1
|
Munir Ahamed J, Dahms HU, Huang YL. Heavy metal tolerance, and metal biosorption by exopolysaccharides produced by bacterial strains isolated from marine hydrothermal vents. CHEMOSPHERE 2024; 351:141170. [PMID: 38219989 DOI: 10.1016/j.chemosphere.2024.141170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
The present study highlights heavy metal tolerance, EPS production, and biosorption capacity of four hydrothermal vent bacterial strains, namely Exiguobacterium aquaticum, Mammaliicoccus sciuri, Micrococcus luteus, and Jeotgalicoccus huakuii against As, Cd, Cr, Cu, Co, Pb and Ni. The biosorption assay showed high removal efficiency of As (83%) by E. aquaticum, Cd (95%) by M. sciuri, Cu (94%) by M. luteus, and Ni (89%) by J. huakuii and their produced EPS with these metals in aqueous solution were 84%, 85%, 98%, and 91%, respectively. The maximum EPS yield was attained by optimized medium composition consisting of 1% Xylose, and 1% NaCl at pH 7. In metal-amended conditions, the four bacterial strains showed induced EPS production in the initial concentrations. SEM with EDX and CLSM images showed that the growth and EPS production of bacterial strains were affected by metal ion concentrations. A phenol sulphuric acid method and BCA assay were used to identify both the carbohydrate and total protein content of four extracted EPS. A DPPH assay revealed that EPS influences free radical scavenging and has a highly enhanced synergistic effect with its antioxidant activity. FT-IR analysis of four extracted EPS showed the shifting of peaks in the functional groups of EPS before and after adsorption of metal ions. At pH 5 and after 60 min contact time metal removal efficiency and adsorption capacity increased as calculated for As, Cd, Cu, and Ni by four extracted EPS: (86%, 20 mg/g), (74%, 19 mg/g), (94%, 60 mg/g) and (89%, 32 mg/g) and (89%, 16 mg/g), (85%, 16 mg/g), (96%, 22 mg/g) and (91%, 16 mg/g), respectively. The Langmuir compared to the Freundlich model was found to better represent the adsorption by EPS providing maximum adsorption capacities for As (34.65 mg/g), Cd (52.88 mg/g), Cu (24.91 mg/g), and Ni (58.38 mg/g).
Collapse
Affiliation(s)
- Johnthini Munir Ahamed
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Yeou Lih Huang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; College of Professional Studies, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Deng W, Zhao Z, Li Y, Cao R, Chen M, Tang K, Wang D, Fan W, Hu A, Chen G, Chen CTA, Zhang Y. Strategies of chemolithoautotrophs adapting to high temperature and extremely acidic conditions in a shallow hydrothermal ecosystem. MICROBIOME 2023; 11:270. [PMID: 38049915 PMCID: PMC10696704 DOI: 10.1186/s40168-023-01712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/27/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Active hydrothermal vents create extreme conditions characterized by high temperatures, low pH levels, and elevated concentrations of heavy metals and other trace elements. These conditions support unique ecosystems where chemolithoautotrophs serve as primary producers. The steep temperature and pH gradients from the vent mouth to its periphery provide a wide range of microhabitats for these specialized microorganisms. However, their metabolic functions, adaptations in response to these gradients, and coping mechanisms under extreme conditions remain areas of limited knowledge. In this study, we conducted temperature gradient incubations of hydrothermal fluids from moderate (pH = 5.6) and extremely (pH = 2.2) acidic vents. Combining the DNA-stable isotope probing technique and subsequent metagenomics, we identified active chemolithoautotrophs under different temperature and pH conditions and analyzed their specific metabolic mechanisms. RESULTS We found that the carbon fixation activities of Nautiliales in vent fluids were significantly increased from 45 to 65 °C under moderately acidic condition, while their heat tolerance was reduced under extremely acidic conditions. In contrast, Campylobacterales actively fixed carbon under both moderately and extremely acidic conditions under 30 - 45 °C. Compared to Campylobacterales, Nautiliales were found to lack the Sox sulfur oxidation system and instead use NAD(H)-linked glutamate dehydrogenase to boost the reverse tricarboxylic acid (rTCA) cycle. Additionally, they exhibit a high genetic potential for high activity of cytochrome bd ubiquinol oxidase in oxygen respiration and hydrogen oxidation at high temperatures. In terms of high-temperature adaption, the rgy gene plays a critical role in Nautiliales by maintaining DNA stability at high temperature. Genes encoding proteins involved in proton export, including the membrane arm subunits of proton-pumping NADH: ubiquinone oxidoreductase, K+ accumulation, selective transport of charged molecules, permease regulation, and formation of the permeability barrier of bacterial outer membranes, play essential roles in enabling Campylobacterales to adapt to extremely acidic conditions. CONCLUSIONS Our study provides in-depth insights into how high temperature and low pH impact the metabolic processes of energy and main elements in chemolithoautotrophs living in hydrothermal ecosystems, as well as the mechanisms they use to adapt to the extreme hydrothermal conditions. Video Abstract.
Collapse
Affiliation(s)
- Wenchao Deng
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China.
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Yufang Li
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Rongguang Cao
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Mingming Chen
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Deli Wang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Wei Fan
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Guangcheng Chen
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Chen-Tung Arthur Chen
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung Taiwan, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China.
| |
Collapse
|
3
|
Arcadi E, Buschi E, Rastelli E, Tangherlini M, De Luca P, Esposito V, Calogero R, Andaloro F, Romeo T, Danovaro R. Novel Insights on the Bacterial and Archaeal Diversity of the Panarea Shallow-Water Hydrothermal Vent Field. Microorganisms 2023; 11:2464. [PMID: 37894122 PMCID: PMC10608945 DOI: 10.3390/microorganisms11102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Current knowledge of the microbial diversity of shallow-water hydrothermal vents is still limited. Recent evidence suggests that these peculiar and heterogeneous systems might host highly diversified microbial assemblages with novel or poorly characterized lineages. In the present work, we used 16S rRNA gene metabarcoding to provide novel insights into the diversity of the bacterial and archaeal assemblages in seawater and sediments of three shallow-water hydrothermal systems of Panarea Island (Tyrrhenian Sea). The three areas were characterized by hot, cold, or intermediate temperatures and related venting activities. Microbial biodiversity in seawater largely differed from the benthic one, both in α-diversity (i.e., richness of amplicon sequence variants-ASVs) and in prokaryotic assemblage composition. Furthermore, at the class level, the pelagic prokaryotic assemblages were very similar among sites, whereas the benthic microbial assemblages differed markedly, reflecting the distinct features of the hydrothermal activities at the three sites we investigated. Our results show that ongoing high-temperature emissions can influence prokaryotic α-diversity at the seafloor, increasing turnover (β-)diversity, and that the intermediate-temperature-venting spot that experienced a violent gas explosion 20 years ago now displays the highest benthic prokaryotic diversity. Overall, our results suggest that hydrothermal vent dynamics around Panarea Island can contribute to an increase in the local heterogeneity of physical-chemical conditions, especially at the seafloor, in turn boosting the overall microbial (γ-)diversity of this peculiar hydrothermal system.
Collapse
Affiliation(s)
- Erika Arcadi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Contrada Porticatello, 29, 98167 Messina, Italy; (E.A.); (R.C.); (F.A.)
| | - Emanuela Buschi
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy
| | - Pasquale De Luca
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Valentina Esposito
- Istituto Nazionale di Oceanografia e di Geofisica Sperimentale—OGS Borgo Grotta Gigante 42/C, 34010 Sgonico, Italy;
| | - Rosario Calogero
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Contrada Porticatello, 29, 98167 Messina, Italy; (E.A.); (R.C.); (F.A.)
| | - Franco Andaloro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Contrada Porticatello, 29, 98167 Messina, Italy; (E.A.); (R.C.); (F.A.)
| | - Teresa Romeo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Via dei Mille 46, 98057 Milazzo, Italy
- National Institute for Environmental Protection and Research, Via dei Mille 46, 98057 Milazzo, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
- National Biodiversity Future Centre (NBFC), 90133 Palermo, Italy
| |
Collapse
|
4
|
Patwardhan S, Phan J, Smedile F, Vetriani C. The Genome of Varunaivibrio sulfuroxidans Strain TC8 T, a Metabolically Versatile Alphaproteobacterium from the Tor Caldara Gas Vents in the Tyrrhenian Sea. Microorganisms 2023; 11:1366. [PMID: 37374867 DOI: 10.3390/microorganisms11061366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Varunaivibrio sulfuroxidans type strain TC8T is a mesophilic, facultatively anaerobic, facultatively chemolithoautotrophic alphaproteobacterium isolated from a sulfidic shallow-water marine gas vent located at Tor Caldara, Tyrrhenian Sea, Italy. V. sulfuroxidans belongs to the family Thalassospiraceae within the Alphaproteobacteria, with Magnetovibrio blakemorei as its closest relative. The genome of V. sulfuroxidans encodes the genes involved in sulfur, thiosulfate and sulfide oxidation, as well as nitrate and oxygen respiration. The genome encodes the genes involved in carbon fixation via the Calvin-Benson-Bassham cycle, in addition to genes involved in glycolysis and the TCA cycle, indicating a mixotrophic lifestyle. Genes involved in the detoxification of mercury and arsenate are also present. The genome also encodes a complete flagellar complex, one intact prophage and one CRISPR, as well as a putative DNA uptake mechanism mediated by the type IVc (aka Tad pilus) secretion system. Overall, the genome of Varunaivibrio sulfuroxidans highlights the organism's metabolic versatility, a characteristic that makes this strain well-adapted to the dynamic environmental conditions of sulfidic gas vents.
Collapse
Affiliation(s)
- Sushmita Patwardhan
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jonathan Phan
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Francesco Smedile
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Costantino Vetriani
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
5
|
Microorganisms for Ginsenosides Biosynthesis: Recent Progress, Challenges, and Perspectives. Molecules 2023; 28:molecules28031437. [PMID: 36771109 PMCID: PMC9921939 DOI: 10.3390/molecules28031437] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Ginsenosides are major bioactive compounds present in the Panax species. Ginsenosides exhibit various pharmaceutical properties, including anticancer, anti-inflammatory, antimetastatic, hypertension, and neurodegenerative disorder activities. Although several commercial products have been presented on the market, most of the current chemical processes have an unfriendly environment and a high cost of downstream processing. Compared to plant extraction, microbial production exhibits high efficiency, high selectivity, and saves time for the manufacturing of industrial products. To reach the full potential of the pharmaceutical resource of ginsenoside, a suitable microorganism has been developed as a novel approach. In this review, cell biological mechanisms in anticancer activities and the present state of research on the production of ginsenosides are summarized. Microbial hosts, including native endophytes and engineered microbes, have been used as novel and promising approaches. Furthermore, the present challenges and perspectives of using microbial hosts to produce ginsenosides have been discussed.
Collapse
|
6
|
Satoh S, Tanaka R, Yokono M, Endoh D, Yabuki T, Tanaka A. Phylogeny analysis of whole protein-coding genes in metagenomic data detected an environmental gradient for the microbiota. PLoS One 2023; 18:e0281288. [PMID: 36730456 PMCID: PMC9894459 DOI: 10.1371/journal.pone.0281288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Environmental factors affect the growth of microorganisms and therefore alter the composition of microbiota. Correlative analysis of the relationship between metagenomic composition and the environmental gradient can help elucidate key environmental factors and establishment principles for microbial communities. However, a reasonable method to quantitatively compare whole metagenomic data and identify the primary environmental factors for the establishment of microbiota has not been reported so far. In this study, we developed a method to compare whole proteomes deduced from metagenomic shotgun sequencing data, and quantitatively display their phylogenetic relationships as metagenomic trees. We called this method Metagenomic Phylogeny by Average Sequence Similarity (MPASS). We also compared one of the metagenomic trees with dendrograms of environmental factors using a comparison tool for phylogenetic trees. The MPASS method correctly constructed metagenomic trees of simulated metagenomes and soil and water samples. The topology of the metagenomic tree of samples from the Kirishima hot springs area in Japan was highly similarity to that of the dendrograms based on previously reported environmental factors for this area. The topology of the metagenomic tree also reflected the dynamics of microbiota at the taxonomic and functional levels. Our results strongly suggest that MPASS can successfully classify metagenomic shotgun sequencing data based on the similarity of whole protein-coding sequences, and will be useful for the identification of principal environmental factors for the establishment of microbial communities. Custom Perl script for the MPASS pipeline is available at https://github.com/s0sat/MPASS.
Collapse
Affiliation(s)
- Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Faculty of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- * E-mail:
| | - Rei Tanaka
- Faculty of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Makio Yokono
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Daiji Endoh
- Department of Radiation Biology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Tetsuo Yabuki
- General Education Department, Hokusei Gakuen University, Sapporo, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Chen X, Tang K, Zhang M, Liu S, Chen M, Zhan P, Fan W, Chen CTA, Zhang Y. Genome-centric insight into metabolically active microbial population in shallow-sea hydrothermal vents. MICROBIOME 2022; 10:170. [PMID: 36242065 PMCID: PMC9563475 DOI: 10.1186/s40168-022-01351-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Geothermal systems have contributed greatly to both our understanding of the functions of extreme life and the evolutionary history of life itself. Shallow-sea hydrothermal systems are ecological intermediates of deep-sea systems and terrestrial springs, harboring unique and complexed ecosystems, which are well-lit and present physicochemical gradients. The microbial communities of deep-sea and terrestrial geothermal systems have been well-studied at the population genome level, yet little is known about the communities inhabiting the shallow-sea hydrothermal systems and how they compare to those inhabiting other geothermal systems. RESULTS Here, we used genome-resolved metagenomic and metaproteomic approaches to probe into the genetic potential and protein expression of microorganisms from the shallow-sea vent fluids off Kueishantao Island. The families Nautiliaceae and Campylobacteraceae within the Epsilonbacteraeota and the Thiomicrospiraceae within the Gammaproteobacteria were prevalent in vent fluids over a 3-year sampling period. We successfully reconstructed the in situ metabolic modules of the predominant populations within the Epsilonbacteraeota and Gammaproteobacteria by mapping the metaproteomic data back to metagenome-assembled genomes. Those active bacteria could use the reductive tricarboxylic acid cycle or Calvin-Benson-Bassham cycle for autotrophic carbon fixation, with the ability to use reduced sulfur species, hydrogen or formate as electron donors, and oxygen as a terminal electron acceptor via cytochrome bd oxidase or cytochrome bb3 oxidase. Comparative metagenomic and genomic analyses revealed dramatic differences between submarine and terrestrial geothermal systems, including microbial functional potentials for carbon fixation and energy conversion. Furthermore, shallow-sea hydrothermal systems shared many of the major microbial genera that were first isolated from deep-sea and terrestrial geothermal systems, while deep-sea and terrestrial geothermal systems shared few genera. CONCLUSIONS The metabolic machinery of the active populations within Epsilonbacteraeota and Gammaproteobacteria at shallow-sea vents can mirror those living at deep-sea vents. With respect to specific taxa and metabolic potentials, the microbial realm in the shallow-sea hydrothermal system presented ecological linkage to both deep-sea and terrestrial geothermal systems. Video Abstract.
Collapse
Affiliation(s)
- Xiaofeng Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China.
| | - Mu Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Shujing Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Mingming Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Peiwen Zhan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Wei Fan
- Ocean College, Zhejiang University, Zhoushan, China
| | - Chen-Tung Arthur Chen
- Institute of Marine Geology and Chemistry, National Sun Yat-Sen University, Taiwan, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Jeske JT, Gallert C. Microbiome Analysis via OTU and ASV-Based Pipelines-A Comparative Interpretation of Ecological Data in WWTP Systems. Bioengineering (Basel) 2022; 9:146. [PMID: 35447706 PMCID: PMC9029325 DOI: 10.3390/bioengineering9040146] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/25/2022] Open
Abstract
Linking community composition and ecosystem function via the cultivation-independent analysis of marker genes, e.g., the 16S rRNA gene, is a staple of microbial ecology and dependent disciplines. The certainty of results, independent of the bioinformatic handling, is imperative for any advances made within the field. In this work, thermophilic anaerobic co-digestion experimental data, together with primary and waste-activated sludge prokaryotic community data, were analyzed with two pipelines that apply different principles when dealing with technical, sequencing, and PCR biases. One pipeline (VSEARCH) employs clustering methods, generating individual operational taxonomic units (OTUs), while the other (DADA2) is based on sequencing error correction algorithms and generates exact amplicon sequence variants (ASVs). The outcomes of both pipelines were compared within the framework of ecological-driven data analysis. Both pipelines provided comparable results that would generally allow for the same interpretations. Yet, the two approaches also delivered community compositions that differed between 6.75% and 10.81% between pipelines. Inconsistencies were also observed linked to biologically driven variability in the samples, which affected the two pipelines differently. These pipeline-dependent differences in taxonomic assignment could lead to different conclusions and interfere with any downstream analysis made for such mis- or not-identified species, e.g., network analysis or predictions of their respective ecosystem service.
Collapse
Affiliation(s)
- Jan Torsten Jeske
- Faculty of Technology, Microbiology-Biotechnology, University of Applied Science Emden/Leer, 26723 Emden, Germany;
| | | |
Collapse
|
9
|
Lv Y, Li Y, Liu X, Xu K. A positive response of ginger root zone and rhizome development to suitable sowing depth. PROTOPLASMA 2022; 259:327-342. [PMID: 34075471 DOI: 10.1007/s00709-021-01647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Sowing depth significantly affects ginger (Zingiber officinale Roscoe) yields, and sowing depth can affect rhizosphere community structure through root exudates. However, the relationship between the reaction process in root zone and ginger rhizome development is unclear. In this study, we investigated the rhizome and root development and rhizosphere environment at different sowing depths (2 cm (SD2), 5 cm (SD5), and 10 cm (SD10)). It was found that SD10 significantly increased ginger yield, which is related to the development of vascular bundles and the expression of aquaporin. PLS-PM analysis found that root length, root absorption capacity, and soil enzymes have the strongest correlation with yield, while root diameter is negatively correlated with yield. Under SD10, the increase of auxin and ethylene content together with the expression of ARF7, LBD16, and PIN1 promoted the development of lateral roots. In addition, SD10 increased the secretion of root organic acids, amino acids, and carbohydrates, which in turn promoted the development of rhizosphere bacteria. The promotion of SD10 on nitrogen cycle and nitrogen fixation ability in turn promoted the development of ginger.
Collapse
Affiliation(s)
- Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, 271018, China
- Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, 271018, China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Yanyan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaohui Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, 271018, China.
- Key Laboratory of Biology of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, 271018, China.
- State Key Laboratory of Crop Biology, Tai'an, 271018, China.
| |
Collapse
|
10
|
A Comprehensive Profile of Antibiotic Resistance Genes in the Water Column of a Shallow-Sea Hydrothermal Vent Ecosystem. SUSTAINABILITY 2022. [DOI: 10.3390/su14031776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antibiotic resistance genes (ARGs) became an emerging contaminant, and were found to accumulate in natural and man-made environments. A comprehensive understanding of the diversity and abundance of ARGs in pristine environments is critical for defining the baseline levels of environmental ARGs. However, there is limited information available on the ARG profiles of pristine environments, especially for shallow-sea hydrothermal vents ecosystems. Here, we combined 16S rRNA gene full-length amplicon sequencing and high-throughput quantitative PCR (HT-qPCR) to study the bacterial communities, and ARG abundance and diversity in the shallow-sea hydrothermal vent ecosystem of the Kueishantao Islet. The results of the 16S rRNA gene amplicon sequencing showed that several sulfur-cycling related bacterial genera, including Thiomicrorhabdus, Thioreductor, Sulfurovum, Sulfurimonas and Lebetimonas, dominated in the water column of the shallow-sea system. Temperature was the significant factor shaping the bacterial communities. The results of HT-qPCR analysis showed that the Kueishantao shallow-sea system harbored the lowest diversity (average 10 ARG subtypes) and abundance (average 1.0 × 10−3 copy per bacterial cell) of ARGs compared with other pristine (i.e., Tibet lake sediments, marine water and sediments) and anthropogenic-disturbed (i.e., drinking water reservoirs, urban ponds and wastewater treatment plants) environments. Procrustes analysis demonstrated a concordant pattern between the compositions of bacterial communities and ARGs in the shallow-sea system, while variation partition analysis revealed that the shared effects of physicochemical and bacterial communities explained >80% of the variation in the composition of ARGs. These results suggest that the vent bacterial communities and local environmental factors played an important role in shaping the distribution of the ARG profiles. Our study provides the first comprehensive overview of the background level of ARGs in a shallow-sea hydrothermal vent ecosystem.
Collapse
|
11
|
Transformation, Fluxes and Impacts of Dissolved Metals from Shallow Water Hydrothermal Vents on Nearby Ecosystem Offshore of Kueishantao (NE Taiwan). SUSTAINABILITY 2022. [DOI: 10.3390/su14031754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrothermal vents are one of the important sources of major or trace elements in the ocean. The elemental fluxes, however, may be dynamic due to coastal processes and hydrothermal plumes, especially in shallow-water hydrothermal vents. We collected water samples by using the trace-metal clean technique inside and outside two shallow-water hydrothermal vents (white vent: low temperature, high pH; and yellow vent: high temperature, low pH) off Kueishantao Islet, Taiwan, China via SCUBA divers. We analyzed these samples for their hydro-chemical parameters and dissolved elements (Fe, Mn, Mg, V, Cu, and Mo) thereafter. Our results show that dissolved metals’ concentrations were significantly different between the two vents, with higher Mn and Fe in the White Vent than in the Yellow Vent, likely due to the decreased affinity of the dissolved metals for particles in the white vent. We estimated the plume fluxes of dissolved metals from the hydrothermal mouth by multiplying in situ hydrothermal discharge flowrates with metals’ concentrations inside the vents, which were: 1.09~7.02 × 104 kg Mg, 0.10~1.23 kg Fe, 0.08~28 kg Mn, 33.4~306 g V, 2.89~77.7 g Cu, and 54.3~664 g Mo, annually. The results further indicate that such plumes probably have impacted nearby seawater due to coastal currents and particle desorption during transport. Furthermore, the concentrations of biogenic elements could be further modified in seawater, and potentially impact nearby ecosystems on a larger scale. Our study provides information with which to further understand metal redeployment in submarine shallow nearby ecosystems.
Collapse
|
12
|
Ubiquitous Occurrence of a Biogenic Sulfonate in Marine Environment. SUSTAINABILITY 2022. [DOI: 10.3390/su14031240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biogenic sulfonate 2,3-dihydroxypropane-1-sulfonate (DHPS) is a vital metabolic currency between phytoplankton and bacteria in marine environments. However, the occurrence and quantification of DHPS in the marine environment has not been well-characterized. In this study, we used targeted metabolomics to determine the concentration of DHPS in the Pearl River Estuary, an in situ costal mesocosm ecosystem and a hydrothermal system off Kueishantao Island. The results suggested that DHPS occurred ubiquitously in the marine environment, even in shallow-sea hydrothermal systems, at a level comparable to that of dimethylsulfoniopropionate. The concentration of DHPS was closely related to phytoplankton community composition and was especially associated with the abundance of diatoms. Epsilonproteobacteria were considered as the most likely producers of DHPS in shallow-sea hydrothermal systems. This work expands current knowledge on sulfonates and presents a new viewpoint on the sulfur cycle in hydrothermal systems.
Collapse
|
13
|
Damayanti D, Wulandari LA, Bagaskoro A, Rianjanu A, Wu HS. Possibility Routes for Textile Recycling Technology. Polymers (Basel) 2021; 13:3834. [PMID: 34771390 PMCID: PMC8588244 DOI: 10.3390/polym13213834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/02/2022] Open
Abstract
The fashion industry contributes to a significant environmental issue due to the increasing production and needs of the industry. The proactive efforts toward developing a more sustainable process via textile recycling has become the preferable solution. This urgent and important need to develop cheap and efficient recycling methods for textile waste has led to the research community's development of various recycling methods. The textile waste recycling process can be categorized into chemical and mechanical recycling methods. This paper provides an overview of the state of the art regarding different types of textile recycling technologies along with their current challenges and limitations. The critical parameters determining recycling performance are summarized and discussed and focus on the current challenges in mechanical and chemical recycling (pyrolysis, enzymatic hydrolysis, hydrothermal, ammonolysis, and glycolysis). Textile waste has been demonstrated to be re-spun into yarn (re-woven or knitted) by spinning carded yarn and mixed shoddy through mechanical recycling. On the other hand, it is difficult to recycle some textiles by means of enzymatic hydrolysis; high product yield has been shown under mild temperatures. Furthermore, the emergence of existing technology such as the internet of things (IoT) being implemented to enable efficient textile waste sorting and identification is also discussed. Moreover, we provide an outlook as to upcoming technological developments that will contribute to facilitating the circular economy, allowing for a more sustainable textile recycling process.
Collapse
Affiliation(s)
- Damayanti Damayanti
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia; (L.A.W.); (A.B.)
| | - Latasya Adelia Wulandari
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia; (L.A.W.); (A.B.)
| | - Adhanto Bagaskoro
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia; (L.A.W.); (A.B.)
| | - Aditya Rianjanu
- Department of Materials Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan 35365, Indonesia;
| | - Ho-Shing Wu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
| |
Collapse
|
14
|
Nitrospina-like Bacteria Are Dominant Potential Mercury Methylators in Both the Oyashio and Kuroshio Regions of the Western North Pacific. Microbiol Spectr 2021; 9:e0083321. [PMID: 34494859 PMCID: PMC8557936 DOI: 10.1128/spectrum.00833-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly neurotoxic methylmercury (MeHg) accumulates in marine organisms, thereby negatively affecting human and environmental health. Recent studies have revealed that oceanic prokaryotes harboring the hgcAB gene pair are involved in Hg methylation. Presently, little is known about the distribution and phylogeny of these genes in distinct oceanic regions of the western North Pacific. In this study, we used metagenomics to survey the distribution of hgcAB genes in the seawater columns of the subarctic Oyashio region and the subtropical Kuroshio region. The hgcAB genes were detected in the MeHg-rich offshore mesopelagic layers of both the Oyashio region, which is a highly productive area in the western North Pacific, and the Kuroshio region, which has low productivity. Comparative analysis revealed that hgcAB genes belonging to the Nitrospina-like lineage were dominant in the MeHg-rich mesopelagic layers of both regions. These results indicate that Nitrospina-like bacteria are the dominant Hg methylators in the mesopelagic layers throughout the western North Pacific. IMPORTANCE MeHg is highly neurotoxic and accumulates in marine organisms. Thus, understanding MeHg production in seawater is critical for environmental and human health. Recent studies have shown that microorganisms harboring mercury-methylating genes (hgcA and hgcB) are involved in MeHg production in several marine environments. Knowing the distribution and phylogeny of hgcAB genes in seawater columns can facilitate assessment of microbial MeHg production in the ocean. We report that hgcAB genes affiliated with the microaerophilic Nitrospina lineage were detected in the MeHg-rich mesopelagic layers of two hydrologically distinct oceanic regions of the western North Pacific. This finding facilitates understanding of the microbial Hg methylation and accumulation in seawater columns of the western North Pacific.
Collapse
|
15
|
Han Y, Jiao N, Zhang Y, Zhang F, He C, Liang X, Cai R, Shi Q, Tang K. Opportunistic bacteria with reduced genomes are effective competitors for organic nitrogen compounds in coastal dinoflagellate blooms. MICROBIOME 2021; 9:71. [PMID: 33762013 PMCID: PMC7992965 DOI: 10.1186/s40168-021-01022-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/02/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Phytoplankton blooms are frequent events in coastal areas and increase the production of organic matter that initially shapes the growth of opportunistic heterotrophic bacteria. However, it is unclear how these opportunists are involved in the transformation of dissolved organic matter (DOM) when blooms occur and the subsequent impacts on biogeochemical cycles. RESULTS We used a combination of genomic, proteomic, and metabolomic approaches to study bacterial diversity, genome traits, and metabolic responses to assess the source and lability of DOM in a spring coastal bloom of Akashiwo sanguinea. We identified molecules that significantly increased during bloom development, predominantly belonging to amino acids, dipeptides, lipids, nucleotides, and nucleosides. The opportunistic members of the bacterial genera Polaribacter, Lentibacter, and Litoricola represented a significant proportion of the free-living and particle-associated bacterial assemblages during the stationary phase of the bloom. Polaribacter marinivivus, Lentibacter algarum, and Litoricola marina were isolated and their genomes exhibited streamlining characterized by small genome size and low GC content and non-coding densities, as well as a smaller number of transporters and peptidases compared to closely related species. However, the core proteomes identified house-keeping functions, such as various substrate transporters, peptidases, motility, chemotaxis, and antioxidants, in response to bloom-derived DOM. We observed a unique metabolic signature for the three species in the utilization of multiple dissolved organic nitrogen compounds. The metabolomic data showed that amino acids and dipeptides (such as isoleucine and proline) were preferentially taken up by P. marinivivus and L. algarum, whereas nucleotides and nucleosides (such as adenosine and purine) were preferentially selected by L. marina. CONCLUSIONS The results suggest that the enriched DOM in stationary phase of phytoplankton bloom is a result of ammonium depletion. This environment drives genomic streamlining of opportunistic bacteria to exploit their preferred nitrogen-containing compounds and maintain nutrient cycling. Video abstract.
Collapse
Affiliation(s)
- Yu Han
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Fan Zhang
- Department of Molecular Virology & Microbiology, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, People's Republic of China
| | - Xuejiao Liang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Ruanhong Cai
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, People's Republic of China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
16
|
Lin YS, Lin HT, Wang BS, Huang WJ, Lin LH, Tsai AY. Intense but variable autotrophic activity in a rapidly flushed shallow-water hydrothermal plume (Kueishantao Islet, Taiwan). GEOBIOLOGY 2021; 19:87-101. [PMID: 33043601 DOI: 10.1111/gbi.12418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Shallow-water hydrothermal plumes concomitantly host both photosynthetic and chemoautotrophic organisms in a single biotope. Yet, rate measurements to quantify the contributions of different autotrophic activity types are scarce. Herein, we measured the light and dark dissolved inorganic carbon (DIC) uptake rates in the plume water of the Kueishantao hydrothermal field using the 13 C-labeling approach. Seventy percent of the plume-water samples had chemoautotrophy as the dominant mode of carbon fixation, with the dark DIC uptake rates (up to 18.6 mg C/m3 /h) within the range of the primary production in productive inner-shelf waters. When considered alongside the geochemical and microbiological observations, the rate data reveal the distribution of different trophic activities in the hydrothermal plume. The autotrophic activity at the initial phase of plume dispersal is low. This is explained by the short response time the chemoautotrophs have to the stimulation from vent-fluid discharge, and the harmful effects of hydrothermal substances on phytoplankton. As plume dispersal and mixing continue, chemoautotrophic activities begin to rise and peak in waters that have low-to-moderate Si(OH)4 content. Toward the plume margin, chemoautotrophy declines to background levels, whereas photosynthesis by phytoplankton regains importance. Our results also provide preliminary indication to the loci of enhanced heterotrophy in the plume. Results of artificial mixing experiments suggest that previously formed plume water is the primary source of microbial inoculum for new plume water. This self-inoculation mechanism, in combination with the intense DIC uptake, helps to sustain a distinct planktonic autotrophic community in this rapidly flushed hydrothermal plume.
Collapse
Affiliation(s)
- Yu-Shih Lin
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Huei-Ting Lin
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Bo-Shian Wang
- Taiwan Ocean Research Institute, National Applied Research Laboratories, Kaohsiung, Taiwan
- National Academy of Marine Research, Kaohsiung, Taiwan
| | - Wei-Jen Huang
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Li-Hung Lin
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
- Research Center for Future Earth, National Taiwan University, Taipei, Taiwan
| | - An-Yi Tsai
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
17
|
Sun J, Guo J, Lin TH, Feng X, Zhang R. Pseudopontixanthobacter vadosimaris gen. nov., sp. nov., isolated from shallow sea near Kueishan Island. Int J Syst Evol Microbiol 2020; 70:6444-6449. [PMID: 33174831 DOI: 10.1099/ijsem.0.004552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A Gram-stain-negative and aerobic bacterial strain, designated as JL3514T, was isolated from surface water of the hydrothermal system around Kueishan Island. The isolate formed red colonies and cells were non-flagellated, rod-shaped and contained methanol-soluble pigments. Growth was observed at 10-50 °C (optimum, 30 °C), at pH 5.0-9.0 (optimum, pH 7.0) and in the presence of 0-9 % (w/v) NaCl (optimum, 2 %). Strain JL3514T was positive for catalase and weakly positive for oxidase. Results of 16S rRNA gene sequence analyses showed highest similarities to species in the family Erythrobacteraceae, namely Croceibacterium atlanticum (96.1 %), Pelagerythrobacter marensis (96.0 %), Tsuneonella rigui (96.0 %) and Altericroceibacterium xinjiangense (96.0 %). Phylogenetic analysis based on core gene sequences revealed that the isolate formed a distinct branch with the related species and it had a lower average amino acid identity value than the suggested threshold for genera boundaries. The major fatty acids (>5 %) were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0, C17 : 1 ω6c, C14 : 0 2-OH and C12 : 0. The dominant polar lipids comprised diphosphatidylglycerol, sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, glycolipid, two unidentified lipids and one unidentified phospholipid. The main respiratory quinones were ubiquinone-10 (95.7 %) and ubiquinone-9 (4.3 %). The DNA G+C content from the genome was 63.0 mol%. Based on the presented data, we consider strain JL3514T to represent a novel genus of the family Erythrobacteraceae, with the name Pseudopontixanthobacter vadosimaris gen. nov., sp. nov. The type strain is JL3514T (=KCTC 62623T=MCCC 1K03561T).
Collapse
Affiliation(s)
- Jia Sun
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Jiaying Guo
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Xuejin Feng
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Rui Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, PR China.,State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
18
|
Tada Y, Marumoto K, Takeuchi A. Nitrospina-Like Bacteria Are Potential Mercury Methylators in the Mesopelagic Zone in the East China Sea. Front Microbiol 2020; 11:1369. [PMID: 32719662 PMCID: PMC7347909 DOI: 10.3389/fmicb.2020.01369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/27/2020] [Indexed: 11/18/2022] Open
Abstract
In natural environments, the production of neurotoxic and bioaccumulative methylmercury (MeHg) is mediated by microorganisms carrying the genes hgcA and hgcB. However, the contribution of these microorganisms to mercury (Hg) methylation or MeHg accumulation in the ocean is poorly understood. Here we determined the total Hg (THg) and MeHg concentrations in seawater samples and conducted a metagenomic survey of the hgcAB genes and functional modules involved in metabolic pathways in the East China Sea (ECS). In the metagenomic analyses, we used paired-end reads and assembled contigs for hgcAB enumeration and phylogenetic analyses in the seawater column. To evaluate the relative abundance of hgcAB in the metagenomic data, we estimated the abundance of recA (single-copy gene of bacteria) as well and then compared them. Moreover, the profiles of prokaryotic community composition were analyzed by 16S rRNA gene (V4 region) deep-sequencing. In the mesopelagic layers, the hgcA sequences were detected, and there was a positive correlation between hgcA abundance relative to the recA and MeHg concentrations. Thus, the quantification of the hgcA sequences could provide valuable information to evaluate the potential environments of microbial MeHg accumulation in the seawater column. A phylogenetic analysis using the assembled contigs revealed that all of the hgcA sequences in the mesopelagic layers were affiliated with Nitrospina-like sequences. The 16S rRNA gene analysis revealed that Nitrospinae were abundant in the mesopelagic layers. Although the lineages of Deltaproteobacteria, Firmicutes, and Spirochaetes were detected in the seawater column, their hgcAB sequences were not detected in our metagenomes, despite the fact that they are closely related to previously identified Hg methylators. The metabolic pathway analysis revealed that the modules related to sulfur and methane metabolism were prominent in the mesopelagic layers. However, no hgcA sequences affiliated with sulfate-reducing bacteria (SRB) or methanogens were detected in these layers, suggesting that these bacteria could not be strongly involved in the Hg accumulation in the seawater column. Our results indicate that Nitrospina-like bacteria with hgcAB genes could play a critical role in microbial Hg accumulation in the oxygenated mesopelagic layers of the ECS.
Collapse
Affiliation(s)
- Yuya Tada
- Department of Environment and Public Health, National Institute for Minamata Disease, Kumamoto, Japan
| | - Kohji Marumoto
- Department of Environment and Public Health, National Institute for Minamata Disease, Kumamoto, Japan
| | - Akinori Takeuchi
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Ibaraki, Japan
| |
Collapse
|
19
|
Li Y, Tang K, Zhang L, Zhao Z, Xie X, Chen CTA, Wang D, Jiao N, Zhang Y. Coupled Carbon, Sulfur, and Nitrogen Cycles Mediated by Microorganisms in the Water Column of a Shallow-Water Hydrothermal Ecosystem. Front Microbiol 2018; 9:2718. [PMID: 30555427 PMCID: PMC6282030 DOI: 10.3389/fmicb.2018.02718] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Shallow-water hydrothermal vent ecosystems are distinctly different from deep-sea vents, as other than geothermal, sunlight is one of their primary sources of energy, so their resulting microbial communities differ to some extent. Yet compared with deep-sea systems, less is known about the active microbial community in shallow-water ecosystems. Thus, we studied the community compositions, their metabolic pathways, and possible coupling of microbially driven biogeochemical cycles in a shallow-water hydrothermal vent system off Kueishantao Islet, Taiwan, using high-throughput 16S rRNA sequences and metatranscriptome analyses. Gammaproteobacteria and Epsilonbacteraeota were the major active bacterial groups in the 16S rRNA libraries and the metatranscriptomes, and involved in the carbon, sulfur, and nitrogen metabolic pathways. As core players, Thiomicrospira, Thiomicrorhabdus, Thiothrix, Sulfurovum, and Arcobacter derived energy from the oxidation of reduced sulfur compounds and fixed dissolved inorganic carbon (DIC) by the Calvin-Benson-Bassham (CBB) or reverse tricarboxylic acid cycles. Sox-dependent and reverse sulfate reduction were the main pathways of energy generation, and probably coupled to denitrification by providing electrons to nitrate and nitrite. Sulfur-reducing Nautiliaceae members, accounting for a small proportion in the community, obtained energy by the oxidation of hydrogen, which also supplies metabolic energy for some sulfur-oxidizing bacteria. In addition, ammonia and nitrite oxidation is another type of energy generation in this hydrothermal system, with marker gene sequences belonging to Thaumarchaeota/Crenarchaeota and Nitrospina, respectively, and ammonia and nitrite oxidation was likely coupled to denitrification by providing substrate for nitrate and nitrite reduction to nitric oxide. Moreover, unlike the deep-sea systems, cyanobacteria may also actively participate in major metabolic pathways. This study helps us to better understand biogeochemical processes mediated by microorganisms and possible coupling of the carbon, sulfur, and nitrogen cycles in these unique ecosystems.
Collapse
Affiliation(s)
- Yufang Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lianbao Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zihao Zhao
- Department of Limnology and Bio-Oceanography, University of Vienna, Vienna, Austria
| | - Xiabing Xie
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | | | - Deli Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|