1
|
Curtis Z, Escudeiro P, Mallon J, Leland O, Rados T, Dodge A, Andre K, Kwak J, Yun K, Isaac B, Martinez Pastor M, Schmid AK, Pohlschroder M, Alva V, Bisson A. Halofilins as emerging bactofilin families of archaeal cell shape plasticity orchestrators. Proc Natl Acad Sci U S A 2024; 121:e2401583121. [PMID: 39320913 PMCID: PMC11459167 DOI: 10.1073/pnas.2401583121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Bactofilins are rigid, nonpolar bacterial cytoskeletal filaments that link cellular processes to specific curvatures of the cytoplasmic membrane. Although homologs of bactofilins have been identified in archaea and eukaryotes, functional studies have remained confined to bacterial systems. Here, we characterize representatives of two families of archaeal bactofilins from the pleomorphic archaeon Haloferax volcanii, halofilin A (HalA) and halofilin B (HalB). HalA and HalB polymerize in vitro, assembling into straight bundles. HalA polymers are highly dynamic and accumulate at positive membrane curvatures in vivo, whereas HalB forms more static foci that localize in areas of local negative curvatures on the outer cell surface. Gene deletions and live-cell imaging show that halofilins are critical in maintaining morphological integrity during shape transition from disk (sessile) to rod (motile). Morphological defects in ΔhalA result in accumulation of highly positive curvatures in rods but not in disks. Conversely, disk-shaped cells are exclusively affected by halB deletion, resulting in flatter cells. Furthermore, while ΔhalA and ΔhalB cells imprecisely determine the future division plane, defects arise predominantly during the disk-to-rod shape remodeling. The deletion of halA in the haloarchaeon Halobacterium salinarum, whose cells are consistently rod-shaped, impacted morphogenesis but not cell division. Increased levels of halofilins enforced drastic deformations in cells devoid of the S-layer, suggesting that HalB polymers are more stable at defective S-layer lattice regions. Our results suggest that halofilins might play a significant mechanical scaffolding role in addition to possibly directing envelope synthesis.
Collapse
Affiliation(s)
- Zachary Curtis
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Pedro Escudeiro
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen72076, Germany
| | - John Mallon
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Olivia Leland
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Theopi Rados
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Ashley Dodge
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Katherine Andre
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Jasmin Kwak
- Department of Biology, Brandeis University, Waltham, MA02453
| | - Kun Yun
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104
| | - Berith Isaac
- Department of Biology, Brandeis University, Waltham, MA02453
| | | | - Amy K. Schmid
- Biology Department, Duke University, Durham, NC27708
| | | | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen72076, Germany
| | - Alex Bisson
- Department of Biology, Brandeis University, Waltham, MA02453
| |
Collapse
|
2
|
Santiago-Collazo G, Brown PJB, Randich AM. The divergent early divisome: is there a functional core? Trends Microbiol 2024; 32:231-240. [PMID: 37741788 DOI: 10.1016/j.tim.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
The bacterial divisome is a complex nanomachine that drives cell division and separation. The essentiality of these processes leads to the assumption that proteins with core roles will be strictly conserved across all bacterial genomes. However, recent studies in diverse proteobacteria have revealed considerable variation in the early divisome compared with Escherichia coli. While some proteins are highly conserved, their specific functions and interacting partners vary. Meanwhile, different subphyla use clade-specific proteins with analogous functions. Thus, instead of focusing on gene conservation, we must also explore how key functions are maintained during early division by diverging protein networks. An enhanced awareness of these complex genetic networks will clarify the physical and evolutionary constraints of bacterial division.
Collapse
Affiliation(s)
- Gustavo Santiago-Collazo
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Pamela J B Brown
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Amelia M Randich
- Department of Biology, College of Arts and Sciences, University of Scranton, Scranton, PA, USA.
| |
Collapse
|
3
|
Jin K, Tian N, da Silva Ferreira JF, Sandhu D, Xiao L, Gu M, Luo Y, Zhang X, Liu G, Liu Z, Huang J, Liu S. Comparative Transcriptome Analysis of Agrobacterium tumefaciens Reveals the Molecular Basis for the Recalcitrant Genetic Transformation of Camellia sinensis L. Biomolecules 2022; 12:688. [PMID: 35625616 PMCID: PMC9138961 DOI: 10.3390/biom12050688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Tea (Camellia sinensis L.), an important economic crop, is recalcitrant to Agrobacterium-mediated transformation (AMT), which has seriously hindered the progress of molecular research on this species. The mechanisms leading to low efficiency of AMT in tea plants, related to the morphology, growth, and gene expression of Agrobacterium tumefaciens during tea-leaf explant infection, were compared to AMT of Nicotiana benthamiana leaves in the present work. Scanning electron microscopy (SEM) images showed that tea leaves induced significant morphological aberrations on bacterial cells and affected pathogen-plant attachment, the initial step of a successful AMT. RNA sequencing and transcriptomic analysis on Agrobacterium at 0, 3 and 4 days after leaf post-inoculation resulted in 762, 1923 and 1656 differentially expressed genes (DEGs) between the tea group and the tobacco group, respectively. The expressions of genes involved in bacterial fundamental metabolic processes, ATP-binding cassette (ABC) transporters, two-component systems (TCSs), secretion systems, and quorum sensing (QS) systems were severely affected in response to the tea-leaf phylloplane. Collectively, these results suggest that compounds in tea leaves, especially gamma-aminobutyrate (GABA) and catechins, interfered with plant-pathogen attachment, essential minerals (iron and potassium) acquisition, and quorum quenching (QQ) induction, which may have been major contributing factors to hinder AMT efficiency of the tea plant.
Collapse
Affiliation(s)
- Ke Jin
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Na Tian
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Jorge Freire da Silva Ferreira
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA 92507, USA; (J.F.d.S.F.); (D.S.)
| | - Devinder Sandhu
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA 92507, USA; (J.F.d.S.F.); (D.S.)
| | - Lizheng Xiao
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
| | - Meiyi Gu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
| | - Yiping Luo
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Xiangqin Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Guizhi Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Zhonghua Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Jianan Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| | - Shuoqian Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (K.J.); (N.T.); (L.X.); (M.G.)
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (Y.L.); (X.Z.); (G.L.)
| |
Collapse
|
4
|
Singhi D, Srivastava P. How similar or dissimilar cells are produced by bacterial cell division? Biochimie 2020; 176:71-84. [DOI: 10.1016/j.biochi.2020.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
|
5
|
Toro-Nahuelpan M, Corrales-Guerrero L, Zwiener T, Osorio-Valeriano M, Müller FD, Plitzko JM, Bramkamp M, Thanbichler M, Schüler D. A gradient-forming MipZ protein mediating the control of cell division in the magnetotactic bacterium Magnetospirillum gryphiswaldense. Mol Microbiol 2019; 112:1423-1439. [PMID: 31419361 DOI: 10.1111/mmi.14369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cell division needs to be tightly regulated and closely coordinated with other cellular processes to ensure the generation of fully viable offspring. Here, we investigate division site placement by the cell division regulator MipZ in the alphaproteobacterium Magnetospirillum gryphiswaldense, a species that forms linear chains of magnetosomes to navigate within the geomagnetic field. We show that M. gryphiswaldense contains two MipZ homologs, termed MipZ1 and MipZ2. MipZ2 localizes to the division site, but its absence does not cause any obvious phenotype. MipZ1, by contrast, forms a dynamic bipolar gradient, and its deletion or overproduction cause cell filamentation, suggesting an important role in cell division. The monomeric form of MipZ1 interacts with the chromosome partitioning protein ParB, whereas its ATP-dependent dimeric form shows non-specific DNA-binding activity. Notably, both the dimeric and, to a lesser extent, the monomeric form inhibit FtsZ polymerization in vitro. MipZ1 thus represents a canonical gradient-forming MipZ homolog that critically contributes to the spatiotemporal control of FtsZ ring formation. Collectively, our findings add to the view that the regulatory role of MipZ proteins in cell division is conserved among many alphaproteobacteria. However, their number and biochemical properties may have adapted to the specific needs of the host organism.
Collapse
Affiliation(s)
- Mauricio Toro-Nahuelpan
- Institute of Microbiology, University of Bayreuth, Bayreuth, Germany.,Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Planegg-Martinsried, Germany
| | | | - Theresa Zwiener
- Institute of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Manuel Osorio-Valeriano
- Faculty of Biology, Philipps-Universität, Marburg, Germany.,Max Planck Fellow Group "Bacterial Cell Biology", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Department of Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Martin Thanbichler
- Faculty of Biology, Philipps-Universität, Marburg, Germany.,Max Planck Fellow Group "Bacterial Cell Biology", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Center for Synthetic Microbiology, Marburg, Germany
| | - Dirk Schüler
- Institute of Microbiology, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
6
|
Howell M, Aliashkevich A, Sundararajan K, Daniel JJ, Lariviere PJ, Goley ED, Cava F, Brown PJB. Agrobacterium tumefaciens divisome proteins regulate the transition from polar growth to cell division. Mol Microbiol 2019; 111:1074-1092. [PMID: 30693575 DOI: 10.1111/mmi.14212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2019] [Indexed: 01/06/2023]
Abstract
The mechanisms that restrict peptidoglycan biosynthesis to the pole during elongation and re-direct peptidoglycan biosynthesis to mid-cell during cell division in polar-growing Alphaproteobacteria are largely unknown. Here, we explore the role of early division proteins of Agrobacterium tumefaciens including three FtsZ homologs, FtsA and FtsW in the transition from polar growth to mid-cell growth and ultimately cell division. Although two of the three FtsZ homologs localize to mid-cell, exhibit GTPase activity and form co-polymers, only one, FtsZAT , is required for cell division. We find that FtsZAT is required not only for constriction and cell separation, but also for initiation of peptidoglycan synthesis at mid-cell and cessation of polar peptidoglycan biosynthesis. Depletion of FtsZAT in A. tumefaciens causes a striking phenotype: cells are extensively branched and accumulate growth active poles through tip splitting events. When cell division is blocked at a later stage by depletion of FtsA or FtsW, polar growth is terminated and ectopic growth poles emerge from mid-cell. Overall, this work suggests that A. tumefaciens FtsZ makes distinct contributions to the regulation of polar growth and cell division.
Collapse
Affiliation(s)
- Matthew Howell
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65203, USA
| | - Alena Aliashkevich
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Kousik Sundararajan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeremy J Daniel
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65203, USA
| | - Patrick J Lariviere
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Felipe Cava
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65203, USA
| |
Collapse
|
7
|
Figueroa-Cuilan WM, Brown PJB. Cell Wall Biogenesis During Elongation and Division in the Plant Pathogen Agrobacterium tumefaciens. Curr Top Microbiol Immunol 2018; 418:87-110. [PMID: 29808336 DOI: 10.1007/82_2018_92] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A great diversity of bacterial cell shapes can be found in nature, suggesting that cell wall biogenesis is regulated both spatially and temporally. Although Agrobacterium tumefaciens has a rod-shaped morphology, the mechanisms underlying cell growth are strikingly different than other well-studied rod-shaped bacteria including Escherichia coli. Technological advances, such as the ability to deplete essential genes and the development of fluorescent D-amino acids, have enabled recent advances in our understanding of cell wall biogenesis during cell elongation and division of A. tumefaciens. In this review, we address how the field has evolved over the years by providing a historical overview of cell elongation and division in rod-shaped bacteria. Next, we summarize the current understanding of cell growth and cell division processes in A. tumefaciens. Finally, we highlight the need for further research to answer key questions related to the regulation of cell wall biogenesis in A. tumefaciens.
Collapse
Affiliation(s)
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|