1
|
Monyama MC, Taioe OM, Nkhebenyane JS, van Wyk D, Ramatla T, Thekisoe OMM. Bacterial Communities Associated with Houseflies ( Musca domestica L.) Inhabiting Hospices in South Africa. Microorganisms 2023; 11:1440. [PMID: 37374941 DOI: 10.3390/microorganisms11061440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Houseflies are alleged reservoirs as well as vectors of human and animal pathogens, including bacteria, because they frequently have contact with animal excreta and decaying organic substances. The rapid adaptation process of ingested microbes in the insect gut may involve gene transfer, including antibiotic resistance determinants among different bacterial strains. Six hundred and fifty-seven (n = 657) houseflies were collected from hospices and were identified morphologically and genetically using the 16S rRNA, CO1, and ITS2 barcoding genes. This study also characterized the bacterial communities harboured by the captured houseflies using 16S rRNA metabarcoding on the next-generation sequencing (NGS) platform and further sought to detect antibiotic resistance traits by using gene-specific PCR assays. Generated sequences for the targeted gene fragments matched with Musca domestica and all the sequences were deposited to the GenBank database. The 16S rRNA metabarcoding analysis revealed that the most abundant phyla detected with variable abundance observed among all the houseflies were Proteobacteria, followed by Firmicutes, and Bacteroidetes. Furthermore, the NGS data revealed the presence of multiple bacterial genera, including Providencia, Enterobacter, Dysgonomonas, Escherichia-Shigella, Klebsiella, Pseudomonas, and Streptococcus, which are known to harbour potentially pathogenic species of animals and humans. Antibiotic resistance genes detected from the housefly DNA in this study included ermB, tetA, blaSHV, and blaTEM. Moreover, these genes are associated with resistance to erythromycin, tetracycline, and beta-lactams antibiotics, respectively. The presence of bacterial pathogens and the detection of antibiotic resistance genes from the houseflies collected from the hospices indicates the possible health risk to patients in hospices and the surrounding community. Therefore, it is imperative to keep high standards of hygiene, food preparation, safety, and control of houseflies in hospices.
Collapse
Affiliation(s)
- Maropeng C Monyama
- Department of Life and Consumer Sciences, University of South Africa, Florida 1710, South Africa
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Oriel M Taioe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria 0110, South Africa
| | - Jane S Nkhebenyane
- Department of Life Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Deidre van Wyk
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Oriel M M Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
2
|
Nhung NT, Yen NTP, Dung NTT, Nhan NTM, Phu DH, Kiet BT, Thwaites G, Geskus RB, Baker S, Carrique-Mas J, Choisy M. Antimicrobial resistance in commensal Escherichia coli from humans and chickens in the Mekong Delta of Vietnam is driven by antimicrobial usage and potential cross-species transmission. JAC Antimicrob Resist 2022; 4:dlac054. [PMID: 35663829 PMCID: PMC9154321 DOI: 10.1093/jacamr/dlac054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/28/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives To investigate phenotypic antimicrobial resistance (AMR) in relation to antimicrobial use (AMU) and potential inter-species transmission among Escherichia coli from humans and chickens located in the same households in the Mekong Delta of Vietnam. Methods We collected data on AMU and faecal swabs from humans (N = 426) and chickens (N = 237) from 237 small-scale farms. From each sample, one E. coli strain was isolated and tested for its susceptibility against 11 antimicrobials by Sensititre AST. The association between AMR and AMU was investigated by logistic regression modelling. Using randomization, we compared the degree of similarity in AMR patterns between human and chicken E. coli from the same farms compared with isolates from different farms. Results The AMU rate was ∼19 times higher in chickens (291.1 per 1000 chicken-days) than in humans (15.1 per 1000 person-days). Isolates from chickens also displayed a higher prevalence of multidrug resistance (63.3%) than those of human origin (55.1%). AMU increased the probability of resistance in isolates from human (ORs between 2.1 and 5.3) and chicken (ORs between 1.9 and 4.8). E. coli from humans and chickens living on same farms had a higher degree of similarity in their AMR patterns than isolates from humans and chicken living on different farms. Conclusions We demonstrated the co-influence of AMU and potential transmission on observed phenotypic AMR patterns among E. coli isolates from food-producing animals and in-contact humans. Restricting unnecessary AMU alongside limiting interspecies contact (i.e. increasing hygiene and biocontainment) are essential for reducing the burden of AMR.
Collapse
Affiliation(s)
- Nguyen Thi Nhung
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | | | - Doan Hoang Phu
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Bach Tuan Kiet
- Sub-Department of Animal Health and Production, Dong Thap Province, Vietnam
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Ronald B. Geskus
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK
| | - Juan Carrique-Mas
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Gontijo AVL, Pereira SL, de Lacerda Bonfante H. Can Drug Repurposing be Effective Against Carbapenem-Resistant Acinetobacter baumannii? Curr Microbiol 2021; 79:13. [PMID: 34905109 PMCID: PMC8669236 DOI: 10.1007/s00284-021-02693-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
Carbapenem-resistant Acinetobacter baumannii has been classified as a top priority for the development of new therapies due to its resistance to most antibiotics. Drug repurposing may be a fast and inexpensive strategy for treating this pathogen. This review aims to critically evaluate repurposed drugs for the treatment of infections caused by carbapenem-resistant A. baumannii, correlating their antimicrobial activity with data available for toxicity and side effects. Some drugs have been suggested as promising candidates for repurposing; however, in some cases, high toxicity and low plasma concentrations reduce applicability in clinical practice. The most favorable applicability is offered by fusidic acid and colistin, possibly combined with a third agent, promising to be well tolerated and achieving satisfactory plasma concentrations.
Collapse
Affiliation(s)
- Aline Vidal Lacerda Gontijo
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, s/n, São Pedro, Juiz de Fora, Minas Gerais, 36036-900, Brazil.
| | - Sharlene Lopes Pereira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, s/n, São Pedro, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Herval de Lacerda Bonfante
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, s/n, São Pedro, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- Division of Rheumatology, Hospital Santa Casa de Misericórdia de Juiz de Fora (SCMJF), Juiz de Fora, Minas Gerais, Brazil
- Department of Internal Medicine, School of Medical Sciences, Health of Juiz de Fora (SUPREMA), Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
4
|
Yang Y, Xiao T, Li J, Cheng P, Li F, Yu H, Liu R, Muhammad I, Zhang X. Wild-type cutoff for Apramycin against Escherichia coli. BMC Vet Res 2020; 16:309. [PMID: 32847547 PMCID: PMC7448428 DOI: 10.1186/s12917-020-02522-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
Background Apramycin is used exclusively for the treatment of Escherichia coli (E.coli) infections in swine around the world since the early 1980s. Recently, many research papers have demonstrated that apramycin has significant in vitro activity against multidrug-resistant E.coli isolated in hospitals. Therefore, ensuring the proper use of apramycin in veterinary clinics is of great significance of public health. The objectives of this study were to develop a wild-type cutoff for apramycin against E.coli using a statistical method recommended by Clinical and Laboratory Standards Institute (CLSI) and to investigate the prevalence of resistance genes that confer resistance to apramycin in E. coli. Results Apramycin susceptibility testing of 1230 E.coli clinical isolates from swine were determinded by broth microdilution testing according to the CLSI document M07-A9. A total number of 310 E.coli strains from different minimum inhibitory concentration (MIC) subsets (0.5–256 μg/mL) were selected for the detection of resistance genes (aac(3)-IV; npmA; apmA) in E. coli by PCR. The percentage of E. coli isolates at each MIC (0.5, 1, 2, 4, 8, 16, 32, 64, 128, and 256 μg/mL) was 0.08, 0.08, 0.16, 2.93, 31.14, 38.86, 12.85, 2.03, 1.46, and 10.41%. The MIC50 and MIC90 were 16 and 64 μg/mL. All the 310 E.coli isolates were negative for npmA and apmA gene, and only the aac(3)-IV gene was detected in this study. Conclusions The wild-type cutoff for apramycin against E.coli was defined as 32 μg/mL. The prevelance of aac(3)-IV gene mainly concentrated in these MIC subsets ‘MIC ≥ 64 μg/ mL’, which indicates that the wild-type cutoff established in our study is reliable. The wild-type cutoff offers interpretion criteria of apramycin susceptibility testing of E.coli.
Collapse
Affiliation(s)
- Yuqi Yang
- Pharmacology Teaching and Research Department, School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Dongqing Road, University Town, Huaxi District, Guiyang, People's Republic of China
| | - Tianshi Xiao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Jiarui Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Ping Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Fulei Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Hongxiao Yu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Ruimeng Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Ishfaq Muhammad
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, People's Republic of China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, 150030, People's Republic of China.
| |
Collapse
|
5
|
Tian E, Muhammad I, Hu W, Wu Z, Li R, Lu X, Chen C, Li J. Tentative epidemiologic cut-off value and resistant characteristic detection of apramycin against Escherichia coli from chickens. FEMS Microbiol Lett 2020; 366:5569653. [PMID: 31518404 DOI: 10.1093/femsle/fnz196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
Escherichia coli are important foodborne zoonotic pathogens. Apramycin is a key aminoglycoside antibiotic used by veterinarians against E. coli. This study was conducted to establish the epidemiological cut-off value (ECV) and resistant characteristics of apramycin against E. coli. In this study, 1412 clinical isolates of E. coli from chickens in China were characterized. Minimum inhibitory concentrations (MICs) of apramycin were assessed by broth microdilution method. MIC50 and MIC90 for apramycin against E. coli (0.5-256 µg/mL) were 8 and 16 µg/mL, respectively. In this study, the tentative ECV was determined to be 16 µg/mL by the statistical method and 32 µg/mL by ECOFFinder software. Besides, the percentages of aac(3)-IV positive strains ascended with the increase of MIC values of apramycin, and the gene npmA was detected in strains with higher MICs. Sixteen apramycin highly resistant strains displayed multiple drug resistance (100%) to amoxicillin, ampicillin, gentamicin, doxycycline, tetracycline, trimethoprim and florfenicol, while most of them were susceptible to amikacin and spectinomycin. In summary, the tentative ECV of apramycin against E. coli was recommended to be 16 µg/mL.
Collapse
Affiliation(s)
- Erjie Tian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ishfaq Muhammad
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wanjun Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaoxiao Lu
- Wenxian County Agriculture and Forestry Bureau, Jiaozuo 454850, P. R. China
| | - Chunli Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, P. R. China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, P. R. China
| |
Collapse
|