1
|
Luciani M, Krasteva I, Schirone M, D'Onofrio F, Iannetti L, Torresi M, Di Pancrazio C, Perletta F, Valentinuzzi S, Tittarelli M, Pomilio F, D'Alterio N, Paparella A, Del Boccio P. Adaptive strategies of Listeria monocytogenes: An in-depth analysis of the virulent strain involved in an outbreak in Italy through quantitative proteomics. Int J Food Microbiol 2025; 427:110951. [PMID: 39486093 DOI: 10.1016/j.ijfoodmicro.2024.110951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/28/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
Despite the general classification of L. monocytogenes strains as equally virulent by global safety authorities, molecular epidemiology reveals diverse subtypes in food, processing environments, and clinical cases. This study focuses on a highly virulent strain associated with a listeriosis outbreak in Italy in 2022, providing insights through comprehensive foodomics approaches, with a specific emphasis on quantitative proteomics. In particular, the ST155 strain of L. monocytogenes strain was subjected in vitro to growth stress conditions (NaCl 2.4 %, pH 6.2, T 12 °C), mimicking the conditions present in the frankfurter, its original source. Then, the protein expression patterns were compared with those obtained in optimal growth conditions. Through quantitative proteomic analysis and bioinformatic assessment, different proteins associated with virulence during the exponential growth phase were identified. This study unveils unique proteins specific to each environment, providing insights into how L. monocytogenes adapts to conditions that are similar to those encountered in frankfurters. This investigation contributes valuable insights into the adaptive strategies of L. monocytogenes under stressful conditions, with implications for enhancing food safety practices.
Collapse
Affiliation(s)
- Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", 64100 Teramo, Italy; Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", 64100 Teramo, Italy
| | - Maria Schirone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Federica D'Onofrio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", 64100 Teramo, Italy
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", 64100 Teramo, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", 64100 Teramo, Italy
| | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", 64100 Teramo, Italy
| | - Fabrizia Perletta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", 64100 Teramo, Italy
| | - Silvia Valentinuzzi
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", 64100 Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", 64100 Teramo, Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", 64100 Teramo, Italy
| | - Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Piero Del Boccio
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy; Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
2
|
Yang R, Ming Z, Zeng S, Wang Y, Wang Y, Li A. The two-component system CpxA/CpxR regulates pathogenesis and stress adaptability in the poplar canker bacterium Lonsdalea populi. MOLECULAR PLANT PATHOLOGY 2024; 25:e70029. [PMID: 39548717 PMCID: PMC11568244 DOI: 10.1111/mpp.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Bacteria employ two-component systems (TCSs) to rapidly sense and respond to their surroundings often and during plant infection. Poplar canker caused by Lonsdalea populi is an emerging woody bacterial disease that leads to high mortality and poplar plantation losses in China. Nonetheless, the information about the underlying mechanism of pathogenesis remains scarce. Therefore, in this study, we reported the role of a TCS pair CpxA/CpxR in regulating virulence and stress responses in L. populi. The CpxA/R system is essential during infection, flagellum formation, and oxidative stress response. Specifically, the Cpx system affected flagellum formation by controlling the expression of flagellum-related genes. CpxR, which was activated by phosphorylation in the presence of CpxA, participated in the transcriptional regulation of a chaperone sctU and the type III secretion system (T3SS)-related genes, thereby influencing T3SS functions during L. populi infection. Phosphorylated CpxR directly manipulated the transcription of a membrane protein-coding gene yccA and the deletion of yccA resulted in reduced virulence and increased sensitivity to H2O2. Furthermore, we mutated the conserved phosphorylation site of CpxR and found that CpxRD51A could no longer bind to the yccA promoter but could still bind to the sctU promoter. Together, our findings elucidate the roles of the Cpx system in regulating virulence and reactive oxygen species resistance and provide further evidence that the TCS is crucial during infection and stress response.
Collapse
Affiliation(s)
- Ruirui Yang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of ForestryBeijing Forestry UniversityBeijingChina
| | - Zexu Ming
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of ForestryBeijing Forestry UniversityBeijingChina
| | - Sha Zeng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of ForestryBeijing Forestry UniversityBeijingChina
| | - Yanwei Wang
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and BiotechnologyBeijing Forestry UniversityBeijingChina
| | - Yonglin Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of ForestryBeijing Forestry UniversityBeijingChina
| | - Aining Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of ForestryBeijing Forestry UniversityBeijingChina
| |
Collapse
|
3
|
Quilleré A, Darsonval M, Papadochristopoulos A, Amoros A, Nicolas P, Dubois-Brissonnet F. Deciphering the impact of exogenous fatty acids on Listeria monocytogenes at low temperature by transcriptome analysis. Front Microbiol 2024; 15:1441784. [PMID: 39328916 PMCID: PMC11426360 DOI: 10.3389/fmicb.2024.1441784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 09/28/2024] Open
Abstract
Listeria monocytogenes is a ubiquitous and psychrotrophic foodborne pathogen commonly found in raw materials, ready-to-eat products, and food environments. We previously demonstrated that L. monocytogenes can grow faster at low temperature when unsaturated fatty acids (UFA) are present in its environment. This could question the maintenance of food safety for refrigerated foods, especially those reformulated with a higher ratio of UFA versus saturated fatty acids (SFA) to fit with nutritional recommendations. In this study, we used transcriptomics to understand the impact of UFA on the behavior of L. monocytogenes at low temperature. We first demonstrated that fabK, a key gene in SFA synthesis, is up-regulated in the presence of UFA but not SFA at low temperature. L. monocytogenes can thus regulate the synthesis of SFA in its membrane according to the type of FA available in its environment. Interestingly, we also observed up-regulation of genes involved in chemotaxis and flagellar assembly (especially cheY and flaA) in the presence of UFA but not SFA at low temperature. TEM observations confirmed that L. monocytogenes acquired a remarkable phenotype with numerous and long-looped flagella only in the presence of UFA at 5°C but not at 37°C. As flagella are well known to be involved in biofilm formation, this new finding raises questions about the structure and persistence of biofilms settled in refrigerated environments using unsaturated lipid-rich products.
Collapse
Affiliation(s)
- Aurore Quilleré
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Maud Darsonval
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | | | - Alban Amoros
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, Jouy-en-Josas, France
| | - Pierre Nicolas
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | | |
Collapse
|
4
|
Zou Y, Zhou C, Chang X, Zhao F, Ye K. Differential mechanism between Listeria monocytogenes strains with different virulence contaminating ready-to-eat sausages during the simulated gastrointestinal tract. Food Res Int 2024; 186:114312. [PMID: 38729688 DOI: 10.1016/j.foodres.2024.114312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Listeria monocytogenes exhibits varying levels of pathogenicity when entering the host through contaminated food. However, little is known regarding the stress response and environmental tolerance mechanism of different virulence strains to host gastrointestinal (GI) stimuli. This study analyzed the differences in the survival and genes of stress responses among two strains of L. monocytogenes 10403S (serotype 1/2a, highly virulent strain) and M7 (serotype 4a, low-virulence strain) during simulated gastrointestinal digestion. The results indicated that L. monocytogenes 10403S showed greater acid and bile salt tolerance than L. monocytogenes M7, with higher survival rates and less cell deformation and cell membrane permeability during the in vitro digestion. KEGG analysis of the transcriptomes indicated that L. monocytogenes 10403S displayed significant activity in amino acid metabolism, such as glutamate and arginine, associated with acid tolerance. Additionally, L. monocytogenes 10403S demonstrated a higher efficacy in promoting activities that preserve bacterial cell membrane integrity and facilitate flagellar protein synthesis. These findings will contribute valuable practical insights into the tolerance distinctions among different virulence strains of L. monocytogenes in the GI environment.
Collapse
Affiliation(s)
- Yafang Zou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Cong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Xiaochen Chang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Fanwen Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China
| | - Keping Ye
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, Jiangsu, PR China.
| |
Collapse
|
5
|
Yong SS, Lee JI, Kang DH. Airborne survival and stress response in Listeria monocytogenes across different growth temperatures. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133706. [PMID: 38364578 DOI: 10.1016/j.jhazmat.2024.133706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
In the food industry, ensuring food safety during transportation and storage is vital, with temperature regulation preventing spoilage. However, airborne contamination through foodborne pathogens remains a concern. Listeria monocytogenes, a psychrotolerant foodborne pathogen, has been linked to various foodborne outbreaks. Therefore, understanding how its airborne characteristics depend on the growth temperature is imperative. As a result, when the L. monocytogenes was floated in air for 30 and 60 min, the surviving population of 15 °C-grown L. monocytogenes that was suspended in air and attached on the surface was significantly higher than L. monocytogenes grown at 25°C and 37 °C. The fatty acid analysis revealed a significantly higher proportion of shorter chain fatty acids in L. monocytogenes grown at 15 °C compared to those grown at 37 °C. Under aerosolization, L. monocytogenes encountered osmotic and cold stresses regardless of their growth temperature. Transcriptomic analysis showed that stress response related genes, such as oxidative and cold stress response, as well as PTS system related genes were upregulated at 15 °C, resulting in the enhanced resistance to various stresses during aerosolization. These results provide insights into the different responses of aerosolized L. monocytogenes according to the different growth temperatures, highlighting a critical factor in preventing airborne cross-contamination.
Collapse
Affiliation(s)
- So-Seum Yong
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Ik Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
6
|
Liu X, Xia X, Liu Y, Li Z, Shi T, Zhang H, Dong Q. Recent advances on the formation, detection, resistance mechanism, and control technology of Listeria monocytogenes biofilm in food industry. Food Res Int 2024; 180:114067. [PMID: 38395584 DOI: 10.1016/j.foodres.2024.114067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Listeria monocytogenes is an important foodborne pathogen that causes listeriosis, a severe and fatal condition. Biofilms are communities of microorganisms nested within a self-secreted extracellular polymeric substance, and they protect L. monocytogenes from environmental stresses. Biofilms, once formed, can lead to the persistence of L. monocytogenes in processing equipment and are therefore considered to be a major concern for the food industry. This paper briefly introduces the recent advancements on biofilm formation characteristics and detection methods, and focuses on analysis of the mechanism of L. monocytogenes biofilm resistance; Moreover, this paper also summarizes and discusses the existing different techniques of L. monocytogenes biofilm control according to the physical, chemical, biological, and combined strategies, to provide a theoretical reference to aid the choice of effective control technology in the food industry.
Collapse
Affiliation(s)
- Xin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Tianqi Shi
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Hongzhi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
7
|
Wang B, Wang H, Lu X, Zheng X, Yang Z. Recent Advances in Electrochemical Biosensors for the Detection of Foodborne Pathogens: Current Perspective and Challenges. Foods 2023; 12:2795. [PMID: 37509887 PMCID: PMC10379338 DOI: 10.3390/foods12142795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Foodborne pathogens cause many diseases and significantly impact human health and the economy. Foodborne pathogens mainly include Salmonella spp., Escherichia coli, Staphylococcus aureus, Shigella spp., Campylobacter spp. and Listeria monocytogenes, which are present in agricultural products, dairy products, animal-derived foods and the environment. Various pathogens in many different types of food and water can cause potentially life-threatening diseases and develop resistance to various types of antibiotics. The harm of foodborne pathogens is increasing, necessitating effective and efficient methods for early monitoring and detection. Traditional methods, such as real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and culture plate, are time-consuming, labour-intensive and expensive and cannot satisfy the demands of rapid food testing. Therefore, new fast detection methods are urgently needed. Electrochemical biosensors provide consumer-friendly methods to quickly detect foodborne pathogens in food and the environment and achieve extensive accuracy and reproducible results. In this paper, by focusing on various mechanisms of electrochemical transducers, we present a comprehensive overview of electrochemical biosensors for the detection of foodborne pathogens. Furthermore, the review introduces the hazards of foodborne pathogens, risk analysis methods and measures of control. Finally, the review also emphasizes the recent research progress and solutions regarding the use of electrochemical biosensors to detect foodborne pathogens in food and the environment, evaluates limitations and challenges experienced during the development of biosensors to detect foodborne pathogens and discusses future possibilities.
Collapse
Affiliation(s)
- Bo Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Hang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Da F, Wan X, Lin G, Jian J, Cai S. Characterization of fliR-deletion mutant Δ fliR from Vibrio alginolyticus and the evaluation as a live attenuated vaccine. Front Cell Infect Microbiol 2023; 13:1162299. [PMID: 37180437 PMCID: PMC10166871 DOI: 10.3389/fcimb.2023.1162299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Vibrio alginolyticus is the common pathogen affecting various species of marine organisms. It has been demonstrated that fliR is a necessary virulence factor to adhere and infect their hosts for pathogenic bacteria. Frequent disease outbreaks in aquaculture have highlighted the necessity of developing effective vaccines. In the present study, in order to investigate the function of fliR in V.alginolyticus, the fliR deletion mutant ΔfliR was constructed and its biological properties were evaluated, additionally, the differences in gene expression levels between wild-type and ΔfliR were analyzed by transcriptomics. Finally, ΔfliR was used as a live attenuated vaccine to immunize grouper via the intraperitoneal route to evaluate its protective effect. Results show that fliR gene of V. alginolyticus was identified as being 783 bp in length, encoding 260 amino acids, and showing significant similarity to homologs of other Vibrio species. The fliR-deletion mutant ΔfliR of V. alginolyticus was successfully constructed, and its biological phenotype analysis showed no significant differences in growth capacity and extracellular enzyme activity compared to the wild-type. However, a substantial reduction of motility ability was detected in ΔfliR. Transcriptomic analysis revealed that the absence of fliR gene is responsible for a significantly decreased expression of flagellar genes, including flaA, flaB, fliS, flhB and fliM. The fliR-deletion mainly affects the related pathways involved in cell motility, membrane transport, signal transduction, carbohydrate metabolism, and amino acid metabolism in V. alginolyticus. The efficacy of ΔfliR as a candidate of live attenuated vaccine were evaluated by intraperitoneal injection in grouper. The ΔfliR provided the RPS (Relative protection rate) of 67.2% against V. alginolyticus in groupers. The ΔfliR efficiently stimulated antibody production with specific IgM still detected at 42 d post-vaccination, and significantly elevated the activity of antioxidant enzymes like Catalase (CAT), Superoxide dismutase (SOD), and lactate dehydrogenase (LDH) in the serum. The higher expression levels of immune-related genes were observed in the immune tissues of inoculated grouper compared to the control. In conclusion, ΔfliR effectively improved the immunity of inoculated fish. The results suggest that ΔfliR is an effective live attenuated vaccine against vibriosis in in grouper.
Collapse
Affiliation(s)
| | | | | | | | - Shuanghu Cai
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Shenzhen Institute of Guangdong Ocean University, Fisheries College of Guangdong Ocean University, Guangdong, China
| |
Collapse
|
9
|
Calvopina-Chavez DG, Howarth RE, Memmott AK, Pech Gonzalez OH, Hafen CB, Jensen KT, Benedict AB, Altman JD, Burnside BS, Childs JS, Dallon SW, DeMarco AC, Flindt KC, Grover SA, Heninger E, Iverson CS, Johnson AK, Lopez JB, Meinzer MA, Moulder BA, Moulton RI, Russell HS, Scott TM, Shiobara Y, Taylor MD, Tippets KE, Vainerere KM, Von Wallwitz IC, Wagley M, Wiley MS, Young NJ, Griffitts JS. A large-scale genetic screen identifies genes essential for motility in Agrobacterium fabrum. PLoS One 2023; 18:e0279936. [PMID: 36598925 PMCID: PMC9812332 DOI: 10.1371/journal.pone.0279936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/17/2022] [Indexed: 01/05/2023] Open
Abstract
The genetic and molecular basis of flagellar motility has been investigated for several decades, with innovative research strategies propelling advances at a steady pace. Furthermore, as the phenomenon is examined in diverse bacteria, new taxon-specific regulatory and structural features are being elucidated. Motility is also a straightforward bacterial phenotype that can allow undergraduate researchers to explore the palette of molecular genetic tools available to microbiologists. This study, driven primarily by undergraduate researchers, evaluated hundreds of flagellar motility mutants in the Gram-negative plant-associated bacterium Agrobacterium fabrum. The nearly saturating screen implicates a total of 37 genes in flagellar biosynthesis, including genes of previously unknown function.
Collapse
Affiliation(s)
- Diana G. Calvopina-Chavez
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Robyn E. Howarth
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Audrey K. Memmott
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Oscar H. Pech Gonzalez
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Caleb B. Hafen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Kyson T. Jensen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Alex B. Benedict
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Jessica D. Altman
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Brittany S. Burnside
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Justin S. Childs
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Samuel W. Dallon
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Alexa C. DeMarco
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Kirsten C. Flindt
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Sarah A. Grover
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Elizabeth Heninger
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Christina S. Iverson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Abigail K. Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Jack B. Lopez
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - McKay A. Meinzer
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Brook A. Moulder
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Rebecca I. Moulton
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Hyrum S. Russell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Tiana M. Scott
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Yuka Shiobara
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Mason D. Taylor
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Kathryn E. Tippets
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Kayla M. Vainerere
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Isabella C. Von Wallwitz
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Madison Wagley
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Megumi S. Wiley
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Naomi J. Young
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States of America
- * E-mail:
| |
Collapse
|
10
|
D'Onofrio F, Visciano P, Krasteva I, Torresi M, Tittarelli M, Pomilio F, Iannetti L, Di Febo T, Paparella A, Schirone M, Luciani M. Immunoproteome profiling of Listeria monocytogenes under mild acid and salt stress conditions. Proteomics 2022; 22:e2200082. [PMID: 35916071 DOI: 10.1002/pmic.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes is one of the main foodborne pathogens worldwide. Although its response to stress conditions has been extensively studied, it is still present in the food processing environments and is a concern for consumers. To investigate how this microorganism adapts its proteome in mild stress conditions, a combined proteomics and bioinformatics approach was used to characterize the immunogenic protein profile of an ST7 strain that caused severe listeriosis outbreaks in central Italy. Extracted proteins were analyzed by immunoblotting using positive sera against L. monocytogenes and nLC-ESI-MS/MS, and all data were examined by five software to predict subcellular localization. Two hundred and twenty-six proteins were extracted from the bands of interest, 58 of which were classified as potential immunogenic antigens. Compared to control cells grown under optimal conditions, six proteins, some of which under-described, were expressed under mild acid and salt stress conditions and/or at 12°C. In particular, adaptation and shaping of the proteome mainly involved cell motility at 12°C without acid and salt stress, whereas the combination of the same temperature with mild acid and salt stress induced a response concerning carbohydrate metabolism, oxidative stress and DNA repair. Raw data are available via ProteomeXchange with identifier PXD033519. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Federica D'Onofrio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Pierina Visciano
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Marina Torresi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Tiziana Di Febo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Maria Schirone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, Teramo, 64100, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, Teramo, 64100, Italy
| |
Collapse
|
11
|
Liang S, Hu X, Wang R, Fang M, Yu Y, Xiao X. The combination of thymol and cinnamaldehyde reduces the survival and virulence of Listeria monocytogenes on autoclaved chicken breast. J Appl Microbiol 2022; 132:3937-3950. [PMID: 35178822 DOI: 10.1111/jam.15496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
AIMS To reveal the antibacterial mechanism of the combination of thymol and cinnamaldehyde to Listeria monocytogenes ATCC 19115 on autoclaved chicken breast. METHODS AND RESULTS In this study, Listeria monocytogenes ATCC 19115 on autoclaved chicken breast was exposed to the stress of 125 μg/mL thymol and 125 μg/mL cinnamaldehyde, and transcriptome analysis was used to reveal the crucial antibacterial mechanism. According to the results, 1303 significantly differentially expressed genes (DEGs) were identified. Treated by thymol and cinnamaldehyde in combination, pyrimidine and branched-chain amino acids biosynthesis of L. monocytogenes were thwarted which impairs its nucleic acid biosynthesis and intracellular metabolism. The up-regulated DEGs involved in membrane composition and function contributed to membrane repair. Besides, pyruvate catabolism and TCA cycle were restrained which brought about the disturbance of amino acid metabolism. ABC transporters were also perturbed, for instance, the uptake of cysteine, D-methionine and betaine was activated, while the uptake of vitamin, iron and carnitine was repressed. Thus, L. monocytogenes tended to activate PTS, glycolysis, glycerol catabolism, and pentose phosphate pathways to obtain energy to adapt to the hostile condition. Noticeably, DEGs involved in virulence factors were totally down-regulated, including genes devoted to encoding flagella, chemotaxis, biofilm formation, internalin as well as virulence gene clusters. CONCLUSIONS The combination of thymol and cinnamaldehyde is effective to reduce the survival and potential virulence of L. monocytogenes on autoclaved chicken breast. SIGNIFICANCE AND IMPACT OF STUDY This work contributes to providing theoretical information for the application and optimization of thymol and cinnamaldehyde in ready-to-eat meat products to inhibit L. monocytogenes.
Collapse
Affiliation(s)
- Siwei Liang
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| | - Xinyi Hu
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| | - Ruifei Wang
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| | - Meimei Fang
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| | - Yigang Yu
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| | - Xinglong Xiao
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangdong Province, Guangzhou City, 510640, China
| |
Collapse
|
12
|
Multiple Copies of flhDC in Paraburkholderia unamae Regulate Flagellar Gene Expression, Motility, and Biofilm Formation. J Bacteriol 2021; 203:e0029321. [PMID: 34543106 DOI: 10.1128/jb.00293-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
FlhDC is a heterohexameric complex that acts as a master regulator of flagellar biosynthesis genes in numerous bacteria. Previous studies have identified a single flhDC operon encoding this complex. However, we found that two flhDC loci are present throughout Paraburkholderia, and two additional flhC copies are also present in Paraburkholderia unamae. Systematic deletion analysis in P. unamae of the different flhDC copies showed that one of the operons, flhDC1, plays the predominant role, with deletion of its genes resulting in a severe inhibition of motility and biofilm formation. Expression analysis using promoter-lacZ fusions and real-time quantitative PCR support the primary role of flhDC1 in flagellar gene regulation, with flhDC2 a secondary contributor. Phylogenetic analysis shows the presence of the flhDC1 and flhDC2 operons throughout Paraburkholderia. In contrast, Burkholderia and other bacteria only carry the copy syntenous with flhDC2. The variations in impact each copy of flhDC has on downstream processes indicate that regulation of FlhDC in P. unamae, and likely other Paraburkholderia species, is regulated at least in part by the presence of multiple copies of these genes. IMPORTANCE Motility is important in the colonization of plant roots by beneficial and pathogenic bacteria, with flagella playing essential roles in host cell adhesion, entrance, and biofilm formation. Flagellar biosynthesis is energetically expensive. Its complex regulation by the FlhDC master regulator is well studied in peritrichous flagella expressing enterics. We report the unique presence throughout Paraburkholderia of multiple copies of flhDC. In P. unamae, the flhDC1 copy showed higher expression and a greater effect on swim motility, flagellar development, and regulation of downstream genes, than the flhDC2 copy that is syntenous to flhDC in Escherichia coli and pathogenic Burkholderia spp. The flhDC genes have evolved differently in these plant-growth-promoting bacteria, giving an additional layer of complexity in gene regulation by FlhDC.
Collapse
|
13
|
Anuntakarun S, Sawaswong V, Jitvaropas R, Praianantathavorn K, Poomipak W, Suputtamongkol Y, Chirathaworn C, Payungporn S. Comparative genome characterization of Leptospira interrogans from mild and severe leptospirosis patients. Genomics Inform 2021; 19:e31. [PMID: 34638178 PMCID: PMC8510873 DOI: 10.5808/gi.21037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/12/2021] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis is a zoonotic disease caused by spirochetes from the genus Leptospira. In Thailand, Leptospira interrogans is a major cause of leptospirosis. Leptospirosis patients present with a wide range of clinical manifestations from asymptomatic, mild infections to severe illness involving organ failure. For better understanding the difference between Leptospira isolates causing mild and severe leptospirosis, illumina sequencing was used to sequence genomic DNA in both serotypes. DNA of Leptospira isolated from two patients, one with mild and another with severe symptoms, were included in this study. The paired-end reads were removed adapters and trimmed with Q30 score using Trimmomatic. Trimmed reads were constructed to contigs and scaffolds using SPAdes. Cross-contamination of scaffolds was evaluated by ContEst16s. Prokka tool for bacterial annotation was used to annotate sequences from both Leptospira isolates. Predicted amino acid sequences from Prokka were searched in EggNOG and David gene ontology database to characterize gene ontology. In addition, Leptospira from mild and severe patients, that passed the criteria e-value < 10e-5 from blastP against virulence factor database, were used to analyze with Venn diagram. From this study, we found 13 and 12 genes that were unique in the isolates from mild and severe patients, respectively. The 12 genes in the severe isolate might be virulence factor genes that affect disease severity. However, these genes should be validated in further study.
Collapse
Affiliation(s)
- Songtham Anuntakarun
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rungrat Jitvaropas
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | | | - Witthaya Poomipak
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yupin Suputtamongkol
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.,Research Unit of Systems Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Smallets S, Kendall MM. Post-transcriptional regulation in attaching and effacing pathogens: integration of environmental cues and the impact on gene expression and host interactions. Curr Opin Microbiol 2021; 63:238-243. [PMID: 34450388 DOI: 10.1016/j.mib.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022]
Abstract
To establish infection, enteric pathogens integrate environmental cues to navigate the gastrointestinal tract and precisely control expression of virulence determinants. Emerging data indicate that post-transcriptional and post-translational gene regulation plays a key role in virulence regulation and pathogen adaptation to the host environment. Here, we highlight recent studies that reveal how physiologically relevant signals initiate post-transcriptional and post-translational regulatory circuits and the impact on virulence gene expression in the attaching and effacing pathogens, enteropathogenic Escherichia coli, enterohemorrhagic E. coli O157:H7, and Citrobacter rodentium.
Collapse
Affiliation(s)
- Sarah Smallets
- Department of Biology, University of Virginia, 485 McCormick Rd., Charlottesville, VA, 22904, USA
| | - Melissa M Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, 1340 Jefferson Park Ave., Charlottesville, VA, 22908, USA.
| |
Collapse
|
15
|
Hu H, Santiveri M, Wadhwa N, Berg HC, Erhardt M, Taylor NMI. Structural basis of torque generation in the bi-directional bacterial flagellar motor. Trends Biochem Sci 2021; 47:160-172. [PMID: 34294545 DOI: 10.1016/j.tibs.2021.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
The flagellar stator unit is an oligomeric complex of two membrane proteins (MotA5B2) that powers bi-directional rotation of the bacterial flagellum. Harnessing the ion motive force across the cytoplasmic membrane, the stator unit operates as a miniature rotary motor itself to provide torque for rotation of the flagellum. Recent cryo-electron microscopic (cryo-EM) structures of the stator unit provided novel insights into its assembly, function, and subunit stoichiometry, revealing the ion flux pathway and the torque generation mechanism. Furthermore, in situ cryo-electron tomography (cryo-ET) studies revealed unprecedented details of the interactions between stator unit and rotor. In this review, we summarize recent advances in our understanding of the structure and function of the flagellar stator unit, torque generation, and directional switching of the motor.
Collapse
Affiliation(s)
- Haidai Hu
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mònica Santiveri
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Navish Wadhwa
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA
| | - Howard C Berg
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Rowland Institute at Harvard, Harvard University, 100 Edwin H. Land Blvd, Cambridge, MA 02142, USA
| | - Marc Erhardt
- Institut für Biologie/Bakterienphysiologie, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
16
|
Jia T, Liu B, Mu H, Qian C, Wang L, Li L, Lu G, Zhu W, Guo X, Yang B, Huang D, Feng L, Liu B. A Novel Small RNA Promotes Motility and Virulence of Enterohemorrhagic Escherichia coli O157:H7 in Response to Ammonium. mBio 2021; 12:e03605-20. [PMID: 33688013 PMCID: PMC8092317 DOI: 10.1128/mbio.03605-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli serotype O157:H7 (O157) is a critical, foodborne, human intestinal pathogen that causes severe acute hemorrhagic diarrhea, abdominal cramping, and even death. Small RNAs (sRNAs) are noncoding regulatory molecules that sense environmental changes and trigger various virulence-related signaling pathways; however, few such sRNAs have been identified in O157. Here, we report a novel sRNA, EsrF that senses high ammonium concentrations in the colon and enhances O157 pathogenicity by promoting bacterial motility and adhesion to host cells. Specifically, EsrF was found to directly interact with the 5' untranslated regions of the flagellar biosynthetic gene, flhB, mRNA and increase its abundance, thereby upregulating expression of essential flagellar genes, including flhD, flhC, fliA, and fliC, leading to elevated O157 motility and virulence. Meanwhile, an infant rabbit model of O157 infection showed that deletion of esrF and flhB significantly attenuates O157 pathogenicity. Furthermore, NtrC-the response regulator of the NtrC/B two-component system-was found to exert direct, negative regulation of esrF expression. Meanwhile, high ammonium concentrations in the colon release the inhibitory effect of NtrC on esrF, thereby enhancing its expression and subsequently promoting bacterial colonization in the host colon. Our work reveals a novel, sRNA-centered, virulence-related signaling pathway in O157 that senses high ammonium concentrations. These findings provide novel insights for future research on O157 pathogenesis and targeted treatment strategies.IMPORTANCE The process by which bacteria sense environmental cues to regulate their virulence is complex. Several studies have focused on regulating the expression of the locus of enterocyte effacement pathogenicity island in the typical gut pathogenic bacterium, O157. However, few investigations have addressed the regulation of other virulence factors in response to intestinal signals. In this study, we report our discovery of a novel O157 sRNA, EsrF, and demonstrate that it contributed to bacterial motility and virulence in vitro and in vivo through the regulation of bacterial flagellar synthesis. Furthermore, we show that high ammonium concentrations in the colon induced esrF expression to promote bacterial virulence by releasing the repression of esrF by NtrC. This study highlights the importance of sRNA in regulating the motility and pathogenicity of O157.
Collapse
Affiliation(s)
- Tianyuan Jia
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Huiqian Mu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Chengqian Qian
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Lu Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Linxing Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Gege Lu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Wenxuan Zhu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
| | - Xi Guo
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Bin Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Di Huang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Lu Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Bin Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People’s Republic of China
- Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| |
Collapse
|
17
|
Melian C, Castellano P, Segli F, Mendoza LM, Vignolo GM. Proteomic Analysis of Listeria monocytogenes FBUNT During Biofilm Formation at 10°C in Response to Lactocin AL705. Front Microbiol 2021; 12:604126. [PMID: 33584610 PMCID: PMC7880126 DOI: 10.3389/fmicb.2021.604126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/06/2021] [Indexed: 12/04/2022] Open
Abstract
Listeria monocytogenes is one of the major food-related pathogens and is able to survive and multiply under different stress conditions. Its persistence in industrial premises and foods is partially due to its ability to form biofilm. Thus, as a natural strategy to overcome L. monocytogenes biofilm formation, the treatment with lactocin AL705 using a sublethal dose (20AU/ml) was explored. The effect of the presence of the bacteriocin on the biofilm formation at 10°C of L. monocytogenes FBUNT was evaluated for its proteome and compared to the proteomes of planktonic and sessile cells grown at 10°C in the absence of lactocin. Compared to planktonic cells, adaptation of sessile cells during cold stress involved protein abundance shifts associated with ribosomes function and biogenesis, cell membrane functionality, carbohydrate and amino acid metabolism, and transport. When sessile cells were treated with lactocin AL705, proteins’ up-regulation were mostly related to carbohydrate metabolism and nutrient transport in an attempt to compensate for impaired energy generation caused by bacteriocin interacting with the cytoplasmic membrane. Notably, transport systems such as β-glucosidase IIABC (lmo0027), cellobiose (lmo2763), and trehalose (lmo1255) specific PTS proteins were highly overexpressed. In addition, mannose (lmo0098), a specific PTS protein indicating the adaptive response of sessile cells to the bacteriocin, was downregulated as this PTS system acts as a class IIa bacteriocin receptor. A sublethal dose of lactocin AL705 was able to reduce the biofilm formation in L. monocytogenes FBUNT and this bacteriocin induced adaptation mechanisms in treated sessile cells. These results constitute valuable data related to specific proteins targeting the control of L. monocytogenes biofilm upon bacteriocin treatment.
Collapse
Affiliation(s)
- Constanza Melian
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Patricia Castellano
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Franco Segli
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Lucía M Mendoza
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Graciela Margarita Vignolo
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
18
|
Decreased Biofilm Formation Ability of a Multidrug-Resistant Pseudomonas aeruginosa Strain After Exposure to a Simulated Microgravity Environment. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The refractory infection induced by multidrug-resistant (MDR) Pseudomonas aeruginosa has become one of the most urgent problems in hospitals. The biofilms formed by P. aeruginosa increase its resistance to antibiotics. A simulated microgravity (SMG) environment provides a platform to understand the factors affecting biofilm formation in bacteria. Objectives: This study aimed to investigate the SMG effects on MDR P. aeruginosa biofilm formation and explore the relevant mechanisms. Methods: In this study, a clinostat was used to simulate a microgravity (MG) environment. The motility and biofilm formation ability of MDR P. aeruginosa were observed using the swimming test and the crystal violet staining method, respectively. The underlying mechanism of phenotypic changes was further investigated by comparative transcriptomic analysis. Results: Multidrug-resistant P. aeruginosa grown under the SMG condition exhibited decreased swimming motility and biofilm formation ability compared to those under the normal gravity (NG) condition. Further analysis revealed that the decreased swimming motility and biofilm formation ability could be attributed to the downregulated expression of genes responsible for flagellar synthesis (flhB, fliQ, and fliR) and type IV pili biogenesis (pilDEXY1Y2VW). Conclusions: This is the first study to perform experiments on MDR P. aeruginosa under the SMG condition. It will be beneficial to understand the mechanism of MDR P. aeruginosa biofilm formation and develop new treatment strategies for infectious diseases induced by MDR P. aeruginosa in the future.
Collapse
|
19
|
Fan Y, Qiao J, Lu Z, Fen Z, Tao Y, Lv F, Zhao H, Zhang C, Bie X. Influence of different factors on biofilm formation of Listeria monocytogenes and the regulation of cheY gene. Food Res Int 2020; 137:109405. [PMID: 33233092 DOI: 10.1016/j.foodres.2020.109405] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/09/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022]
Abstract
In a food-processing environment, bacterial cells often adhere to surfaces and form biofilms to protect themselves from external adverse influences. Our study aimed to identify the influence of environmental factors and cell properties on Listeria monocytogenes biofilm formation. Biofilm formation was quantified through measuring the optical density at 590 nm (OD590 nm) after crystal violet staining. Neutral pH and 37oC were beneficial for biofilm formation whereas the influence of glucose (0.0-1.0%) and sodium chloride (0.0-1.0%) were strain-dependent. In general, the addition of sodium chloride and glucose increased biofilm formation in most strains compared to that in controls with no sodium chloride or glucose added. Bacteria with strong biofilm-forming capacity always produced large amounts of biofilm in most instances. Biofilm formation positively correlated with the cell surface hydrophobicity and motility but was independent from planktonic cell growth. The expression of flagella-related flaA, motB, and the two-component chemotactic system cheA/Y genes in biofilm cells increased compared to that in planktonic cells. Meanwhile, a cheY knockout mutant was constructed, and decreased biofilm-formation ability along with reduced cell-surface hydrophobicity were found in the non-motile mutant. Furthermore, the cheY knockout mutant showed no change in growth, and pH susceptibility compared to that in the wild-type strain.
Collapse
Affiliation(s)
- Yun Fan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jiaju Qiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhiyang Fen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
20
|
Cold-shock proteins affect desiccation tolerance, biofilm formation and motility in Listeria monocytogenes. Int J Food Microbiol 2020; 329:108662. [DOI: 10.1016/j.ijfoodmicro.2020.108662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022]
|
21
|
Kragh ML, Truelstrup Hansen L. Initial Transcriptomic Response and Adaption of Listeria monocytogenes to Desiccation on Food Grade Stainless Steel. Front Microbiol 2020; 10:3132. [PMID: 32038566 PMCID: PMC6987299 DOI: 10.3389/fmicb.2019.03132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes survives exposure to a variety of stresses including desiccation in the food industry. Strand-specific RNA sequencing was applied to analyze changes in the transcriptomes of two strains of L. monocytogenes (Lm 568 and Lm 08-5578) during desiccation [15°C, 43% relative humidity (RH)] on food grade stainless steel surfaces over 48 h to simulate a weekend with no food production. Both strains showed similar survival during desiccation with a 1.8-2 Log CFU/cm2 reduction after 48 h. Analysis of differentially expressed (DE) genes (>twofold, adjusted p-value <0.05) revealed that the initial response to desiccation was established after 6 h and remained constant with few new genes being DE after 12, 24, and 48 h. A core of 81 up- and 73 down-regulated DE genes were identified as a shared, strain independent response to desiccation. Among common upregulated genes were energy and oxidative stress related genes e.g., qoxABCD (cytochrome aa3) pdhABC (pyruvate dehydrogenase complex) and mntABCH (manganese transporter). Common downregulated genes related to anaerobic growth, proteolysis and the two component systems lmo1172/lmo1173 and cheA/cheY, which are involved in cold growth and flagellin production, respectively. Both strains upregulated additional genes involved in combatting oxidative stress and reactive oxygen species (ROS), including sod (superoxide dismutase), kat (catalase), tpx (thiol peroxidase) and several thioredoxins including trxAB, lmo2390 and lmo2830. Osmotic stress related genes were also upregulated in both strains, including gbuABC (glycine betaine transporter) and several chaperones clpC, cspA, and groE. Significant strain differences were also detected with the food outbreak strain Lm 08-5578 differentially expressing 1.9 × more genes (726) compared to Lm 568 (410). Unique to Lm 08-5578 was a significant upregulation of the expression of the alternative transcription factor σB and its regulon. A number of long antisense transcripts (lasRNA) were upregulated during desiccation including anti0605, anti0936, anti1846, and anti0777, with the latter controlling flagellum biosynthesis and possibly the downregulation of motility genes observed in both strains. This exploration of the transcriptomes of desiccated L. monocytogenes provides further understanding of how this bacterium encounters and survives the stress faced when exposed to dry conditions in the food industry.
Collapse
|
22
|
Osman KM, Kappell AD, Fox EM, Orabi A, Samir A. Prevalence, Pathogenicity, Virulence, Antibiotic Resistance, and Phylogenetic Analysis of Biofilm-Producing Listeria monocytogenes Isolated from Different Ecological Niches in Egypt: Food, Humans, Animals, and Environment. Pathogens 2019; 9:E5. [PMID: 31861483 PMCID: PMC7168649 DOI: 10.3390/pathogens9010005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Serious outbreaks of foodborne disease have been caused by Listeria monocytogenes found in retail delicatessens and the severity of disease is significant, with high hospitalization and mortality rates. Little is understood about the formidable public health threat of L. monocytogenes in all four niches, humans, animals, food, and environment, in Egypt. This study analyzed the presence of L. monocytogenes collected from the four environmental niches and bioinformatics analysis was implemented to analyze and compare the data. PCR was used to detect virulence genes encoded by pathogenicity island (LIPI-1). prfA amino acid substation that causes constitutive expression of virulence was common in 77.7% of isolates. BLAST analysis did not match other isolates in the NCBI database, suggesting this may be a characteristic of the region associated with these isolates. A second group included the NH1 isolate originating in China, and BLAST analysis showed this prfA allele was shared with isolates from other global locations, such as Europe and North America. Identification of possible links and transmission pathways between the four niches helps to decrease the risk of disease in humans, to take more specific control measures in the context of disease prevention, to limit economic losses associated with food recalls, and highlights the need for treatment options.
Collapse
Affiliation(s)
- Kamelia M. Osman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt; (A.O.); (A.S.)
| | - Anthony D. Kappell
- Water Quality Center, Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA;
| | - Edward M. Fox
- Department of Applied Sciences, North Umbria University, Newcastle upon Tyne NE1 2SU, UK;
| | - Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt; (A.O.); (A.S.)
| | - Ahmed Samir
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt; (A.O.); (A.S.)
| |
Collapse
|
23
|
Tandem mass tag-based quantitative proteomic analysis reveal the inhibition mechanism of thyme essential oil against flagellum of Listeria monocytogenes. Food Res Int 2019; 125:108508. [DOI: 10.1016/j.foodres.2019.108508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/03/2019] [Accepted: 06/21/2019] [Indexed: 11/23/2022]
|