1
|
Amin BH, Elsilk SE, Nasr S, Yosri M, Yahya G, Mahmoud YAG. Innovative antifungal Therapy: In vivo evaluation of 3-Ethyl-6,7-Dihydroxy-2-Phenyl-Chromen-4-One purified from Alpinia officinarum on Cryptococcus neoformans. Int Immunopharmacol 2025; 149:114163. [PMID: 39908803 DOI: 10.1016/j.intimp.2025.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/24/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Cryptococcus neoformans infections pose a significant challenge to human health, particularly due to the lack of effective drugs and the severe side effects of those currently available. This study aimed to evaluate the efficacy of a purified compound, 3-ethyl-6,7-dihydroxy-2-phenyl-chromen-4-one (EDPC), extracted from Alpinia officinarum, in comparison to fluconazole, in treating rat models infected with C. neoformans. A total of 120 rats were divided into six groups: a negative control group, a group infected with 1 × 104 CFU/mL of C. neoformans (positive control), and four treatment groups receiving either 10 mg/kg, 20 mg/kg, or 30 mg/kg of EDPC, or 10 mg/kg of fluconazole. Colony-forming units (CFU) in the lungs were measured at 7, 14, 21, 28, 35, 42, and 49 days post-infection. The results showed that treatment with EDPC, at all doses, as well as fluconazole, significantly increased survival rates and reduced lung CFU counts in infected rats. Histological analysis revealed notable improvements in lung tissue across the treated groups. Additionally, levels of pro-inflammatory cytokines TNF-α, IL-1β, and IL-17 were markedly reduced in animals treated with EDPC compared to the untreated infected group. Antioxidant activity was observed, with increased glutathione (GSH) levels and decreased malondialdehyde (MDA) levels in treated rats. Moreover, EDPC treatments helped normalize biomarkers related to liver and kidney function, while fluconazole was associated with a significant increase in renal biomarkers, indicating potential kidney toxicity. In contrast, EDPC demonstrated a safer profile regarding kidney function, making it a promising therapeutic agent for C. neoformans infections for long-term use.
Collapse
Affiliation(s)
- Basma H Amin
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787 Nasr City, Cairo, Egypt
| | - Sobhy E Elsilk
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Samr Nasr
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787 Nasr City, Cairo, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia 44519, Egypt.
| | - Yehia A G Mahmoud
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
2
|
Rocha FMG, Rocha CHL, Silva LCN, Pinheiro AJMCR, Mendonça AMS, Cantanhede Filho AJ, Sousa EM, Rocha CQ, Assuncao Holanda R, Santos JRA, Monteiro CA. n -butanol fraction of Terminalia catappa possesses anti-Candida albicans properties and in vivo action on Tenebrio molitor alternative infection model. Microb Pathog 2025; 198:107133. [PMID: 39571833 DOI: 10.1016/j.micpath.2024.107133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Current treatment of Candida infections is threatened by antifungal drug resistance. Thus, medicinal plants have been studied to identify new and highly effective antifungal substances with low toxicity. Here, we showed that the tannin-rich n-butanol fraction of Terminalia catappa (FBuOH) possesses antifungal and antibiofilm properties and protects Tenebrio molitor larvae against Candida albicans infection. FBuOH showed antifungal activity against Candida spp. vaginal isolates (MIC values ranged from 7 to 500 μg/mL). Moreover, a combination of FBuOH with fluconazole (FICI ≤0.5) showed considerably increased anti-yeast, anti-biofilm activity and significantly improved the survival rate (up to 100 %) of T. molitor larvae against C. albicans infection. Furthermore, FBuOH acted synergistically with fluconazole by reducing C. albicans membrane ergosterol content. These results could also explain the synergistic activity between FBuOH and fluconazole, indicating that FBuOH exerted its effects on C. albicans membrane integrity, increasing its permeability. Our findings provide insights into the antifungal activity and low cytotoxicity of FBuOH, showing its potential use as a new antimycotic.
Collapse
Affiliation(s)
- Flaviane Maria Galvão Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, 14049-900, SP, Brazil.
| | - Carlos Henrique Lopes Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, USP, Ribeirão Preto, 14049-900, SP, Brazil.
| | - Luís Cláudio Nascimento Silva
- Laboratory of Immunology of Infectious and Parasitic Diseases, Master's Program in Biosciences Applied to Health, Ceuma University, Josué Montello Street, 65075120, São Luís, MA, Brazil.
| | | | | | | | - Eduardo Martins Sousa
- Laboratory of Immunology and Microbiology of Respiratory Infections, Master's Program in Biosciences Applied to Health, Ceuma University, Josué Montello Street, 65075120, São Luís, MA, Brazil.
| | - Cláudia Quintino Rocha
- Department of Chemistry, Federal University of Maranhão, Portugueses Avenue, 65080805, São Luís, MA, Brazil.
| | - Rodrigo Assuncao Holanda
- Institute of Biological Sciences (ICB), Postgraduate Program in Applied Cellular and Molecular Biology, Arnobio Marques Street 310, Santo Amaro, University of Pernambuco, 50100130, Santo Amaro-Recife, PE, Brazil.
| | - Julliana Ribeiro Alves Santos
- Institute of Biological Sciences (ICB), Postgraduate Program in Applied Cellular and Molecular Biology, Arnobio Marques Street 310, Santo Amaro, University of Pernambuco, 50100130, Santo Amaro-Recife, PE, Brazil.
| | - Cristina Andrade Monteiro
- Biology Laboratory, Biology Department, Federal Institute of Maranhão, Getulio Vargas Avenue, 65030-005, São Luís, MA, Brazil.
| |
Collapse
|
3
|
Souza LBFC, de Oliveira Bento A, Lourenço EMG, Ferreira MRA, Oliveira WN, Soares LAL, G. Barbosa E, Rocha HAO, Chaves GM. Mechanism of action and synergistic effect of Eugenia uniflora extract in Candida spp. PLoS One 2024; 19:e0303878. [PMID: 39137202 PMCID: PMC11321568 DOI: 10.1371/journal.pone.0303878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/01/2024] [Indexed: 08/15/2024] Open
Abstract
The limited arsenal of antifungal drugs have prompted the search for novel molecules with biological activity. This study aimed to characterize the antifungal mechanism of action of Eugenia uniflora extract and its synergistic activity with commercially available antifungal drugs on the following Candida species: C. albicans, C. tropicalis, C. glabrata, C. parapsilosis and C. dubliniensis. In silico analysis was performed to predict antifungal activity of the major compounds present in the extract. Minimal inhibitory concentrations (MICs) were determined in the presence of exogenous ergosterol and sorbitol. Yeast cells were grown in the presence of stressors. The loss of membrane integrity was assessed using propidium iodide staining (fluorescence emission). Synergism between the extract and antifungal compounds (in addition to time kill-curves) was determined. Molecular docking revealed possible interactions between myricitrin and acid gallic and enzymes involved in ergosterol and cell wall biosynthesis. Candida cells grown in the presence of the extract with addition of exogenous ergosterol and sorbitol showed 2 to 8-fold increased MICs. Strains treated with the extract revealed greater loss of membrane integrity when compared to their Fluconazole counterparts, but this effect was less pronounced than the membrane damage caused by Amphotericin B. The extract also made the strains more susceptible to Congo red and Calcofluor white. A synergistic action of the extract with Fluconazole and Micafungin was observed. The E. uniflora extract may be a viable option for the treatment of Candida infections.
Collapse
Affiliation(s)
- Luanda B. F. C. Souza
- Medical and Molecular Mycology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Aurélio de Oliveira Bento
- Medical and Molecular Mycology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Estela M. G. Lourenço
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
- Laboratory of Synthesis and Transformation of Organic Molecules, LP4, Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Magda R. A. Ferreira
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Wogenes N. Oliveira
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Euzébio G. Barbosa
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Hugo A. O. Rocha
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Guilherme Maranhão Chaves
- Medical and Molecular Mycology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
4
|
Abdulshaheed AA, Hanafiah MM, Nawaz R, Muslim SN. Evaluation of antibacterial, antifungal and antibiofilm activities of A. baumannii-derived tannase and gallic acid against uropathogenic microorganisms. Microb Pathog 2024; 187:106534. [PMID: 38184176 DOI: 10.1016/j.micpath.2024.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
One of the most prevalent infectious diseases and a key driver of antibiotic prescriptions in pediatrics is urinary tract infection (UTI). Due to the emergence of more resistant uropathogenic bacterial and fungal strains, current treatments are no longer effective, necessitating the urgent development of novel antibacterial and antifungal drugs. In this study, the antifungal, antibacterial, and anti-biofilm capabilities of compounds, such as tannase (TN) and gallic acid (GA), which were produced from a novel natural source, Acinetobacter baumannii (AB11) bacteria, were assessed for the inactivation of uropathogenic microorganisms (UMs). Ammonium sulphate precipitation, ion exchange, high-performance liquid chromatography, and gel filtration were used to purify TN and GA that were isolated from A. baumannii. A 43.08 % pure TN with 1221.2 U/mg specific activity and 10.51 mg/mL GA was obtained. The antibacterial, antifungal and anti-biofilm activities of TN and GA were evaluated against UMs and compared to those of commercially available antibiotics including sulfamethoxazole (SXT), levofloxacin (LEV), ciprofloxacin (CIP), amikacin (Ak), and nitrofurantoin (F). The results showed that TN and GA were superior to commercial antibiotics in their ability to inactivate UMs and considerably reduced biofilms formation. Additionally, the GA emerges as the top substitute for currently available medications, demonstrating superior antibacterial and antibiofilm properties against all UMs evaluated in this study. The results of this investigation showed that A. baumannii-derived TN and GA could be utilized as an alternative medication to treat UTIs.
Collapse
Affiliation(s)
- Alaa A Abdulshaheed
- Department of Microbiology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia; Department of Biology, College of Science, University of Baghdad, 10071, Baghdad, Iraq
| | - Marlia Mohd Hanafiah
- Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia; Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Rab Nawaz
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Sahira Nsayef Muslim
- Department of Biology, College of Science, Al-Mustansiriyah University, Baghdad, 10422, Iraq
| |
Collapse
|
5
|
Jaiswal N, Kumar A. Candida die-off: Adverse effect and neutralization with phytotherapy approaches. Toxicon 2024; 237:107555. [PMID: 38072320 DOI: 10.1016/j.toxicon.2023.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Candida albicans is the main species that causes 3rd most common bloodstream infection candidiasis in hospitalization. Once it has been diagnosed and treated with antifungal medications accurately, large amounts of Candida cells are killed off rapidly known as Candida die-off or Jarisch-Herxheimer reactions. When Candida cells are killed off quickly, a large no. of toxic substances are released simultaneously. This flood of endotoxins is noxious (harmful) and causes the kidneys and liver to work overtime to try and remove them which causes worsening of symptoms in patients. As a complementary and holistic approach to addressing Candida die-off and its associated symptoms, plant-based remedies i.e., phytotherapy have been gaining increased attention. In this review paper, we have discussed major factors involved in provoking Candida die-off, their management by phytotherapy, challenges associated with the toxic effects due to die-off, and neutralization of Candida die-off through phytotherapy to manage this problem and challenges. In conclusion, this article serves as a meticulous compilation of knowledge on the intriguing subject of Candida die-off, presenting a distinct and informative perspective that has the potential to pave the way for new insights in the realm of plant-based antifungal therapeutics.
Collapse
Affiliation(s)
- Neha Jaiswal
- Department of Biotechnology, National Institute of Technology, Raipur, CG, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, CG, India.
| |
Collapse
|
6
|
Montoya C, Kurylec J, Ossa A, Orrego S. Cyclic strain of poly (methyl methacrylate) surfaces triggered the pathogenicity of Candida albicans. Acta Biomater 2023; 170:415-426. [PMID: 37625677 PMCID: PMC10705016 DOI: 10.1016/j.actbio.2023.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Candida albicans is an opportunistic yeast and the primary etiological factor in oral candidiasis and denture stomatitis. The pathogenesis of C. albicans could be triggered by several variables, including environmental, nutritional, and biomaterial surface cues. Specifically, biomaterial interactions are driven by different surface properties, including wettability, stiffness, and roughness. Dental biomaterials experience repetitive (cyclic) stresses from chewing and biomechanical movements. Pathogenic biofilms are formed over these biomaterial surfaces under cyclic strain. This study investigated the effect of the cyclic strain (deformation) of biomaterial surfaces on the virulence of Candida albicans. Candida biofilms were grown over Poly (methyl methacrylate) (PMMA) surfaces subjected to static (no strain) and cyclic strain with different levels (ε˜x=0.1 and 0.2%). To evaluate the biomaterial-biofilm interactions, the biofilm characteristics, yeast-to-hyphae transition, and the expression of virulent genes were measured. Results showed the biofilm biomass and metabolic activity to be significantly higher when Candida adhered to surfaces subjected to cyclic strain compared to static surfaces. Examination of the yeast-to-hyphae transition showed pseudo-hyphae cells (pathogenic) in cyclically strained biomaterial surfaces, whereas static surfaces showed spherical yeast cells (commensal). RNA sequencing was used to determine and compare the transcriptome profiles of cyclically strained and static surfaces. Genes and transcription factors associated with cell adhesion (CSH1, PGA10, and RBT5), biofilm formation (EFG1), and secretion of extracellular matrix (ECM) (CRH1, ADH5, GCA1, and GCA2) were significantly upregulated in the cyclically strained biomaterial surfaces compared to static ones. Genes and transcription factors associated with virulence (UME6 and HGC1) and the secretion of extracellular enzymes (LIP, PLB, and SAP families) were also significantly upregulated in the cyclically strained biomaterial surfaces compared to static. For the first time, this study reveals a biomaterial surface factor triggering the pathogenesis of Candida albicans, which is essential for understanding, controlling, and preventing oral infections. STATEMENT OF SIGNIFICANCE: Fungal infections produced by Candida albicans are a significant contributor to various health conditions. Candida becomes pathogenic when certain environmental conditions change, including temperature, pH, nutrients, and CO2 levels. In addition, surface properties, including wettability, stiffness, and roughness, drive the interactions between Candida and biomaterials. Clinically, Candida adheres to biomaterials that are under repetitive deformation due to body movements. In this work, we revealed that when Candida adhered to biomaterial surfaces subjected to repetitive deformation, the microorganism becomes pathogenic by increasing the formation of biofilms and the expression of virulent factors related to hyphae formation and secretion of enzymes. Findings from this work could aid the development of new strategies for treating fungal infections in medical devices or implanted biomaterials.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Julia Kurylec
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Alex Ossa
- Production Engineering Department, School of Engineering, Universidad EAFIT, Medellín, Colombia
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States; Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
7
|
Zhou X, Zeng M, Huang F, Qin G, Song Z, Liu F. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12601-5. [PMID: 37272939 DOI: 10.1007/s00253-023-12601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
With the widespread use of antibiotic drugs worldwide and the global increase in the number of immunodeficient patients, fungal infections have become a serious threat to global public health security. Moreover, the evolution of fungal resistance to existing antifungal drugs is on the rise. To address these issues, the development of new antifungal drugs or fungal inhibitors needs to be targeted urgently. Plant secondary metabolites are characterized by a wide variety of chemical structures, low price, high availability, high antimicrobial activity, and few side effects. Therefore, plant secondary metabolites may be important resources for the identification and development of novel antifungal drugs. However, there are few studies to summarize those contents. In this review, the antifungal modes of action of plant secondary metabolites toward different types of fungi and fungal infections are covered, as well as highlighting immunomodulatory effects on the human body. This review of the literature should lay the foundation for research into new antifungal drugs and the discovery of new targets. KEY POINTS: • Immunocompromised patients who are infected the drug-resistant fungi are increasing. • Plant secondary metabolites toward various fungal targets are covered. • Plant secondary metabolites with immunomodulatory effect are verified in vivo.
Collapse
Affiliation(s)
- Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
8
|
Alkyl Gallates as Potential Antibiofilm Agents: A Review. Molecules 2023; 28:molecules28041751. [PMID: 36838739 PMCID: PMC9959617 DOI: 10.3390/molecules28041751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Biofilms, which consist of microorganisms embedded in a polymer-rich matrix, contribute to a variety of infections and increase antimicrobial resistance. Thus, there is a constant need to develop new chemotherapeutic agents to combat biofilms. This review article focuses on the use of alkyl gallates, gallic acid and its esters (methyl, ethyl, propyl, butyl, hexyl, octyl, and dodecyl gallate), most of which are found in plants, to inhibit biofilm formation. The studies under review reveal that alkyl gallates have the capacity to prevent biofilm development and eradicate mature biofilms through mechanisms that suppress the synthesis of the extracellular polymeric matrix, inhibit quorum-sensing signaling, and alter the microbial cell membrane. The effects are stronger the greater the length of the alkyl chain. Moreover, the alkyl gallates' preventive activity against biofilm formation occurs at doses below the minimum inhibitory concentration. More importantly, combining alkyl gallates with antimicrobials or blue-light irradiation produces a synergistic effect on the inhibition of biofilm formation that can be used to treat infections and overcome microbial resistance.
Collapse
|
9
|
Streptomyces: Derived Active Extract Inhibits Candida albicans Biofilm Formation. Curr Microbiol 2022; 79:332. [PMID: 36155861 DOI: 10.1007/s00284-022-03013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/27/2022] [Indexed: 11/03/2022]
Abstract
Candida albicans is an opportunistic pathogen that causes biofilm-associated infections. C. albicans biofilms are known to display reduced susceptibility to antimicrobials and high rates of acquired antibiotic resistance, and biofilm forming in C. albicans further hampers treatment options and highlights the need for new antibiofilm strategies. Identifying active components from desert actinomycetes strains to inhibit the formation of C. albicans biofilms represents an effective treatment strategy. In this study, actinomycetes that can inhibit C. albicans biofilm formation were isolated from the Taklimakan Desert, and the underlying mechanisms were explored. After screening the anti-C.albicans biofilm activities of culture supernatants from 170 Actinomycete strains, six strains showed significant inhibition of C. albicans biofilm formation. Microscopic examination showed a reduction in biofilm formation of C. albicans treated with supernatants from actinomycetes. Scanning electron microscopy showed that the morphological changes in biofilm cells were caused by cell membrane rupture and cell material leakage. Then, C.albicans biofilms were destroyed by changing the content of extracellular polysaccharides or degrading extracellular DNA. Finally, a preliminary study on active substances extracted from a new species (TRM43335) showed that the substances that inhibited the formation of biofilms might be peptides. This study provides preliminary evidence that desert actinomyces strains have inhibitory effects on the biofilm development of C. albicans.
Collapse
|
10
|
Corbu VM, Gheorghe I, Marinaș IC, Geană EI, Moza MI, Csutak O, Chifiriuc MC. Demonstration of Allium sativum Extract Inhibitory Effect on Biodeteriogenic Microbial Strain Growth, Biofilm Development, and Enzymatic and Organic Acid Production. Molecules 2021; 26:molecules26237195. [PMID: 34885775 PMCID: PMC8659052 DOI: 10.3390/molecules26237195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
To the best of our knowledge, this is the first study demonstrating the efficiency of Allium sativum hydro-alcoholic extract (ASE) againstFigure growth, biofilm development, and soluble factor production of more than 200 biodeteriogenic microbial strains isolated from cultural heritage objects and buildings. The plant extract composition and antioxidant activities were determined spectrophotometrically and by HPLC-MS. The bioevaluation consisted of the qualitative (adapted diffusion method) and the quantitative evaluation of the inhibitory effect on planktonic growth (microdilution method), biofilm formation (violet crystal microtiter method), and production of microbial enzymes and organic acids. The garlic extract efficiency was correlated with microbial strain taxonomy and isolation source (the fungal strains isolated from paintings and paper and bacteria from wood, paper, and textiles were the most susceptible). The garlic extract contained thiosulfinate (307.66 ± 0.043 µM/g), flavonoids (64.33 ± 7.69 µg QE/g), and polyphenols (0.95 ± 0.011 mg GAE/g) as major compounds and demonstrated the highest efficiency against the Aspergillus versicolor (MIC 3.12-6.25 mg/mL), A. ochraceus (MIC: 3.12 mg/mL), Penicillium expansum (MIC 6.25-12.5 mg/mL), and A. niger (MIC 3.12-50 mg/mL) strains. The extract inhibited the adherence capacity (IIBG% 95.08-44.62%) and the production of cellulase, organic acids, and esterase. This eco-friendly solution shows promising potential for the conservation and safeguarding of tangible cultural heritage, successfully combating the biodeteriogenic microorganisms without undesirable side effects for the natural ecosystems.
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Department of Genetics, Faculty of Biology, University of Bucharest, Botanical Garden, 3 Intrarea Portocalelor St., 050095 Bucharest, Romania; (V.M.C.); (O.C.)
- Research Institute of the University of Bucharest—ICUB, 91-95 Splaiul Independenței St., District 5, 050095 Bucharest, Romania; (M.I.M.); (M.C.C.)
- Doctoral School of Biology, University of Bucharest, 91-95 Splaiul Independenței St., District 5, 050095 Bucharest, Romania
| | - Irina Gheorghe
- Research Institute of the University of Bucharest—ICUB, 91-95 Splaiul Independenței St., District 5, 050095 Bucharest, Romania; (M.I.M.); (M.C.C.)
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Botanical Garden, 3 Intrarea Portocalelor St., District 6, 060101 Bucharest, Romania
- Correspondence: (I.G.); (I.C.M.)
| | - Ioana Cristina Marinaș
- Research Institute of the University of Bucharest—ICUB, 91-95 Splaiul Independenței St., District 5, 050095 Bucharest, Romania; (M.I.M.); (M.C.C.)
- Correspondence: (I.G.); (I.C.M.)
| | - Elisabeta Irina Geană
- National R&D Institute for Cryogenics and Isotopic Technologies—ICIT, Rm. Valcea, 4 Uzinei St., 240050 Ramnicu Valcea, Romania;
| | - Maria Iasmina Moza
- Research Institute of the University of Bucharest—ICUB, 91-95 Splaiul Independenței St., District 5, 050095 Bucharest, Romania; (M.I.M.); (M.C.C.)
- Doctoral School of Biology, University of Bucharest, 91-95 Splaiul Independenței St., District 5, 050095 Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Botanical Garden, 3 Intrarea Portocalelor St., District 6, 060101 Bucharest, Romania
| | - Ortansa Csutak
- Department of Genetics, Faculty of Biology, University of Bucharest, Botanical Garden, 3 Intrarea Portocalelor St., 050095 Bucharest, Romania; (V.M.C.); (O.C.)
- Doctoral School of Biology, University of Bucharest, 91-95 Splaiul Independenței St., District 5, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest—ICUB, 91-95 Splaiul Independenței St., District 5, 050095 Bucharest, Romania; (M.I.M.); (M.C.C.)
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Botanical Garden, 3 Intrarea Portocalelor St., District 6, 060101 Bucharest, Romania
- Romanian Academy of Scientists, 54 Spl. Independentei St., District 5, 50085 Bucharest, Romania
- The Romanian Academy, 25, Calea Victoriei, Sector 1, District 1, 010071 Bucharest, Romania
| |
Collapse
|
11
|
Karpiński TM, Ożarowski M, Seremak-Mrozikiewicz A, Wolski H, Adamczak A. Plant Preparations and Compounds with Activities against Biofilms Formed by Candida spp. J Fungi (Basel) 2021; 7:jof7050360. [PMID: 34063007 PMCID: PMC8147947 DOI: 10.3390/jof7050360] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/12/2023] Open
Abstract
Fungi from the genus Candida are very important human and animal pathogens. Many strains can produce biofilms, which inhibit the activity of antifungal drugs and increase the tolerance or resistance to them as well. Clinically, this process leads to persistent infections and increased mortality. Today, many Candida species are resistant to drugs, including C. auris, which is a multiresistant pathogen. Natural compounds may potentially be used to combat multiresistant and biofilm-forming strains. The aim of this review was to present plant-derived preparations and compounds that inhibit Candida biofilm formation by at least 50%. A total of 29 essential oils and 16 plant extracts demonstrate activity against Candida biofilms, with the following families predominating: Lamiaceae, Myrtaceae, Asteraceae, Fabaceae, and Apiacae. Lavandula dentata (0.045–0.07 mg/L), Satureja macrosiphon (0.06–8 mg/L), and Ziziphora tenuior (2.5 mg/L) have the best antifungal activity. High efficacy has also been observed with Artemisia judaica, Lawsonia inermis, and Thymus vulgaris. Moreover, 69 plant compounds demonstrate activity against Candida biofilms. Activity in concentrations below 16 mg/L was observed with phenolic compounds (thymol, pterostilbene, and eugenol), sesquiterpene derivatives (warburganal, polygodial, and ivalin), chalconoid (lichochalcone A), steroidal saponin (dioscin), flavonoid (baicalein), alkaloids (waltheriones), macrocyclic bisbibenzyl (riccardin D), and cannabinoid (cannabidiol). The above compounds act on biofilm formation and/or mature biofilms. In summary, plant preparations and compounds exhibit anti-biofilm activity against Candida. Given this, they may be a promising alternative to antifungal drugs.
Collapse
Affiliation(s)
- Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
- Correspondence: ; Tel.: +48-61-854-61-38
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland; (A.S.-M.); (H.W.)
- Laboratory of Molecular Biology in Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland
| | - Hubert Wolski
- Division of Perinatology and Women’s Diseases, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland; (A.S.-M.); (H.W.)
- Division of Gynecology and Obstetrics, Podhale Multidisciplinary Hospital, Szpitalna 14, 34-400 Nowy Targ, Poland
| | - Artur Adamczak
- Department of Botany, Breeding and Agricultural Technology of Medicinal Plants, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland;
| |
Collapse
|
12
|
Karatas O, Gevrek F. 3,4,5-Trihydroxybenzoic Acid Attenuates Ligature-Induced Periodontal Disease in Wistar Rats. Antiinflamm Antiallergy Agents Med Chem 2021; 20:51-60. [PMID: 32026787 DOI: 10.2174/1871523019666200206094335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/02/2020] [Accepted: 01/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND 3,4,5-Trihydroxybenzoic acid, which is also known as gallic acid, is an antiinflammatory agent that could provide beneficial effects in preventing periodontal inflammation. The present study aimed to evaluate the anti-inflammatory effects of gallic acid on experimental periodontitis in Wistar rats. Alveolar bone loss, osteoclastic activity, osteoblastic activity, and collagenase activity were also determined. METHODS Thirty-two Wistar rats were used in the present study. Study groups were created as following: Healthy control (C,n=8) group; periodontitis (P,n=8) group; periodontitis and 30 mg/kg gallic acid administered group (G30,n=8); periodontitis and 60 mg/kg gallic acid administered group (G60,n=8). Experimental periodontitis was created by placing 4-0 silk sutures around the mandibular right first molar tooth. Morphological changes in alveolar bone were determined by stereomicroscopic evaluation. Mandibles were undergone histological evaluation. Matrix metalloproteinase (MMP)-8, tissue inhibitor of MMPs (TIMP)-1, bone morphogenetic protein (BMP)-2 expressions, tartrateresistant acid phosphatase (TRAP) positive osteoclast cells, osteoblast, and inflammatory cell counts were determined. RESULTS The highest alveolar bone loss was observed in the periodontitis group. Both doses of gallic acid decreased alveolar bone loss as compared to the P group. TRAP-positive osteoclast cell counts were higher in the P group, and gallic acid successfully lowered these counts. Osteoblast cells also increased in gallic acid administered groups. Inflammation in the P group was also higher than those of C, G30, and G60 groups supporting the role of gallic acid in preventing inflammation. 30 and 60 mg/kg doses of gallic acid decreased MMP-8 levels and increased TIMP-1 levels. BMP levels increased in gallic acid administered groups, similar to several osteoblasts. CONCLUSION Present results revealed an anti-inflammatory effect of gallic acid, which was indicated by decreased alveolar bone loss and collagenase activity and increased osteoblastic activity.
Collapse
Affiliation(s)
- Ozkan Karatas
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Fikret Gevrek
- Department of Histology and Embryology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
13
|
Wang Y, Pei Z, Lou Z, Wang H. Evaluation of Anti-Biofilm Capability of Cordycepin Against Candida albicans. Infect Drug Resist 2021; 14:435-448. [PMID: 33574683 PMCID: PMC7872900 DOI: 10.2147/idr.s285690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The opportunistic pathogen Candida albicans can form biofilms, resulting in drug resistance with great risk to medical treatment. METHODOLOGY We investigated the ability of C. albicans to form biofilms on different materials, as well as the inhibitory and eradicating effects of cordycepin on biofilm. The action mechanism of cordycepin against biofilm was studied by crystal violet staining, XTT [2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction method, phenol-sulfuric acid method, cellular superficial hydrophobicity (CSH) assay, and confocal laser scanning microscope observation. We also evaluated the acute toxicity of cordycepin in vivo. RESULTS The results showed facile formation of biofilms by C. albicans on polypropylene. The 50% minimum inhibitory concentration (MIC50) of cordycepin was 0.062 mg/mL. A concentration of 0.125 mg/mL significantly decreased biofilm formation, metabolic activity, secretion of extracellular polysaccharides, and relative CSH. Cordycepin could inhibit biofilm formation at low concentration without affecting fungal growth. In addition, cordycepin effectively eradicated 59.14% of mature biofilms of C. albicans at a concentration of 0.5 mg/mL. For acute toxicity, the LD50 (50% of lethal dose) of cordycepin was determined as higher than 500 mg/kg for mice. CONCLUSION The results of this study show that cordycepin significantly inhibited and eradicated biofilms by decreasing metabolic activity, the ratio of living cells, the hydrophobicity, and damaging the extracellular polysaccharides of biofilm. These findings should facilitate more effective application of cordycepin and suggest a new direction for the treatment of fungal infections.
Collapse
Affiliation(s)
- Yu Wang
- The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, 214122, People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Zejun Pei
- The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, 214122, People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Zaixiang Lou
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Hongxin Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People’s Republic of China
| |
Collapse
|
14
|
Wang Y, Lam ATW. Epigallocatechin gallate and gallic acid affect colonization of abiotic surfaces by oral bacteria. Arch Oral Biol 2020; 120:104922. [PMID: 33045616 DOI: 10.1016/j.archoralbio.2020.104922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES epigallocatechin gallate and gallic acid are known antimicrobial agents. Their roles in controlling microbial colonization, such as bacterial attachment and biofilm formation, are however not completely clear. This study aims to investigate their effects on the colonization of abiotic surfaces by oral bacteria and study the mechanism of their activities. DESIGN the effects of epigallocatechin gallate and gallic acid on cell surface physicochemical properties (hydrophobicity and charge) of a range of oral bacteria and their auto-aggregation, attachment and biofilm formation on different abiotic surfaces (glass, stainless steel and hydroxyapatite) were studied. RESULTS results show that epigallocatechin gallate inhibited bacterial attachment to the hard surfaces (except hydroxyapatite) by 0.2-1.4 log CFU cm-2 by affecting cell surface hydrophobicity and charge. In addition, epigallocatechin gallate induced notches on cell surfaces of Streptococcus mutans without affecting their viability and biofilm formation. Gallic acid enhanced auto-aggregation (by 7.9-30.6 %) and biofilm formation by Actinomyces naeslundii (by 0.9-1.2 log CFU cm-2) by causing calcium efflux from the cells. CONCLUSIONS the tested phytochemicals influenced the colonization of abiotic surfaces by oral bacteria through different mechanisms, most notably via affecting cell surface physicochemical properties, inducing changes in the shape of cell envelopes and causing calcium efflux.
Collapse
Affiliation(s)
- Yi Wang
- School of Dentistry, the University of Queensland, 288, Herston Road, Herston, Brisbane, Queensland 4006, Australia.
| | - Antonia T W Lam
- School of Dentistry, the University of Queensland, 288, Herston Road, Herston, Brisbane, Queensland 4006, Australia
| |
Collapse
|
15
|
Francolini I, Piozzi A. Role of Antioxidant Molecules and Polymers in Prevention of Bacterial Growth and Biofilm Formation. Curr Med Chem 2020; 27:4882-4904. [DOI: 10.2174/0929867326666190409120409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/22/2023]
Abstract
Background:
Antioxidants are multifaceted molecules playing a crucial role in several
cellular functions. There is by now a well-established knowledge about their involvement in numerous
processes associated with aging, including vascular damage, neurodegenerative diseases and
cancer. An emerging area of application has been lately identified for these compounds in relation to
the recent findings indicating their ability to affect biofilm formation by some microbial pathogens,
including Staphylococcus aureus, Streptococcus mutans, and Pseudomonas aeruginosa.
Methods:
A structured search of bibliographic databases for peer-reviewed research literature was
performed using a focused review question. The quality of retrieved papers was appraised using
standard tools.
Results:
One hundred sixty-five papers extracted from pubmed database and published in the last
fifteen years were included in this review focused on the assessment of the antimicrobial and antibiofilm
activity of antioxidant compounds, including vitamins, flavonoids, non-flavonoid polyphenols,
and antioxidant polymers. Mechanisms of action of some important antioxidant compounds,
especially for vitamin C and phenolic acids, were identified.
Conclusion:
The findings of this review confirm the potential benefits of the use of natural antioxidants
as antimicrobial/antibiofilm compounds. Generally, gram-positive bacteria were found to be
more sensitive to antioxidants than gram-negatives. Antioxidant polymeric systems have also been
developed mainly derived from functionalization of polysaccharides with antioxidant molecules.
The application of such systems in clinics may permit to overcome some issues related to the systemic
delivery of antioxidants, such as poor absorption, loss of bioactivity, and limited half-life.
However, investigations focused on the study of antibiofilm activity of antioxidant polymers are still
very limited in number and therefore they are strongly encouraged in order to lay the foundations for
application of antioxidant polymers in treatment of biofilm-based infections.
Collapse
Affiliation(s)
- Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5 - 00185, Rome, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5 - 00185, Rome, Italy
| |
Collapse
|
16
|
Mezoneuron benthamianum inhibits cell adherence, hyphae formation, and phospholipase production in Candida albicans. Arch Microbiol 2020; 202:2533-2542. [PMID: 32656677 DOI: 10.1007/s00203-020-01972-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/11/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
The aim of this study was to evaluate the phytochemical constituents, antioxidant, antifungal, and anti-virulence activities of traditionally used Mezoneuron benthamianum leaves. Extracts were prepared using acetone and methanol, and the preliminary phytochemical screening was performed. The antioxidant activity was studied using the DPPH method. Anti-Candida albicans activity was established and the effect on the germ tube and phospholipase production, as well as on the host cell adherence was assessed. The extracts showed the presence of anthraquinones, cardiac glycosides, flavonoids, reducing sugars, saponins, steroids, tannins, and terpenoids. Gallic acid and trans-resveratrol were among the predominant phytochemicals found in M. benthamianum. The crude extracts presented significantly higher antioxidant activity than the ascorbic acid standard. At 0.39 mg/mL, acetone extract inhibited the growth of Candida albicans. At lower concentrations (200-50 µg/mL), it significantly inhibited the adherence ability (up to 51%), formation of hyphae (up to 65%), and the production of phospholipase. In conclusion, at high concentrations, M. benthamianum kills C. albicans, and at lower concentrations, it can inhibit the virulence properties of this pathogen. This study on crude extract validates the traditional use of this plant. However, further research is required to establish the anti-virulence activity of the two compounds and their therapeutic potential.
Collapse
|
17
|
Hrichi S, Chaabane-Banaoues R, Giuffrida D, Mangraviti D, Oulad El Majdoub Y, Rigano F, Mondello L, Babba H, Mighri Z, Cacciola F. Effect of seasonal variation on the chemical composition and antioxidant and antifungal activities of Convolvulus althaeoides L. leaf extracts. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
18
|
Products Derived from Buchenavia tetraphylla Leaves Have In Vitro Antioxidant Activity and Protect Tenebrio molitor Larvae against Escherichia coli-Induced Injury. Pharmaceuticals (Basel) 2020; 13:ph13030046. [PMID: 32188166 PMCID: PMC7151707 DOI: 10.3390/ph13030046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/22/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
The relevance of oxidative stress in the pathogenesis of several diseases (including inflammatory disorders) has traditionally led to the search for new sources of antioxidant compounds. In this work, we report the selection of fractions with high antioxidant action from B. tetraphylla (BT) leaf extracts. In vitro methods (DPPH and ABTS assays; determination of phenolic and flavonoid contents) were used to select products derived from B. tetraphylla with high antioxidant action. Then, the samples with the highest potentials were evaluated in a model of injury based on the inoculation of a lethal dose of heat-inactivated Escherichia coli in Tenebrio molitor larvae. Due to its higher antioxidant properties, the methanolic extract (BTME) was chosen to be fractionated using Sephadex LH-20 column-based chromatography. Two fractions from BTME (BTFC and BTFD) were the most active fractions. Pre-treatment with these fractions protected larvae of T. molitor from the stress induced by inoculation of heat-inactivated E. coli. Similarly, BTFC and BTFD increased the lifespan of larvae infected with a lethal dose of enteroaggregative E. coli 042. NMR data indicated the presence of aliphatic compounds (terpenes, fatty acids, carbohydrates) and aromatic compounds (phenolic compounds). These findings suggested that products derived from B. tetraphylla leaves are promising candidates for the development of antioxidant and anti-infective agents able to treat oxidative-related dysfunctions.
Collapse
|
19
|
Evaluation of aqueous-extracts from four aromatic plants for their activity against Candida albicans adhesion to human HEp-2 epithelial cells. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Antifungal and Antivirulence Activities of Hydroalcoholic Extract and Fractions of Platonia insignis Leaves against Vaginal Isolates of Candida Species. Pathogens 2020; 9:pathogens9020084. [PMID: 32013047 PMCID: PMC7168675 DOI: 10.3390/pathogens9020084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 11/29/2022] Open
Abstract
Vulvovaginal candidiasis is a common fungal infection in women. In this study, Platonia insignis hydroalcoholic extract (PiHE) and its fractions were evaluated for antifungal and antivirulence activities against vaginal Candida species. Dichloromethane (DCMF) and ethyl acetate fractions (EAF) obtained from PiHE effectively inhibited the pathogen. Electrospray ionization mass spectrometry was used for identifying the main compounds in extracts. Minimal inhibitory and fungicidal concentrations (MIC and MFC, respectively) were determined by a broth microdilution assay. Furthermore, we evaluated the effect of the extract and fractions on the virulence properties of Candida albicans, and their cytotoxicity effect was determined on RAW 264.7 cells. Compounds found in extracts were flavonoid glycosides, mainly derivatives of quercetin and myricetin. Extracts showed antifungal potential, with the lowest MIC value for EAF (1.3 mg/mL) and inhibited Candida adherence and biofilm formation. EAF disrupted 48 h biofilms with an inhibition rate of more than 90%. The extract and its fractions exhibited no cytotoxicity. The antifungal effects were attributed to the ability of these extracts to alter the mitochondrial membrane potential for the release of pro-apoptotic factors in the cytosol. In conclusion, our data suggest that PiHE and EAF could act as novel candidates for the development of new therapeutic treatments against fungal infections.
Collapse
|
21
|
Al Aboody MS, Mickymaray S. Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics (Basel) 2020; 9:E45. [PMID: 31991883 PMCID: PMC7168129 DOI: 10.3390/antibiotics9020045] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of fungal infections is growing at an alarming pace and the pathogenesis is still not clearly understood. Recurrence of these fungal diseases is often due to their evolutionary avoidance of antifungal resistance. The development of suitable novel antimicrobial agents for fungal diseases continues to be a major problem in the current clinical field. Hence, it is urgently necessary to develop surrogate agents that are more effective than conventional available drugs. Among the remarkable innovations from earlier investigations on natural-drugs, flavonoids are a group of plant-derived substances capable of promoting many valuable effects on humans. The identification of flavonoids with possible antifungal effects at small concentrations or in synergistic combinations could help to overcome this problem. A combination of flavonoids with available drugs is an excellent approach to reduce the side effects and toxicity. This review focuses on various naturally occurring flavonoids and their antifungal activities, modes of action, and synergetic use in combination with conventional drugs.
Collapse
Affiliation(s)
| | - Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Riyadh Region, Majmaah 11952, Saudi Arabia;
| |
Collapse
|
22
|
In Vitro and In Vivo Anti- Candida spp. Activity of Plant-Derived Products. PLANTS 2019; 8:plants8110494. [PMID: 31718037 PMCID: PMC6918153 DOI: 10.3390/plants8110494] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/14/2019] [Accepted: 11/08/2019] [Indexed: 01/08/2023]
Abstract
Candidiasis therapy, especially for candidiasis caused by Candida non-albicans species, is limited by the relatively reduced number of antifungal drugs and the emergence of antifungal tolerance. This study evaluates the anticandidal activity of 41 plant-derived products against Candida species, in both planktonic and biofilm cells. This study also evaluates the toxicity and the therapeutic action of the most active compounds by using the Caenorhabditis elegans–Candida model. The planktonic cells were cultured with various concentrations of the tested agents. The Cupressus sempervirens, Citrus limon, and Litsea cubeba essential oils as well as gallic acid were the most active anticandidal compounds. Candida cell re-growth after treatment with these agents for 48 h demonstrated that the L. cubeba essential oil and gallic acid displayed fungistatic activity, whereas the C. limon and C. sempervirens essential oils exhibited fungicidal activity. The C. sempervirens essential oil was not toxic and increased the survival of C. elegans worms infected with C. glabrata or C. orthopsilosis. All the plant-derived products assayed at 250 µg/mL affected C. krusei biofilms. The tested plant-derived products proved to be potential therapeutic agents against Candida, especially Candida non-albicans species, and should be considered when developing new anticandidal agents.
Collapse
|
23
|
GLÓRIA EC, ELIAS HHDS, CARVALHO EEN, GUIMARÃES LGL. Physical-chemical and biochemical characterization of Buchenavia tomentosa Eichler fruits. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.36111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Gong X, Xiong H, Liu S, Liu Y, Yin L, Tu C, Wang H, Zhao Z, Chen W, Mei Z. Qingpeng Ointment Ameliorates Inflammatory Responses and Dysregulation of Itch-Related Molecules for Its Antipruritic Effects in Experimental Allergic Contact Dermatitis. Front Pharmacol 2019; 10:354. [PMID: 31024317 PMCID: PMC6465648 DOI: 10.3389/fphar.2019.00354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/21/2019] [Indexed: 11/30/2022] Open
Abstract
The pathogenesis of itchy skin diseases including allergic contact dermatitis (ACD) is complicated and the treatment of chronic itch is a worldwide problem. One traditional Tibetan medicine, Qingpeng ointment (QP), has been used in treatment of ACD in China for years. In this study we used HPLC and LC/MS analysis, combined with a BATMAN-TCM platform, for detailed HPLC fingerprint analysis and network pharmacology of QP, and investigated the anti-inflammatory and antipruritic activities of QP on ACD induced by squaric acid dibutylester (SADBE) in mice. The BATMAN-TCM analysis provided information of effector molecules of the main ingredients of QP, and possible chronic dermatitis-associated molecules and cell signaling pathways by QP. In ACD mice, QP treatment suppressed the scratching behavior induced by SADBE in a dose-dependent manner and inhibited the production of Th1/2 cytokines in serum and spleen. Also, QP treatment reversed the upregulation of mRNAs levels of itch-related genes in the skin (TRPV4, TSLP, GRP, and MrgprA3) and DRGs (TRPV1, TRPA1, GRP, and MrgprA3). Furthermore, QP suppressed the phosphorylation of Erk and p38 in the skin. In all, our work indicated that QP can significantly attenuate the pathological alterations of Th1/2 cytokines and itch-related mediators, and inhibit the phosphorylation of MAPKs to treat the chronic itch.
Collapse
Affiliation(s)
- Xuan Gong
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Sisi Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yutong Liu
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Liang Yin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Chuyue Tu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hua Wang
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Zhongqiu Zhao
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Barnes-Jewish Hospital, St. Louis, MO, United States
| | - Weiwu Chen
- Qizheng Tibetan Medicine Co., Ltd., Lanzhou, China
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
25
|
Silva DR, Rosalen PL, Freires IA, Sardi JDCO, Lima RF, Lazarini JG, Costa TKVLD, Pereira JV, Godoy GP, Costa EMMDB. Anadenanthera Colubrina vell Brenan: anti-Candida and antibiofilm activities, toxicity and therapeutical action. Braz Oral Res 2019; 33:e023. [PMID: 30970088 DOI: 10.1590/1807-3107bor-2019.vol33.0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
We evaluated the antifungal and antibiofilm potential of the hydroalcoholic extract of bark from Anadenanthera colubrina (vell.) Brenan, known as Angico, against Candida spp. Antifungal activity was evaluated using the microdilution technique through the Minimum Inhibitory and Fungicide Concentrations (MIC and MFC). The antibiofilm potential was tested in mature biofilms formed by Candida species and analyzed through the counting of CFU/mL and scanning electron micrograph (SEM). In vivo toxicity and therapeutic action was evaluated in the Galleria mellonella model. The treatment with the extract, in low doses, was able to reduce the growth of planktonic cells of Candida species. MIC values range between 19.5 and 39 µg/mL and MFC values range between 79 and 625 µg/mL. In addition was able to reduce the number of CFU/mL in biofilms and to cause structural alteration and cellular destruction, observed via SEM. A. colubrina showed low toxicity in the in vivo assay, having not affected the viability of the larvae at doses below 100mg/kg and high potential in the treatment of C. albicans infection. Considering its high antifungal potential, its low toxicity and potential to treatment of infections in in vivo model, A. colubrina extract is a strong candidate for development of a new agent for the treatment of oral candidiasis.
Collapse
Affiliation(s)
- Diego Romário Silva
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Physiological Sciences, Piracicaba, São Paulo, Brasil
| | - Pedro Luiz Rosalen
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Physiological Sciences, Piracicaba, São Paulo, Brasil
| | - Irlan Almeida Freires
- University of Florida College of Dentistry, Department of Oral Biology, Gainesville, 32610, Flórida, United States
| | - Janaína de Cássia Orlandi Sardi
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Physiological Sciences, Piracicaba, São Paulo, Brasil
| | - Rennaly Freitas Lima
- Universidade Estadual da Paraíba - UEPb, Department of Dentistry, Campina Grande, Paraíba, Brazil
| | - Josy Goldoni Lazarini
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Physiological Sciences, Piracicaba, São Paulo, Brasil
| | | | - Jozinete Vieira Pereira
- Universidade Estadual da Paraíba - UEPb, Department of Dentistry, Campina Grande, Paraíba, Brazil
| | - Gustavo Pina Godoy
- Universidade Federal de Pernambuco - UFPE, Department of Pathology, Recife, Pernambuco, Brazil
| | | |
Collapse
|
26
|
Silver nanoparticles coated with dodecanethiol used as fillers in non-cytotoxic and antifungal PBAT surface based on nanocomposites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:800-807. [PMID: 30813086 DOI: 10.1016/j.msec.2019.01.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/16/2018] [Accepted: 01/10/2019] [Indexed: 12/29/2022]
Abstract
In the present study, we report the preparation of antifungal and non-cytotoxic polymer nanocomposites with potential application in biomedical materials. Dodecanethiol-protected silver nanoparticles (AgNPs-DDT) were synthesized by a reduction/precipitation method and dispersed in chloroform to obtain stable colloidal dispersions. PBAT-based nanocomposites containing 0.25, 0.5 and 2 wt% AgNPs-DDT were prepared by casting method. The incorporation of AgNPs-DDT in PBAT matrix resulted in nanocomposites which combine improved mechanical performance and antifungal properties with a non-cytotoxic characteristic.
Collapse
|