1
|
System Level Knowledge Representation for Metacognition in Neuroscience. Brain Inform 2021. [DOI: 10.1007/978-3-030-86993-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
2
|
Tilocca B, Pieroni L, Soggiu A, Britti D, Bonizzi L, Roncada P, Greco V. Gut-Brain Axis and Neurodegeneration: State-of-the-Art of Meta-Omics Sciences for Microbiota Characterization. Int J Mol Sci 2020; 21:E4045. [PMID: 32516966 PMCID: PMC7312636 DOI: 10.3390/ijms21114045] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Recent advances in the field of meta-omics sciences and related bioinformatics tools have allowed a comprehensive investigation of human-associated microbiota and its contribution to achieving and maintaining the homeostatic balance. Bioactive compounds from the microbial community harboring the human gut are involved in a finely tuned network of interconnections with the host, orchestrating a wide variety of physiological processes. These includes the bi-directional crosstalk between the central nervous system, the enteric nervous system, and the gastrointestinal tract (i.e., gut-brain axis). The increasing accumulation of evidence suggest a pivotal role of the composition and activity of the gut microbiota in neurodegeneration. In the present review we aim to provide an overview of the state-of-the-art of meta-omics sciences including metagenomics for the study of microbial genomes and taxa strains, metatranscriptomics for gene expression, metaproteomics and metabolomics to identify and/or quantify microbial proteins and metabolites, respectively. The potential and limitations of each discipline were highlighted, as well as the advantages of an integrated approach (multi-omics) to predict microbial functions and molecular mechanisms related to human diseases. Particular emphasis is given to the latest results obtained with these approaches in an attempt to elucidate the link between the gut microbiota and the most common neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Bruno Tilocca
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, viale Europa, 88100 Catanzaro, Italy; (B.T.); (D.B.)
| | - Luisa Pieroni
- Proteomics and Metabonomics Unit, Fondazione Santa Lucia-IRCCS, via del Fosso di Fiorano, 64-00143 Rome, Italy;
| | - Alessio Soggiu
- Department of Biomedical, Surgical and Dental Sciences- One Health Unit, University of Milano, via Celoria 10, 20133 Milano, Italy;
- Department of Veterinary Medicine, University of Milano, Via dell’Università, 6- 26900 Lodi, Italy;
| | - Domenico Britti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, viale Europa, 88100 Catanzaro, Italy; (B.T.); (D.B.)
| | - Luigi Bonizzi
- Department of Veterinary Medicine, University of Milano, Via dell’Università, 6- 26900 Lodi, Italy;
| | - Paola Roncada
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, viale Europa, 88100 Catanzaro, Italy; (B.T.); (D.B.)
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| |
Collapse
|
3
|
Ezzeldin S, El-Wazir A, Enany S, Muhammad A, Johar D, Osama A, Ahmed E, Shikshaky H, Magdeldin S. Current Understanding of Human Metaproteome Association and Modulation. J Proteome Res 2019; 18:3539-3554. [PMID: 31262181 DOI: 10.1021/acs.jproteome.9b00301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the last decade, metaproteomics has provided a better understanding and functional characterization of the microbiome. A large body of evidence now reveals interspecies, species of bacteria-host interactions, via the secreted modulatory microbial protein "metaproteome". Although high-throughput state-of-art mass spectrometry has recently empowered metaproteomics, its profile remains unclear, and, most importantly, the exact consequences and underlying mechanism of these protein molecules on the host are insufficiently understood. Here we address the current progress in the study of the human metaproteome, suggesting possible modulation, a metaproteome dysbiotic signature, challenges, and future perspectives.
Collapse
Affiliation(s)
- Shahd Ezzeldin
- Proteomics and Metabolomics Unit, Department of Basic Research , Children's Cancer Hospital Egypt 57357 , 11441 Cairo , Egypt
| | - Aya El-Wazir
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine , Suez Canal University , 41522 Ismailia , Egypt.,Center of Excellence of Molecular and Cellular Medicine , Suez Canal University , 41522 Ismailia , Egypt
| | - Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy , Suez Canal University , 41522 Ismailia , Egypt
| | - Abdelrahman Muhammad
- Department of Biomedical Engineering , Higher Technological Institute , 44634 Sharqia , Egypt
| | - Dina Johar
- Biomedical Sciences Program, University of Science and Technology , Zewail City of Science and Technology , 12588 Giza , Egypt
| | - Aya Osama
- Proteomics and Metabolomics Unit, Department of Basic Research , Children's Cancer Hospital Egypt 57357 , 11441 Cairo , Egypt
| | - Eman Ahmed
- Proteomics and Metabolomics Unit, Department of Basic Research , Children's Cancer Hospital Egypt 57357 , 11441 Cairo , Egypt.,Department of Pharmacology, Faculty of Veterinary Medicine , Suez Canal University , 41522 Ismailia , Egypt
| | - Hassan Shikshaky
- Proteomics and Metabolomics Unit, Department of Basic Research , Children's Cancer Hospital Egypt 57357 , 11441 Cairo , Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, Department of Basic Research , Children's Cancer Hospital Egypt 57357 , 11441 Cairo , Egypt.,Department of Physiology, Faculty of Veterinary Medicine , Suez Canal University , 41522 Ismailia , Egypt
| |
Collapse
|
4
|
Singh V, Mishra VN, Chaurasia RN, Joshi D, Pandey V. Modes of Calcium Regulation in Ischemic Neuron. Indian J Clin Biochem 2019; 34:246-253. [PMID: 31391713 PMCID: PMC6660593 DOI: 10.1007/s12291-019-00838-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
Calcium (Ca2+) dysregulation is a major catalytic event. Ca2+ dysregulation leads to neuronal cell death and brain damage result in cerebral ischemia. Neurons are unable in maintaining calcium homeostasis. Ca2+ homeostasis imbalance results in increased calcium influx and impaired calcium extrusion across the plasma membrane. Ca2+ dysregulation is mediated by different cellular and biochemical mechanism, which leads to neuronal loss resulting stroke/cerebral ischemia. A better understanding of the Ca2+ dysregulation might help in the development of new treatments in order to reduce ischemic brain injury. An optimal concentration of Ca2+ does not lead to neurotoxicity in the ischemic neuron. Intracellular Ca2+ act as a trigger for acute neurotoxicity and this cause induction of long-lasting processes leading to necrotic and/or apoptotic post-ischemic delayed neuronal death or of compensatory, neuroprotective mechanisms has increased considerably. Moreover, routes of ischemic Ca2+ influx to neurons, involvement of intracellular Ca2+ stores and Ca2+ buffers, spatial and temporal relations between ischemia-induced increases in intracellular Ca2+ concentration and neurotoxicity will further increase our understanding about underlying mechanism and they can act as a target for the development of drugs. Here, in our article we are trying to provide a brief overview of various Ca2+ influx pathways involve in ischemic neuron and how ischemic neuron attempts to counterbalance this calcium overload.
Collapse
Affiliation(s)
- Vineeta Singh
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Vijaya Nath Mishra
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Deepika Joshi
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Vibha Pandey
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| |
Collapse
|