represented bases, guanine (G) or adenine (A), at nucleotide 2096 of the ORF31 coding sequence, which encodes glycoprotein B (gB) resulting in arginine (R) or glutamine (Q), respectively, at amino acid 699 of gB. By contrast, 2096A/699Q is dominant in vOka (>99.98%). gB699Q/gH/gL showed significantly less fusion activity than gB699R/gH/gL in a cell-based fusion assay. Recombinant pOka with gB669Q (rpOka_gB699Q) had a similar growth phenotype as vOka during lytic infection in cell culture including human primary skin cells; however, rpOka_gB699R showed a growth phenotype similar to pOka. rpOka_gB699R entered neurons from axonal terminals more efficiently than rpOka_gB699Q in the presence of cell membrane-derived vesicles containing gB. Strikingly, when a mixture of pOka with both alleles equally represented was used to infect human neurons from axon terminals, pOka with gB699R was dominant for virus entry. These results identify a variant allele in gB that contributes to attenuation of vOka. IMPORTANCE The live-attenuated varicella vaccine has reduced the burden of chickenpox. Despite its development in 1974, the molecular basis for its attenuation is still not well understood. Since the live-attenuated varicella vaccine is the only licensed human herpesvirus vaccine that prevents primary disease, it is important to understand the mechanism for its attenuation. Here we identify that a variant allele in glycoprotein B (gB) selected during generation of the varicella vaccine contributes to its attenuation. This variant is impaired for fusion, virus entry into neurons from nerve terminals, and replication in human skin cells. Identification of a variant allele in gB, one of the essential herpesvirus core genes, that contributes to its attenuation may provide insights that assist in the development of other herpesvirus vaccines.
Collapse
Affiliation(s)
- Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel P. Depledge
- Department of Microbiology, New York University School of Medicine, New York, USA
- Institute for Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Labchan Rajbhandari
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Judith Breuer
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Arun Venkatesan
- Division of Neuroimmunology and Neuroinfectious Diseases, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey I. Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Shohael AM, Moin AT, Chowdhury MAB, Riana SH, Ullah MA, Araf Y, Sarkar B. An Updated Overview of Herpes Simplex Virus-1 Infection: Insights from Origin to Mitigation Measures. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/10869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Koganti R, Yadavalli T, Naqvi RA, Shukla D, Naqvi AR. Pathobiology and treatment of viral keratitis. Exp Eye Res 2021; 205:108483. [PMID: 33556334 DOI: 10.1016/j.exer.2021.108483] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022]
Abstract
Keratitis is one of the most prevalent ocular diseases manifested by partial or total loss of vision. Amongst infectious (viz., microbes including bacteria, fungi, amebae, and viruses) and non-infectious (viz., eye trauma, chemical exposure, and ultraviolet exposure, contact lens) risk factors, viral keratitis has been demonstrated as one of the leading causes of corneal opacity. While many viruses have been shown to cause keratitis (such as rhabdoviruses, coxsackieviruses, etc.), herpesviruses are the predominant etiologic agent of viral keratitis. This chapter will summarize current knowledge on the prevalence, diagnosis, and pathobiology of viral keratitis. Virus-mediated immunomodulation of host innate and adaptive immune components is critical for viral persistence, and dysfunctional immune responses may cause destruction of ocular tissues leading to keratitis. Immunosuppressed or immunocompromised individuals may display recurring disease with pronounced severity. Early diagnosis of viral keratitis is beneficial for disease management and response to treatment. Finally, we have discussed current and emerging therapies to treat viral keratitis.
Collapse
Affiliation(s)
- Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA
| | - Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, IL, 60612, USA.
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
10
|
Gmyrek GB, Filiberti A, Montgomery M, Chitrakar A, Royer DJ, Carr DJJ. Herpes Simplex Virus 1 (HSV-1) 0ΔNLS Live-Attenuated Vaccine Protects against Ocular HSV-1 Infection in the Absence of Neutralizing Antibody in HSV-1 gB T Cell Receptor-Specific Transgenic Mice. J Virol 2020; 94:e01000-20. [PMID: 32999018 PMCID: PMC7925190 DOI: 10.1128/jvi.01000-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
The contribution of T cell and antibody responses following vaccination in resistance to herpes simplex virus 1 (HSV-1) infection continues to be rigorously investigated. In the present article, we explore the contribution of CD8+ T cells specific for the major antigenic epitope for HSV-1 glycoprotein B (gB498-505, gB) in C57BL/6 mice using a transgenic mouse (gBT-I.1) model vaccinated with HSV-1 0ΔNLS. gBT-I.1-vaccinated mice did not generate a robust neutralization antibody titer in comparison to the HSV-1 0ΔNLS-vaccinated wild-type C57BL/6 counterpart. Nevertheless, the vaccinated gBT-I.1 mice were resistant to ocular challenge with HSV-1 compared to vehicle-vaccinated animals based on survival and reduced corneal neovascularization but displayed similar levels of corneal opacity. Whereas there was no difference in the virus titer recovered from the cornea comparing vaccinated mice, HSV-1 0ΔNLS-vaccinated animals possessed significantly less infectious virus during acute infection in the trigeminal ganglia (TG) and brain stem compared to the control-vaccinated group. These results correlated with a significant increase in gB-elicited interferon-γ (IFN-γ), granzyme B, and CD107a and a reduction in lymphocyte activation gene 3 (LAG-3), programmed cell death 1 (PD-1), and T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) expressed by TG infiltrating gB-specific CD8+ T cells from the HSV-1 0ΔNLS-vaccinated group. Antibody depletion of CD8+ T cells in HSV-1 0ΔNLS-vaccinated mice rendered animals highly susceptible to virus-mediated mortality similar to control-vaccinated mice. Collectively, the HSV-1 0ΔNLS vaccine is effective against ocular HSV-1 challenge, reducing ocular neovascularization and suppressing peripheral nerve virus replication in the near absence of neutralizing antibody in this unique mouse model.IMPORTANCE The role of CD8+ T cells in antiviral efficacy using a live-attenuated virus as the vaccine is complicated by the humoral immune response. In the case of the herpes simplex virus 1 (HSV-1) 0ΔNLS vaccine, the correlate of protection has been defined to be primarily antibody driven. The current study shows that in the near absence of anti-HSV-1 antibody, vaccinated mice are protected from subsequent challenge with wild-type HSV-1 as measured by survival. The efficacy is lost following depletion of CD8+ T cells. Whereas increased survival and reduction in virus replication were observed in vaccinated mice challenged with HSV-1, cornea pathology was mixed with a reduction in neovascularization but no change in opacity. Collectively, the study suggests CD8+ T cells significantly contribute to the host adaptive immune response to HSV-1 challenge following vaccination with an attenuated virus, but multiple factors are involved in cornea pathology in response to ocular virus challenge.
Collapse
Affiliation(s)
- Grzegorz B Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Micaela Montgomery
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alisha Chitrakar
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Derek J Royer
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
11
|
Carr DJJ, Gmyrek GB, Filiberti A, Berube AN, Browne WP, Gudgel BM, Sjoelund VH. Distinguishing Features of High- and Low-Dose Vaccine against Ocular HSV-1 Infection Correlates with Recognition of Specific HSV-1-Encoded Proteins. Immunohorizons 2020; 4:608-626. [PMID: 33037098 DOI: 10.4049/immunohorizons.2000060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The protective efficacy of a live-attenuated HSV type 1 (HSV-1) vaccine, HSV-1 0∆ nuclear location signal (NLS), was evaluated in mice prophylactically in response to ocular HSV-1 challenge. Mice vaccinated with the HSV-1 0∆NLS were found to be more resistant to subsequent ocular virus challenge in terms of viral shedding, spread, the inflammatory response, and ocular pathology in a dose-dependent fashion. Specifically, a strong neutralizing Ab profile associated with low virus titers recovered from the cornea and trigeminal ganglia was observed in vaccinated mice in a dose-dependent fashion with doses ranging from 1 × 103 to 1 × 105 PFU HSV-1 0∆NLS. This correlation also existed in terms of viral latency in the trigeminal ganglia, corneal neovascularization, and leukocyte infiltration and expression of inflammatory cytokines and chemokines in infected tissue with the higher doses (1 × 104-1 × 105 PFU) of the HSV-1 0∆NLS-vaccinated mice, displaying reduced viral latency, ocular pathology, or inflammation in comparison with the lowest dose (1 × 103 PFU) or vehicle vaccine employed. Fifteen HSV-1-encoded proteins were uniquely recognized by antisera from high-dose (1 × 105 PFU)-vaccinated mice in comparison with low-dose (1 × 103 PFU)- or vehicle-vaccinated animals. Passive immunization using high-dose-vaccinated, but not low-dose-vaccinated, mouse sera showed significant efficacy against ocular pathology in HSV-1-challenged animals. In summary, we have identified the minimal protective dose of HSV-1 0∆NLS vaccine in mice to prevent HSV-mediated disease and identified candidate proteins that may be useful in the development of a noninfectious prophylactic vaccine against the insidious HSV-1 pathogen.
Collapse
Affiliation(s)
- Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; .,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Grzegorz B Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Amanda N Berube
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - William P Browne
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Brett M Gudgel
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Virginie H Sjoelund
- Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
12
|
Herpes Simplex Virus 2 Counteracts Neurite Outgrowth Repulsion during Infection in a Nerve Growth Factor-Dependent Manner. J Virol 2020; 94:JVI.01370-20. [PMID: 32669337 PMCID: PMC7527038 DOI: 10.1128/jvi.01370-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a prevalent human pathogen that establishes lifelong latency in neurons of the peripheral nervous system. Colonization of neurons is required for HSV-2 persistence and pathogenesis. The viral and cellular factors required for efficient infection of neurons are not fully understood. We show here that nonneuronal cells repel neurite outgrowth of sensory neurons, while HSV-2 infection overcomes this inhibition and, rather, stimulates neurite outgrowth. HSV-2 glycoprotein G and nerve growth factor contribute to this phenotype, which may attract neurites to sites of infection and facilitate virus spread to neurons. Understanding the mechanisms that modulate neurite outgrowth and facilitate HSV-2 infection of neurons might foster the development of therapeutics to reduce HSV-2 colonization of the nervous system and provide insights on neurite outgrowth and regeneration. During primary infection, herpes simplex virus 2 (HSV-2) replicates in epithelial cells and enters neurites to infect neurons of the peripheral nervous system. Growth factors and attractive and repulsive directional cues influence neurite outgrowth and neuronal survival. We hypothesized that HSV-2 modulates the activity of such cues to increase neurite outgrowth. To test this hypothesis, we exposed sensory neurons to nerve growth factor (NGF) and mock- or HSV-2-infected HEK-293T cells, since they express repellents of neurite outgrowth. We show that HEK-293T cells secrete factors that inhibit neurite outgrowth, while infection with HSV-2 strains MS and 333 reduces this repelling phenotype, increasing neurite numbers. The HSV-2-mediated restoration of neurite outgrowth required the activity of NGF. In the absence of infection, however, NGF did not overcome the repulsion mediated by HEK-293T cells. We previously showed that recombinant, soluble glycoprotein G of HSV-2 (rSgG2) binds and enhances NGF activity, increasing neurite outgrowth. However, the effect of gG2 during infection has not been investigated. Therefore, we addressed whether gG2 contributes to overcoming neurite outgrowth repulsion. To do so, we generated viruses lacking gG2 expression and complemented them by exogenous expression of gG2. Overall, our results suggest that HSV-2 infection of nonneuronal cells reduces their repelling effect on neurite outgrowth in an NGF-dependent manner. gG2 contributed to this phenotype, but it was not the only factor. The enhanced neurite outgrowth may facilitate HSV-2 spread from epithelial cells into neurons expressing NGF receptors and increase HSV-2-mediated pathogenesis. IMPORTANCE Herpes simplex virus 2 (HSV-2) is a prevalent human pathogen that establishes lifelong latency in neurons of the peripheral nervous system. Colonization of neurons is required for HSV-2 persistence and pathogenesis. The viral and cellular factors required for efficient infection of neurons are not fully understood. We show here that nonneuronal cells repel neurite outgrowth of sensory neurons, while HSV-2 infection overcomes this inhibition and, rather, stimulates neurite outgrowth. HSV-2 glycoprotein G and nerve growth factor contribute to this phenotype, which may attract neurites to sites of infection and facilitate virus spread to neurons. Understanding the mechanisms that modulate neurite outgrowth and facilitate HSV-2 infection of neurons might foster the development of therapeutics to reduce HSV-2 colonization of the nervous system and provide insights on neurite outgrowth and regeneration.
Collapse
|
13
|
Anthony CL, Bavinger JC, Yeh S. Advances in the Diagnosis and Management of Acute Retinal Necrosis. ANNALS OF EYE SCIENCE 2020; 5:28. [PMID: 33381683 PMCID: PMC7771653 DOI: 10.21037/aes-2019-dmu-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acute retinal necrosis (ARN) is a devastating syndrome characterized by panuveitis, retinal necrosis, and a high rate of retinal detachment that may result in poor visual outcomes if not promptly diagnosed and treated. ARN is most commonly caused by viruses with the herpesvirus family. Etiologies include varicella-zoster virus, herpes simplex virus, and cytomegalovirus, and may be promptly diagnosed by polymerase chain reaction testing of aqueous or vitreous fluid. The true incidence of ARN is not known due to its rarity; as a result, clinical treatment is often guided by retrospective case series, case reports, and expert opinion. Standard of care has evolved over time but currently includes a combination of systemic and intravitreal antiviral in conjunction with topical or oral steroids and surgical therapy as needed. Combination therapy may reduce the rate of severe vision loss and increase the rate of visual acuity gain, although further studies are needed in this area. In particular for patients with mild to moderate disease, combination therapy may reduce the rate of retinal detachment. Adjunctive therapies including oral corticosteroid and prophylactic laser barricade are incompletely studied, but corticosteroid in particular, may reduce inflammation, which also is involved in the severe disease pathogenesis observed in ARN. This review discusses the advances in diagnosis and treatment of ARN, including management with combination antiviral medication and surgical interventions.
Collapse
Affiliation(s)
| | | | - Steven Yeh
- Department of Ophthalmology, Emory Eye Center, Atlanta, GA
| |
Collapse
|
14
|
Herpes Simplex Virus Type 2 Is More Difficult to Neutralize by Antibodies Than Herpes Simplex Virus Type 1. Vaccines (Basel) 2020; 8:vaccines8030478. [PMID: 32867086 PMCID: PMC7563860 DOI: 10.3390/vaccines8030478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
Infections with herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are a global health burden. Besides painful oral or genital lesions in otherwise healthy subjects, both viruses can cause devastating morbidity and mortality in immune-compromised and immune-immature individuals. The latter are particularly susceptible to a disseminated, life-threatening disease. Neutralizing antibodies (NAb) constitute a correlate of protection from disease, and are promising candidates for the prophylactic or therapeutic treatment of severe HSV infections. However, a clinical vaccine trial suggested that HSV-2 might be more resistant to NAbs than HSV-1. In the present study, we investigated the antiviral efficacy of the well-characterized humanized monoclonal antibody (mAb) hu2c against HSV-2, in a NOD/SCID immunodeficiency mouse model. Despite the fact that hu2c recognizes a fully conserved epitope and binds HSV-1 and HSV-2 glycoprotein B with equal affinity, it was much less effective against HSV-2 in vitro and in NOD/SCID mice. Although intravenous antibody treatment prolonged the survival of HSV-2-infected mice, complete protection from death was not achieved. Our data demonstrate that HSV-2 is more resistant to NAbs than HSV-1, even if the same antibody and antigen are concerned, making the development of a vaccine or therapeutic antibodies more challenging.
Collapse
|
15
|
Patel CD, Taylor SA, Mehrbach J, Awasthi S, Friedman HM, Leib DA. Trivalent Glycoprotein Subunit Vaccine Prevents Neonatal Herpes Simplex Virus Mortality and Morbidity. J Virol 2020; 94:e02163-19. [PMID: 32188735 PMCID: PMC7269440 DOI: 10.1128/jvi.02163-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus (HSV) can cause severe infection in neonates leading to mortality and lifelong morbidity. Prophylactic approaches, such as maternal immunization, could prevent neonatal HSV (nHSV) infection by providing protective immunity and preventing perinatal transmission. We previously showed that maternal immunization with a replication-defective HSV vaccine candidate, dl5-29, leads to transfer of virus-specific antibodies into the neonatal circulation and protects against nHSV neurological sequela and mortality (C. D. Patel, I. M. Backes, S. A. Taylor, Y. Jiang, et al., Sci Transl Med, 11:eaau6039, 2019, https://doi.org/10.1126/scitranslmed.aau6039). In this study, we evaluated the efficacy of maternal immunization with an experimental trivalent (gC2, gD2, and gE2) subunit vaccine to protect against nHSV. Using a murine model of nHSV, we demonstrated that maternal immunization with the trivalent vaccine protected offspring against nHSV-disseminated disease and mortality. In addition, offspring of immunized dams were substantially protected from behavioral pathology following HSV infection. This study supports the idea that maternal immunization is a viable strategy for the prevention of neonatal infections.IMPORTANCE Herpes simplex virus is among the most serious infections of newborns. Current antiviral therapies can prevent mortality if infection is recognized early and treated promptly. Most children who survive nHSV develop lifelong neurological and behavioral deficits, despite aggressive antiviral treatment. We propose that maternal immunization could provide protection against HSV for both mother and baby. To this end, we used a trivalent glycoprotein vaccine candidate to demonstrate that offspring are protected from nHSV following maternal immunization. Significantly, this approach protected offspring from long-term behavioral morbidity. Our results emphasize the importance of providing protective immunity to neonates during this window of vulnerability.
Collapse
Affiliation(s)
- Chaya D Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, New Hampshire, USA
| | - Sean A Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Jesse Mehrbach
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harvey M Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
16
|
Koganti R, Yadavalli T, Shukla D. Current and Emerging Therapies for Ocular Herpes Simplex Virus Type-1 Infections. Microorganisms 2019; 7:microorganisms7100429. [PMID: 31658632 PMCID: PMC6843252 DOI: 10.3390/microorganisms7100429] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) is a neurotropic, double-stranded DNA virus that can cause a wide variety of diseases, including many ocular pathologies. It is one of the leading causes of infectious blindness in the United States. Because of its ubiquitous nature and its potential to cause serious ocular maladies, there is a significant need for more effective antiviral therapies against ocular HSV-1. In this review, we discuss the lifecycle of HSV-1 as it pertains to corneal infections and the clinically approved as well as emerging treatments to combat HSV-1 infections. We also highlight some newly identified host targets for the antiviral drug development.
Collapse
Affiliation(s)
- Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL 60612, USA.
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL 60612, USA.
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL 60612, USA.
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
17
|
Koujah L, Suryawanshi RK, Shukla D. Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea. Cell Mol Life Sci 2019; 76:405-419. [PMID: 30327839 PMCID: PMC6349487 DOI: 10.1007/s00018-018-2938-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) is a ubiquitous pathogen that infects a large majority of the human population worldwide. It is also a leading cause of infection-related blindness in the developed world. HSV-1 infection of the cornea begins with viral entry into resident cells via a multistep process that involves interaction of viral glycoproteins and host cell surface receptors. Once inside, HSV-1 infection induces a chronic immune-inflammatory response resulting in corneal scarring, thinning and neovascularization. This leads to development of various ocular diseases such as herpes stromal keratitis, resulting in visual impairment and eventual blindness. HSV-1 can also invade the central nervous system and lead to encephalitis, a relatively common cause of sporadic fetal encephalitis worldwide. In this review, we discuss the pathological processes activated by corneal HSV-1 infection and existing antiviral therapies as well as novel therapeutic options currently under development.
Collapse
Affiliation(s)
- Lulia Koujah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rahul K Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA.
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
18
|
Corrigendum to "Antibody-based immunotherapy of acyclovir resistant ocular herpes simplex virus infection" [Virology 512 (2017) 194-200]. Virology 2019; 526:231-232. [PMID: 30290967 DOI: 10.1016/j.virol.2018.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Induction of herpes simplex virus type 1 cell-to-cell spread inhibiting antibodies by a calcium phosphate nanoparticle-based vaccine. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 16:138-148. [PMID: 30594660 DOI: 10.1016/j.nano.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/23/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022]
Abstract
Herpes simplex viruses 1 and 2 are among the most ubiquitous human infections and persist lifelong in their host. Upon primary infection or reactivation from ganglia, the viruses spread by direct cell-cell contacts (cell-to-cell spread) and thus escape from the host immune response. We have developed a monoclonal antibody (mAb 2c), which inhibits the HSV cell-to-cell spread, thereby protecting from lethal genital infection and blindness in animal models. In the present study we have designed a nanoparticle-based vaccine to induce protective antibody responses exceeding the cell-to-cell spread inhibiting properties of mAb 2c. We used biodegradable calcium phosphate (CaP) nanoparticles coated with a synthetic peptide that represents the conformational epitope on HSV-1 gB recognized by mAb 2c. The CaP nanoparticles additionally contained a TLR-ligand CpGm and were formulated with adjuvants to facilitate the humoral immune response. This vaccine effectively protected mice from lethal HSV-1 infection by inducing cell-to-cell spread inhibiting antibodies.
Collapse
|
20
|
Döhner K, Ramos-Nascimento A, Bialy D, Anderson F, Hickford-Martinez A, Rother F, Koithan T, Rudolph K, Buch A, Prank U, Binz A, Hügel S, Lebbink RJ, Hoeben RC, Hartmann E, Bader M, Bauerfeind R, Sodeik B. Importin α1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons. PLoS Pathog 2018; 14:e1006823. [PMID: 29304174 PMCID: PMC5773220 DOI: 10.1371/journal.ppat.1006823] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/18/2018] [Accepted: 12/16/2017] [Indexed: 01/28/2023] Open
Abstract
Herpesviruses are large DNA viruses which depend on many nuclear functions, and therefore on host transport factors to ensure specific nuclear import of viral and host components. While some import cargoes bind directly to certain transport factors, most recruit importin β1 via importin α. We identified importin α1 in a small targeted siRNA screen to be important for herpes simplex virus (HSV-1) gene expression. Production of infectious virions was delayed in the absence of importin α1, but not in cells lacking importin α3 or importin α4. While nuclear targeting of the incoming capsids, of the HSV-1 transcription activator VP16, and of the viral genomes were not affected, the nuclear import of the HSV-1 proteins ICP4 and ICP0, required for efficient viral transcription, and of ICP8 and pUL42, necessary for DNA replication, were reduced. Furthermore, quantitative electron microscopy showed that fibroblasts lacking importin α1 contained overall fewer nuclear capsids, but an increased proportion of mature nuclear capsids indicating that capsid formation and capsid egress into the cytoplasm were impaired. In neurons, importin α1 was also not required for nuclear targeting of incoming capsids, but for nuclear import of ICP4 and for the formation of nuclear capsid assembly compartments. Our data suggest that importin α1 is specifically required for the nuclear localization of several important HSV1 proteins, capsid assembly, and capsid egress into the cytoplasm, and may become rate limiting in situ upon infection at low multiplicity or in terminally differentiated cells such as neurons. Nuclear pore complexes are highly selective gateways that penetrate the nuclear envelope for bidirectional trafficking between the cytoplasm and the nucleoplasm. Viral and host cargoes have to engage specific transport factors to achieve active nuclear import and export. Like many human and animal DNA viruses, herpesviruses are critically dependent on many functions of the host cell nucleus. Alphaherpesviruses such as herpes simplex virus (HSV) cause many diseases upon productive infection in epithelial cells, fibroblasts and neurons. Here, we asked which nuclear transport factors of the host cells help HSV-1 to translocate viral components into the nucleus for viral gene expression, nuclear capsid assembly, capsid egress into the cytoplasm, and production of infectious virions. Our data show that HSV-1 requires the nuclear import factor importin α1 for efficient replication and virus assembly in fibroblasts and in mature neurons. To our knowledge this is the first time that a specific importin α isoform is shown to be required for herpesvirus infection. Our study fosters our understanding on how the different but highly homologous importin α isoforms could fulfill specific functions in vivo which are only understood for a very limited number of host and viral cargos.
Collapse
Affiliation(s)
- Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Dagmara Bialy
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Fenja Anderson
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Franziska Rother
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Thalea Koithan
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Kathrin Rudolph
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anna Buch
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ute Prank
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anne Binz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Stefanie Hügel
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob C. Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Enno Hartmann
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Rudolf Bauerfeind
- Research Core Unit Laser Microscopy, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
21
|
Buch A, Müller O, Ivanova L, Döhner K, Bialy D, Bosse JB, Pohlmann A, Binz A, Hegemann M, Nagel CH, Koltzenburg M, Viejo-Borbolla A, Rosenhahn B, Bauerfeind R, Sodeik B. Inner tegument proteins of Herpes Simplex Virus are sufficient for intracellular capsid motility in neurons but not for axonal targeting. PLoS Pathog 2017; 13:e1006813. [PMID: 29284065 PMCID: PMC5761964 DOI: 10.1371/journal.ppat.1006813] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/10/2018] [Accepted: 12/14/2017] [Indexed: 02/07/2023] Open
Abstract
Upon reactivation from latency and during lytic infections in neurons, alphaherpesviruses assemble cytosolic capsids, capsids associated with enveloping membranes, and transport vesicles harboring fully enveloped capsids. It is debated whether capsid envelopment of herpes simplex virus (HSV) is completed in the soma prior to axonal targeting or later, and whether the mechanisms are the same in neurons derived from embryos or from adult hosts. We used HSV mutants impaired in capsid envelopment to test whether the inner tegument proteins pUL36 or pUL37 necessary for microtubule-mediated capsid transport were sufficient for axonal capsid targeting in neurons derived from the dorsal root ganglia of adult mice. Such neurons were infected with HSV1-ΔUL20 whose capsids recruited pUL36 and pUL37, with HSV1-ΔUL37 whose capsids associate only with pUL36, or with HSV1-ΔUL36 that assembles capsids lacking both proteins. While capsids of HSV1-ΔUL20 were actively transported along microtubules in epithelial cells and in the somata of neurons, those of HSV1-ΔUL36 and -ΔUL37 could only diffuse in the cytoplasm. Employing a novel image analysis algorithm to quantify capsid targeting to axons, we show that only a few capsids of HSV1-ΔUL20 entered axons, while vesicles transporting gD utilized axonal transport efficiently and independently of pUL36, pUL37, or pUL20. Our data indicate that capsid motility in the somata of neurons mediated by pUL36 and pUL37 does not suffice for targeting capsids to axons, and suggest that capsid envelopment needs to be completed in the soma prior to targeting of herpes simplex virus to the axons, and to spreading from neurons to neighboring cells.
Collapse
Affiliation(s)
- Anna Buch
- Institute of Virology, Hannover Medical School, Hannover, Germany
- NRENNT–Niedersachsen Research Network on Neuroinfectiology, Hannover, Germany
- DZIF—German Center for Infection Research, Hannover, Germany
| | - Oliver Müller
- Institute for Information Processing, Leibniz University, Hannover, Germany
- REBIRTH—From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Lyudmila Ivanova
- Institute of Virology, Hannover Medical School, Hannover, Germany
- NRENNT–Niedersachsen Research Network on Neuroinfectiology, Hannover, Germany
- REBIRTH—From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Dagmara Bialy
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jens B. Bosse
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | - Anja Pohlmann
- Institute of Virology, Hannover Medical School, Hannover, Germany
- REBIRTH—From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Anne Binz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- REBIRTH—From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Maike Hegemann
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | | | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, Germany
- NRENNT–Niedersachsen Research Network on Neuroinfectiology, Hannover, Germany
| | - Bodo Rosenhahn
- Institute for Information Processing, Leibniz University, Hannover, Germany
- REBIRTH—From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| | - Rudolf Bauerfeind
- Research Core Unit Laser Microscopy, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- NRENNT–Niedersachsen Research Network on Neuroinfectiology, Hannover, Germany
- DZIF—German Center for Infection Research, Hannover, Germany
- REBIRTH—From Regenerative Biology to Reconstructive Therapy, Hannover, Germany
| |
Collapse
|