1
|
Ejaz S, Paracha RZ, Ejaz S, Jamal Z. Antibody designing against IIIabc junction (JIIIabc) of HCV IRES through affinity maturation; RNA-Antibody docking and interaction analysis. PLoS One 2023; 18:e0291213. [PMID: 37682810 PMCID: PMC10490861 DOI: 10.1371/journal.pone.0291213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Hepatitis C virus is a single-stranded RNA based virus which can cause chronic HCV and hepatocellular carcinoma. HCV genotype 3a has relatively higher rate of fibrosis progression, prevalence of steatosis and incidence of HCC. Despite HCVs variation in genomic sequence, the 5' untranslated region containing internal ribosome entry site (IRES) is highly conserved among all genotypes. It is responsible for translation and initiation of the viral protein. In present study, IRES was targeted by designing variants of reported antigen binding fragment (Fab) through affinity maturation approach. Affinity maturation strategy allowed the rational antibody designing with better biophysical properties and antibody-antigen binding interactions. Complementarity determining regions of reported Fab (wild type) were assessed and docked with IRES. Best generated model of Fab was selected and subjected to alanine scanning Three sets of insilico mutations for variants (V) designing were selected; single (1-71), double (a-j) and triple (I-X). Redocking of IRES-Fab variants consequently enabled the discovery of three variants exhibiting better docking score as compared to the wild type Fab. V1, V39 and V4 exhibited docking scores of -446.51, -446.52 and-446.29 kcal/mol respectively which is better as compared to the wild type Fab that exhibited the docking score of -351.23 kcal/mol. Variants exhibiting better docking score were screened for aggregation propensity by assessing the aggregation prone regions in Fab structure. Total A3D scores of wild type Fab, V1, V4 and V39 were predicted as -315.325, -312.727, -316.967 and -317.545 respectively. It is manifested that solubility of V4 and V39 is comparable to wild type Fab. In future, development and invitro assessment of these promising Fab HCV3 variants is aimed.
Collapse
Affiliation(s)
- Saima Ejaz
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology, Islamabad, Pakistan
| | - Sadaf Ejaz
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Zunera Jamal
- Department of Virology, National Institutes of Health, Islamabad, Pakistan
| |
Collapse
|
2
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
3
|
AlMalki WH, Shahid I, Abdalla AN, Johargy AK, Ahmed M, Hassan S. Virological surveillance, molecular phylogeny, and evolutionary dynamics of hepatitis C virus subtypes 1a and 4a isolates in patients from Saudi Arabia. Saudi J Biol Sci 2021; 28:1664-1677. [PMID: 33732052 PMCID: PMC7938134 DOI: 10.1016/j.sjbs.2020.11.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022] Open
Abstract
Hepatitis C virus (HCV) subtypes are pre-requisite to predict endemicity, epidemiology, clinical pathogenesis, diagnosis, and treatment of chronic hepatitis C infection. HCV genotypes 4 and 1 are the most prevalent in Saudi Arabia, however; less consensus data exist on circulating HCV subtypes in infected individuals. This study was aimed to demonstrate the virological surveillance, phylogenetic analysis, and evolutionary relationship of HCV genotypes 4 and 1 subtypes in the Saudi population with the rest of the world. Fifty-five clinical specimens from different parts of the country were analyzed based on 5′ untranslated region (5′ UTR) amplification, direct sequencing, and for molecular evolutionary genetic analysis. Pair-wise comparison and multiple sequence alignment were performed to determine the nucleotide conservation, nucleotide variation, and positional mutations within the sequenced isolates. The evolutionary relationship of sequenced HCV isolates with referenced HCV strains from the rest of the world was established by computing pairwise genetic distances and generating phylogenetic trees. Twelve new sequences were submitted to GenBank, NCBI database. The results revealed that HCV subtype 4a is more prevalent preceded by 1a in the Saudi population. Molecular phylogeny predicts the descendants’ relationship of subtype 4a isolates very close to Egyptian prototype HCV strains, while 1a isolates were homogeneous and clustering to the European and North American genetic lineages. The implications of this study highlight the importance of HCV subtyping as an indispensable tool to monitor the distribution of viral strains, to determine the risk factors of infection prevalence, and to investigate clinical differences of treatment outcomes among intergenotypic and intragenotypic isolates in the treated population.
Collapse
Affiliation(s)
- Waleed H AlMalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Medicine, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Ayman K Johargy
- Medical Microbiology Department, Faculty of Medicine, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Muhammad Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Sajida Hassan
- Viral Hepatitis Program, Laboratory of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
AlMalki WH, Shahid I, Abdalla AN, Johargy AK, Ahmed M, Hassan S. Consensus small interfering RNA targeted to stem-loops II and III of IRES structure of 5' UTR effectively inhibits virus replication and translation of HCV sub-genotype 4a isolates from Saudi Arabia. Saudi J Biol Sci 2021; 28:1109-1122. [PMID: 33424405 PMCID: PMC7785429 DOI: 10.1016/j.sjbs.2020.11.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Being the most conserved region of all hepatitis C virus (HCV) genotypes and sub-genotypes, the 5′ untranslated region (5′ UTR) of HCV genome signifies it’s importance as a potential target for anti-mRNA based treatment strategies like RNA interference. The advent and approval of first small interference RNA (siRNA) -based treatment of hereditary transthyretin-mediated amyloidosis for clinical use has raised the hopes to test this approach against highly susceptible viruses like HCV. We investigated the antiviral potential of consensus siRNAs targeted to stem-loops (SLs) II and III nucleotide motifs of internal ribosome entry site (IRES) structure within 5′ UTR of HCV sub-genotype 4a isolates from the Saudi population. siRNA inhibitory effects on viral replication and translation of full-length HCV genome were determined in a competent, persistent, and reproducible Huh-7 cell culture system maintained for one month. Maximal inhibition of RNA transcript levels of HCV-IRES clones and silencing of viral replication and translation of full-length virus genome was demonstrated by siRNAs targeted to SL-III nucleotide motifs of IRES in Huh-7 cells. siRNA Usi-169 decreased 5′ UTR RNA transcript levels of HCV-IRES clones up to 75% (P < 0.001) at 24 h post-transfection and 80% (P < 0.001) at 48 h treatment in Huh-7 cells. 5′ UTR-tagged GFP protein expression was significantly decreased from 70 to 80% in Huh-7 cells co-transfected with constructed vectors (i.e. pCR3.1/GFP/5′ UTR) and siRNA Usi-169 at 24 h and 48 h time-span. Viral replication was inhibited by more than 90% (P < 0.001) and HCV core (C) and hypervariable envelope glycoproteins (E1 and E2) expression was also significantly degraded by intracytoplasmic siRNA Usi-169 activity in persistent Huh-7 cell culture system. The findings unveil that siRNAs targeted to 5′ UTR-IRES of HCV sub-genotype 4a Saudi isolates show potent silencing of HCV replication and blocking of viral translation in a persistent in-vitro Huh-7 tissue culture system. Furthermore, we also elucidated that siRNA silencing of viral mRNA not only inhibits viral replication but also blocks viral translation. The results suggest that siRNA potent antiviral activity should be considered as an effective anti-mRNA based treatment strategies for further in-vivo investigations against less studied and harder-to-treat HCV sub-genotype 4a isolates in Saudi Arabia.
Collapse
Affiliation(s)
- Waleed H AlMalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Postal Code 21955, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Postal Code 21955, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah Postal Code 21955, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Postal Code 21955, Saudi Arabia
| | - Ayman K Johargy
- Medical Microbiology Department, Faculty of Medicine, Umm Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah Postal Code 21955, Saudi Arabia
| | - Muhammad Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Postal Code 21955, Saudi Arabia
| | - Sajida Hassan
- Viral Hepatitis Program, Laboratory of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Analytical ultracentrifuge: an ideal tool for characterization of non-coding RNAs. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:809-818. [PMID: 33067686 DOI: 10.1007/s00249-020-01470-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
Analytical ultracentrifugation (AUC) has emerged as a robust and reliable technique for biomolecular characterization with extraordinary sensitivity. AUC is widely used to study purity, conformational changes, biomolecular interactions, and stoichiometry. Furthermore, AUC is used to determine the molecular weight of biomolecules such as proteins, carbohydrates, and DNA and RNA. Due to the multifaceted role(s) of non-coding RNAs from viruses, prokaryotes, and eukaryotes, research aimed at understanding the structure-function relationships of non-coding RNAs is rapidly increasing. However, due to their large size, flexibility, complicated secondary structures, and conformations, structural studies of non-coding RNAs are challenging. In this review, we are summarizing the application of AUC to evaluate the homogeneity, interactions, and conformational changes of non-coding RNAs from adenovirus as well as from Murray Valley, Powassan, and West Nile viruses. We also discuss the application of AUC to characterize eukaryotic long non-coding RNAs, Xist, and HOTAIR. These examples highlight the significant role AUC can play in facilitating the structural determination of non-coding RNAs and their complexes.
Collapse
|
6
|
Davila-Calderon J, Patwardhan NN, Chiu LY, Sugarman A, Cai Z, Penutmutchu SR, Li ML, Brewer G, Hargrove AE, Tolbert BS. IRES-targeting small molecule inhibits enterovirus 71 replication via allosteric stabilization of a ternary complex. Nat Commun 2020; 11:4775. [PMID: 32963221 PMCID: PMC7508794 DOI: 10.1038/s41467-020-18594-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Enterovirus 71 (EV71) poses serious threats to human health, particularly in Southeast Asia, and no drugs or vaccines are available. Previous work identified the stem loop II structure of the EV71 internal ribosomal entry site as vital to viral translation and a potential target. After screening an RNA-biased library using a peptide-displacement assay, we identify DMA-135 as a dose-dependent inhibitor of viral translation and replication with no significant toxicity in cell-based studies. Structural, biophysical, and biochemical characterization support an allosteric mechanism in which DMA-135 induces a conformational change in the RNA structure that stabilizes a ternary complex with the AUF1 protein, thus repressing translation. This mechanism is supported by pull-down experiments in cell culture. These detailed studies establish enterovirus RNA structures as promising drug targets while revealing an approach and mechanism of action that should be broadly applicable to functional RNA targeting. Human enterovirus 71 (EV71) contains an internal ribosome entry site (IRES) that promotes translation of viral RNA. Here the authors show that an antiviral small molecule DMA-135 binds to the EV71 IRES RNA, inducing conformational change and stabilizing a ternary complex to repress translation.
Collapse
Affiliation(s)
| | | | - Liang-Yuan Chiu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew Sugarman
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Zhengguo Cai
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | - Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| | | | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Fadl N, Salem TZ. Hepatitis C genotype 4: A report on resistance-associated substitutions in NS3, NS5A, and NS5B genes. Rev Med Virol 2020; 30:e2120. [PMID: 32478480 DOI: 10.1002/rmv.2120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
AUTHOR CONTRIBUTION FN performed the literature review and wrote the manuscript; STZ coauthored, edited, and reviewed the manuscript. ABSTRACT Treatment response in Hepatitis C virus (HCV) has generated varied effects in patients. Recently, nonresponsive and relapse patients related to host and genotype variabilities have been reported in clinical trials. However, these trials included minimal sample sizes of patients with genotype 4, the most prevalent genotype in Egypt and the Middle East, compared with genotypes 1 and 2. The genetic variabilities that have been detected within the HCV genes, especially the ones associated with genotype 4, and are linked to treatment response, will be the focus of this review with emphasis on direct acting antiviral agents. In addition, the major studies and clinical trials performed globally and their inclusivity of genotype 4 are reported. This review also delineates future study areas and missing data that need further investigation when it comes to genotype 4.
Collapse
Affiliation(s)
- Nahla Fadl
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Tamer Z Salem
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Department of Microbial Genetics, AGERI, ARC, Giza, Egypt
| |
Collapse
|