1
|
Gerlicz W, Sypka M, Jodłowska I, Białkowska AM. Isolation, Selection, and Identification of Keratinolytic Bacteria for Green Management of Keratin Waste. Molecules 2024; 29:3380. [PMID: 39064958 PMCID: PMC11280386 DOI: 10.3390/molecules29143380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The volume of difficult-to-process keratin waste is increasing as a result of rising global meat production. If not properly managed, this waste can contribute to environmental pollution and pose a threat to human and animal welfare. An interesting and more sustainable alternative is therefore the bioconversion of keratin using microorganisms and their enzymes. This work aimed to isolate bacteria from soil samples and zoonotic keratins and to evaluate their enzymatic capacity to degrade α- and β-keratin wastes. A total of 113 bacterial strains were isolated from environmental samples and subjected to taxonomic identification using the MALDI-TOF MS technique and to a two-step screening for proteolytic and keratinolytic activity. The ability to degrade a β-rich keratin substrate was observed in almost all of the strains isolated from soil and horsehairs. In contrast, when an α-rich keratin substrate was used, the highest levels of hydrolysis were observed only for Ker39, Ker66, Ker85, Ker100, and Ker101. Strains with the highest biodegradation potential were identified using molecular biology methods. Phylogenetic analysis of 16S rDNA gene sequences allowed the assignment of selected keratinolytic microorganisms to the genera Exiguobacterium, Priestia, Curtobacterium, Stenotrophomonas, Bacillus, Kocuria, or Pseudomonas. The results of this study are a promising precursor for the development of new, more sustainable methods of managing keratin waste to produce high-value hydrolysates.
Collapse
Affiliation(s)
| | | | | | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland; (W.G.); (M.S.); (I.J.)
| |
Collapse
|
2
|
Lee RT, Evanowski RL, Greenbaum HE, Pawloski DA, Wiedmann M, Martin NH. Troubleshooting high laboratory pasteurization counts in organic raw milk requires characterization of dominant thermoduric bacteria, which includes nonsporeformers as well as sporeformers. J Dairy Sci 2024; 107:3478-3491. [PMID: 38246545 DOI: 10.3168/jds.2023-24330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Laboratory pasteurization count (LPC) enumerates thermoduric bacteria and is one parameter used to assess raw milk quality. No regulatory limit has presently been set for LPC, but LPC data are used by some dairy processors and cooperatives to designate raw milk quality premiums paid to farmers and may also be used for troubleshooting bacterial contamination issues. Although it is occasionally used as a proxy for levels of bacterial spores in raw milk, limited knowledge is available on the types of organisms that are enumerated by LPC in contemporary raw milk supplies. Although historical studies have reported that thermoduric bacteria quantified by LPC may predominantly represent gram-positive cocci, updated knowledge on microbial populations enumerated by LPC in contemporary organic raw milk supplies is needed. To address this gap, organic raw milk samples from across the United States (n = 94) were assessed using LPC, and bacterial isolates were characterized. LPC ranged from below detection (<0.70 log cfu/mL) to 4.07 log cfu/mL, with a geometric mean of 1.48 log cfu/mL. Among 380 isolates characterized by 16S rDNA sequencing, 52.6%, 44.5%, and 2.4% were identified as gram-positive sporeformers, gram-positive nonsporeformers, and gram-negatives, respectively; 0.5% could not be categorized into those groups because they could only be assigned a higher level of taxonomy. Isolates identified as gram-positive sporeformers were predominantly Bacillus (168/200), and gram-positive nonsporeformers were predominantly Brachybacterium (56/169) and Kocuria (47/169). To elucidate if the LPC level can be an indicator of the type of thermoduric (e.g., sporeforming bacteria) present in raw milk, we evaluated the proportion of sporeformers in raw milk samples with LPC of ≤100 cfu/mL, 100 to 200 cfu/mL, and ≥200 cfu/mL (51%, 67%, and 35%), showing a trend for sporeformers to represent a smaller proportion of the total thermoduric population when LPC increases, although overall linear regression showed no significant association between the proportion of sporeformers and the LPC concentration. Hence, LPC level alone provides no insight into the makeup of the thermoduric population in raw milk, and further characterization is needed to elucidate the bacterial drivers of elevated LPC in raw milk. We therefore further characterized the isolates from this study using MALDI-TOF mass spectrometry (MALDI-TOF MS), a rapid microbial identification tool that is more readily available to dairy producers than 16S rDNA PCR and sequencing. Although our data indicated agreement between 16S rDNA sequencing and MALDI-TOF MS for 66.6% of isolates at the genus level, 24.2% and 9.2% could not be reliably identified or were mischaracterized using MALDI-TOF MS, respectively. This suggests that further optimization of this method is needed to allow for accurate characterization of thermoduric organisms commonly found in raw milk. Ultimately, our study provides a contemporary perspective on thermoduric bacteria selected by the LPC method and establishes that the LPC alone is not sufficient for identifying the bacterial drivers of LPC levels. Further development of rapid characterization methods that are accessible to producers, cooperatives, and processors will support milk quality troubleshooting efforts and ultimately improve outcomes for dairy industry community members.
Collapse
Affiliation(s)
- Renee T Lee
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - Rachel L Evanowski
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - Halle E Greenbaum
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - Deborah A Pawloski
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Cobleskill, NY 12043
| | - Martin Wiedmann
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - Nicole H Martin
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
3
|
Jawaid MZ, Ashfaq MY, Al-Ghouti M, Zouari N. Insights into population adaptation and biodiversity of lactic acid bacteria in challenged date palm leaves silaging, using MALDI-TOF MS. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100235. [PMID: 38660337 PMCID: PMC11039324 DOI: 10.1016/j.crmicr.2024.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
The study focused on isolating indigenous Qatari lactic acid bacteria (LAB) from various challenged date palm tree leaf silages to construct a comprehensive strain collection, useful to study the diversity of these strains following their adaptation to the uncommon silage. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was employed for strain identification and differentiation. The diversity of LAB populations and strains was assessed through principal component analysis (PCA) and dendrogram analyses. A total of 88 LAB isolates were obtained from silages of fresh palm leaves, silage of mixed leaves and dairy feed, along with fresh palm tree leaves, and dairy feed, adapted to local harsh environments. These isolates were categorized according to the new classification of 2020, belonging to genera of Pediococcus, Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, Companilactobacillus farciminis, Limosilactobacillus oris, Limosilactobacillus vaginalis, Lactiplantibacillus pentosus and Lactobacillus johnsonii. Pediococcus was the most prevalent genus, falling mostly within the species Pediococcus lolii. MALDI-TOF MS protein profiles, PCA, and dendrogram analyses successfully grouped the LAB isolates into five distinctive clusters based on the protein's similarities. The high diversity of the indigenous LAB in spontaneous palm leaf silages demonstrated their adaptation and mutualistic interactions, forming robust consortia that ensure the quality of the silage. The straightforward, quick, and accurate identification of LAB in this silage using MALDI-TOF MS presents a valuable approach for formulating LAB consortia for silaging harsh agricultural by-products.
Collapse
Affiliation(s)
- Muhammad Zaid Jawaid
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar
| | - Mohammad Yousaf Ashfaq
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar
| | - Mohammad Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha, Qatar
| | | |
Collapse
|
4
|
Bielen A, Babić I, Vuk Surjan M, Kazazić S, Šimatović A, Lajtner J, Udiković-Kolić N, Mesić Z, Hudina S. Comparison of MALDI-TOF mass spectrometry and 16S rDNA sequencing for identification of environmental bacteria: a case study of cave mussel-associated culturable microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21752-21764. [PMID: 38393570 DOI: 10.1007/s11356-024-32537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is routinely used as a rapid and cost-effective method for pathogen identification in clinical settings. In comparison, its performance in other microbiological fields, such as environmental microbiology, is still being tested, although isolates of environmental microbes are essential for in-depth in vivo studies of their biology, including biotechnological applications. We investigated the applicability of MALDI-TOF MS for the identification of bacterial isolates from a highly oligotrophic environment - Dinaric Karst caves, which likely harbor specific microorganisms. We cultured bacteria from the shell surface of the endemic mussel Congeria jalzici, one of the three known cave mussels in the world that lives in the Dinaric karst underground. The bacterial isolates were obtained by swabbing the shell surface of mussels living in microhabitats with different amounts of water: 10 air-exposed mussels, 10 submerged mussels, and 10 mussels in the hygropetric zone. A collection of 87 pure culture isolates was obtained, mostly belonging to the phylum Bacillota (72%), followed by Pseudomonadota (16%), Actinomycetota (11%), and Bacteroidota (1%). We compared the results of MALDI-TOF MS identification (Bruker databases DB-5989 and version 11, v11) with the results of 16S rDNA-based phylogenetic analysis, a standard procedure for bacterial identification. Identification to the genus level based on 16S rDNA was possible for all isolates and clearly outperformed the results from MALDI-TOF MS, although the updated MALDI-TOF MS database v11 gave better results than the DB-5989 version (85% versus 62%). However, identification to the species-level by 16S rDNA sequencing was achieved for only 17% of isolates, compared with 14% and 40% for the MALDI-TOF MS databases DB-5989 and v11 database, respectively. In conclusion, our results suggest that continued enrichment of MALDI-TOF MS libraries will result with this method soon becoming a rapid, accurate, and efficient tool for assessing the diversity of culturable bacteria from different environmental niches.
Collapse
Affiliation(s)
- Ana Bielen
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Ivana Babić
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Marija Vuk Surjan
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | | | - Ana Šimatović
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Jasna Lajtner
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | | | - Zrinka Mesić
- Oikon Ltd., Trg Senjskih Uskoka 1-2, 10020, Zagreb, Croatia
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| |
Collapse
|
5
|
Song M, Li Q, Liu C, Wang P, Qin F, Zhang L, Fan Y, Shao H, Chen G, Yang M. A comprehensive technology strategy for microbial identification and contamination investigation in the sterile drug manufacturing facility-a case study. Front Microbiol 2024; 15:1327175. [PMID: 38410390 PMCID: PMC10895062 DOI: 10.3389/fmicb.2024.1327175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Objective A comprehensive strategy for microbial identification and contamination investigation during sterile drug manufacturing was innovatively established in this study, mainly based on MALDI-TOF MS for the identification and complemented by sequencing technology on strain typing. Methods It was implemented to monitor the bacterial contamination of a sterile drug manufacturing facility, including its bacterial distribution features and patterns. In three months, two hundred ninety-two samples were collected covering multiple critical components of raw materials, personnel, environment, and production water. Results Based on our strategy, the bacterial profile across the production process was determined: 241/292 bacterial identities were obtained, and Staphylococcus spp. (40.25%), Micrococcus spp.(11.20%), Bacillus spp. (8.30%), Actinobacteria (5.81%), and Paenibacillus spp. (4.56%) are shown to be the most dominant microbial contaminants. With 75.8% species-level and 95.4% genus-level identification capability, MALDI-TOF MS was promising to be a first-line tool for environmental monitoring routine. Furthermore, to determine the source of the most frequently occurring Staphylococcus cohnii, which evidenced a widespread presence in the entire process, a more discriminating S. cohnii whole-genome SNP typing method was developed to track the transmission routes. Phylogenetic analysis based on SNP results indicated critical environment contamination is highly relevant to personnel flow in this case. The strain typing results provide robust and accurate information for the following risk assessment step and support effective preventive and corrective measures. Conclusion In general, the strategy presented in this research will facilitate the development of improved production and environmental control processes for the pharmaceutical industry, and give insights about how to provide more sound and reliable evidence for the optimization of its control program.
Collapse
Affiliation(s)
- Minghui Song
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
- Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai, China
| | - Qiongqiong Li
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
- Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai, China
| | - Chengzhi Liu
- Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou, China
| | - Peien Wang
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
- Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai, China
| | - Feng Qin
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Lichun Zhang
- Shanghai SPH New Asia Pharmaceutical Co., Ltd., Shanghai, China
| | - Yiling Fan
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
- Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai, China
- China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai, China
| | - Hong Shao
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
- Shanghai Quality Inspection and Testing Center for Innovative Biological Products, Shanghai, China
| | - Guiliang Chen
- China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai, China
- Shanghai Center for Drug Evaluation and Inspection, Shanghai, China
| | - Meicheng Yang
- NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
- China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai, China
| |
Collapse
|
6
|
Fernández Vecilla D, Roche Matheus MP, Urrutikoetxea Gutiérrez M, Iglesias Hidalgo G, Aspichueta Vivanco C, Díaz de Tuesta Del Arco JL. Brain abscess caused by Porphyromonas gingivalis and Eubacterium nodatum mimicking acute stroke. Anaerobe 2023; 84:102801. [PMID: 38007215 DOI: 10.1016/j.anaerobe.2023.102801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
We described a case of a 65-year-old man with a brain abscess caused by Porphyromonas gingivalis and Eubacterium nodatum. The patient presented right central facial nerve palsy, mutism and right hemiparesis at the examination. The patient underwent a left frontal craniotomy with evacuation of the brain abscess. Specimens were collected for microbiological analysis and intravenous treatment was started with levetiracetam, dexamethasone, meropenem (1 g/8 h) and linezolid (600 mg/12 h). After identification of anaerobic bacteria the antibiotic treatment was changed to piperacillin/tazobactam (4 g/0,5 g/8 h), fulfilling 8 weeks of antibiotic with good clinical and radiological evolution.
Collapse
Affiliation(s)
- Domingo Fernández Vecilla
- Clinical Microbiology Service, Laredo Regional Hospital, Av. Derechos Humanos, 40, 39770, Laredo, Cantabria, Spain.
| | - Mary Paz Roche Matheus
- Clinical Microbiology Service, Basurto University Hospital, 18 Avenida Montevideo, 48013, Bilbao, Biscay, Spain; Biocruces Bizkaia Health Research Institute, Cruces Plaza, 48903, Biscay, Spain
| | - Mikel Urrutikoetxea Gutiérrez
- Clinical Microbiology Service, Basurto University Hospital, 18 Avenida Montevideo, 48013, Bilbao, Biscay, Spain; Biocruces Bizkaia Health Research Institute, Cruces Plaza, 48903, Biscay, Spain
| | | | - Cristina Aspichueta Vivanco
- Clinical Microbiology Service, Basurto University Hospital, 18 Avenida Montevideo, 48013, Bilbao, Biscay, Spain; Biocruces Bizkaia Health Research Institute, Cruces Plaza, 48903, Biscay, Spain
| | - José Luis Díaz de Tuesta Del Arco
- Clinical Microbiology Service, Basurto University Hospital, 18 Avenida Montevideo, 48013, Bilbao, Biscay, Spain; Biocruces Bizkaia Health Research Institute, Cruces Plaza, 48903, Biscay, Spain
| |
Collapse
|
7
|
Farhat TM, Al Disi ZA, Ashfaq MY, Zouari N. Study of diversity of mineral-forming bacteria in sabkha mats and sediments of mangrove forest in Qatar. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 39:e00811. [PMID: 37663542 PMCID: PMC10470404 DOI: 10.1016/j.btre.2023.e00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/13/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
The involvement of microorganisms in carbonate minerals and modern dolomite formation in evaporitic environments occupied with microbial mats (i.e., sabkha) and in mangrove forests is evidenced, while its potential diversity requires further elucidation. Microorganisms can create supersaturated microenvironments facilitating the formation of various carbonate minerals through specific metabolic pathways. This is particularly important in arid environments, where deposition and sedimentary structures can occur. This study investigated the biodiversity of halophilic, heterotrophic, and aerobic mineral-forming bacteria in mangrove forests and living and decaying mats of Qatari sabkha. The diversity study was performed at the protein level using MALDI-TOF mass spectrometry protein profiles combined with principal component analysis (PCA), which revealed a high diversity of isolated strains at the taxonomy and protein profile levels. The diversity of the minerals formed in pure cultures was evidenced by SEM/EDS and XRD analysis. Different types of carbonate minerals (calcium carbonate, magnesium carbonates, and high-magnesium calcites) were formed in pure cultures of the studied strains, which might explain their occurrence in the bulk composition of the sediments from where the strains were isolated. These results illuminate the diversity of biological mineral-formation processes in the extreme environments of Qatari sabkhas and mangroves, explaining the high diversity of minerals in these environments.
Collapse
Affiliation(s)
- Toka Mahmoud Farhat
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha Qatar
| | - Zulfa Ali Al Disi
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha Qatar
- Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammad Yousaf Ashfaq
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha Qatar
| | - Nabil Zouari
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O.B 2713, Doha Qatar
| |
Collapse
|
8
|
Schubert WW, Seto EP, Hinzer AA, Guan L. Identification and Archive of Mars 2020 Spacecraft Microbial Isolates. ASTROBIOLOGY 2023; 23:835-845. [PMID: 37584746 DOI: 10.1089/ast.2022.0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
To support NASA's Mars 2020 mission, bioassays were performed to ensure the biological cleanliness of the spacecraft, instruments, and hardware assembly areas. Bioassays began in May 2014, as the first components were assembled, and continued until their launch in July 2020. Over this 6-year period, 1811 bioassay sampling sessions were conducted. To understand the nature of microbiological presence on and around the spacecraft, an archive of organisms resulting from the bioassays was assembled. This archive included 4232 microbial specimens preserved as frozen stocks. To date, more than 3489 microbial isolates have been tested by MALDI-TOF mass spectrometry analysis. Identifications were based on high confidence level matches to known microorganisms in the reference spectra database where 39 distinct genera were identified. Gram-positive bacteria were isolated almost exclusively. Most, but not all, were spore-forming genera. The most prevalent genera isolated in order of frequency were Bacillus, Priestia, Paenibacillus, Staphylococcus, Micrococcus, and Streptomyces. Within the largely represented Bacillus-like genera, the five most prevalent species were cereus, licheniformis, horneckiae, subtilis, and safensis.
Collapse
Affiliation(s)
- Wayne W Schubert
- Biotechnology and Planetary Protection Group, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, California, USA
| | - Emily P Seto
- Biotechnology and Planetary Protection Group, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, California, USA
| | - Akemi A Hinzer
- Department of Chemistry and Biochemistry, California State University, Northridge, California, USA
| | - Lisa Guan
- Biotechnology and Planetary Protection Group, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, California, USA
| |
Collapse
|
9
|
Draft Genome Sequences of Spacecraft-Associated Microbes Isolated from Six NASA Missions. Microbiol Resour Announc 2023; 12:e0101122. [PMID: 36840549 PMCID: PMC10019167 DOI: 10.1128/mra.01011-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Whole-genome sequencing can be used to better understand and assess the functional abilities of microorganisms isolated from spacecraft hardware and associated surfaces for planetary protection (PP) purposes. We sequenced 191 isolates from 6 spaceflight missions with PP requirements and identified them using Illumina-based sequencing methods and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry.
Collapse
|
10
|
Asare PT, Lee CH, Hürlimann V, Teo Y, Cuénod A, Akduman N, Gekeler C, Afrizal A, Corthesy M, Kohout C, Thomas V, de Wouters T, Greub G, Clavel T, Pamer EG, Egli A, Maier L, Vonaesch P. A MALDI-TOF MS library for rapid identification of human commensal gut bacteria from the class Clostridia. Front Microbiol 2023; 14:1104707. [PMID: 36896425 PMCID: PMC9990839 DOI: 10.3389/fmicb.2023.1104707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Microbial isolates from culture can be identified using 16S or whole-genome sequencing which generates substantial costs and requires time and expertise. Protein fingerprinting via Matrix-assisted Laser Desorption Ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used for rapid bacterial identification in routine diagnostics but shows a poor performance and resolution on commensal bacteria due to currently limited database entries. The aim of this study was to develop a MALDI-TOF MS plugin database (CLOSTRI-TOF) allowing for rapid identification of non-pathogenic human commensal gastrointestinal bacteria. Methods We constructed a database containing mass spectral profiles (MSP) from 142 bacterial strains representing 47 species and 21 genera within the class Clostridia. Each strain-specific MSP was constructed using >20 raw spectra measured on a microflex Biotyper system (Bruker-Daltonics) from two independent cultures. Results For validation, we used 58 sequence-confirmed strains and the CLOSTRI-TOF database successfully identified 98 and 93% of the strains, respectively, in two independent laboratories. Next, we applied the database to 326 isolates from stool of healthy Swiss volunteers and identified 264 (82%) of all isolates (compared to 170 (52.1%) with the Bruker-Daltonics library alone), thus classifying 60% of the formerly unknown isolates. Discussion We describe a new open-source MSP database for fast and accurate identification of the Clostridia class from the human gut microbiota. CLOSTRI-TOF expands the number of species which can be rapidly identified by MALDI-TOF MS.
Collapse
Affiliation(s)
- Paul Tetteh Asare
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Chi-Hsien Lee
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Vera Hürlimann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Youzheng Teo
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clinical Bacteriology and Mycology, University Hospital of Basel, Basel, Switzerland
| | - Nermin Akduman
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany.,Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Cordula Gekeler
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany.,Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Afrizal Afrizal
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Myriam Corthesy
- Institute of Microbiology of the University of Lausanne, University Hospital Centre (CHUV), Lausanne, Switzerland
| | - Claire Kohout
- Duchossois Family Institute, Division of Infectious Diseases and Global Health, University of Chicago, Chicago, IL, United States
| | | | | | - Gilbert Greub
- Institute of Microbiology of the University of Lausanne, University Hospital Centre (CHUV), Lausanne, Switzerland
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Eric G Pamer
- Duchossois Family Institute, Division of Infectious Diseases and Global Health, University of Chicago, Chicago, IL, United States
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.,Clinical Bacteriology and Mycology, University Hospital of Basel, Basel, Switzerland
| | - Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany.,Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Costa LVD, Miranda RVDSLD, Reis CMFD, Andrade JMD, Cruz FV, Frazão AM, Fonseca ELD, Ramos JN, Brandão MLL, Vieira VV. MALDI-TOF MS database expansion for identification of Bacillus and related genera isolated from a pharmaceutical facility. J Microbiol Methods 2022; 203:106625. [PMID: 36403787 DOI: 10.1016/j.mimet.2022.106625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Bacillus and related genera are among the main bacterial groups isolated from pharmaceutical production areas. The identification of Bacillus species and related genera by classical methods is particularly difficult, due to similarities between closely related species. The Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) is one of the most promising techniques for chemotaxonomic characterization of microorganisms, being an alternative to genotypic methods. This study aimed to identify Bacillus strains and related genera isolated from immunobiological production areas by phylogenetic analysis of housekeeping genes and expand the database associated with MALDI-TOF MS to improve their identification. In a previous study, 97 aerobic endospore-forming bacteria isolated from a pharmaceutical facility were analyzed by MALDI-TOF MS and 16S rRNA gene full-length sequencing. All strains were identified as Bacillus and related genera by the latest methodology. Among the 97 strains, 22 were unidentified and 2 strains were misidentified by MALDI-TOF MS. In the present study, these 24 strains were subjected to 16S rRNA gene phylogenetic analysis. Strains not identified at species level by this methodology were submitted to rpoB gene phylogenetic analysis. After identifying the strains, 19 of the 24 strains were incubated for 24, 48, and 72 h on Tryptic Soy Agar and Sheep Blood Agar and subjected to analysis by MALDI-TOF MS. A SuperSpectrum for each strain was created and entered into the equipment database. Finally, the 24 strains were again submitted to proteomic analysis by MALDI-TOF MS, and, at this time, all were correctly identified. The genotypic identification of in-house isolated strains and the introduction of these spectra in MALDI-TOF MS, in order to obtain a customized database, proved to be an extremely effective tool in the identification of Bacillus and related genera from pharmaceutical industry origin.
Collapse
Affiliation(s)
- Luciana Veloso da Costa
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Microbiological Control Laboratory, Brazil.
| | | | | | - Joyce Modesto de Andrade
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Microbiological Control Laboratory, Brazil
| | - Fernanda Ventura Cruz
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Microbiological Control Laboratory, Brazil
| | - Adriana Marques Frazão
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Microbiological Control Laboratory, Brazil
| | - Erica Louro da Fonseca
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Microbiological Control Laboratory, Brazil
| | - Juliana Nunes Ramos
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz (IOC), Interdisciplinary Medical Research Laboratory, Brazil
| | - Marcelo Luiz Lima Brandão
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Microbiological Control Laboratory, Brazil
| | - Verônica Viana Vieira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz (IOC), Interdisciplinary Medical Research Laboratory, Brazil
| |
Collapse
|
12
|
Pinar-Méndez A, Galofré B, Blanch AR, García-Aljaro C. Culture and molecular methods as complementary tools for water quality management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157789. [PMID: 35931155 DOI: 10.1016/j.scitotenv.2022.157789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Bacterial communities in a full-scale drinking water treatment plant (DWTP) were characterized using matrix-assisted laser desorption/ionization time of flight mass-spectrometry (MALDI-TOF MS) to identify HPC isolates and the obtained results were compared to 16S rRNA (V4) metabarcoding data acquired in a previous study. Sixty-three samples were collected at nine stages of the potabilization process: river water and groundwater intake, decantation, sand filtration, ozonization, carbon filtration, reverse osmosis, the mixing chamber and post-chlorination drinking water. In total, 1807 bacterial colonies were isolated, 32 % of which were successfully identified to at least the genus level by MALDI-TOF MS using our previously developed Drinking Water Library. Trends in diversity were similar by both approaches, but differences were observed in the detection of taxa, especially at lower hierarchy levels. High bacterial diversity was observed in river and groundwater, where Proteobacteria predominated. The diversity decreased significantly after the chlorination step, where Bacillus sp. (Firmicutes) and an unknown genus of Obscuribacteraceae (Cyanobacteria) were the most prevalent genera according to MALDI-TOF MS and metabarcoding, respectively. The two approaches gave similar results for the decantation, sand filtration and mixing chamber steps, where the most abundant taxon was Flavobacterium. The combined use of these culture-based and culture-independent methods to characterize microbial populations may help to better understand the role of bacteria in water treatment and quality, which will be of value for DWTP management.
Collapse
Affiliation(s)
- Anna Pinar-Méndez
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, Barcelona, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Belén Galofré
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, Barcelona, Spain
| | - Anicet R Blanch
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
13
|
Potekhina NV, Shashkov AS, Ariskina EV, Prisyazhnaya NV, Tul’skaya EM, Khasaeva FM, Evtushenko LI. Cell Wall Galactofuranan of “Paenarthrobacter pyridinovorans” VKM Ac-1098D. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722601361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Tarfeen N, Nisa KU, Nisa Q. MALDI-TOF MS: application in diagnosis, dereplication, biomolecule profiling and microbial ecology. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9340741 DOI: 10.1007/s43538-022-00085-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized scientific research over the past few decades and has provided a unique platform in ongoing technological developments. Undoubtedly, there has been a bloom chiefly in the field of biological sciences with this emerging technology, and has enabled researchers to generate critical data in the field of disease diagnoses, drug development, dereplication. It has received well acceptance in the field of microbial identification even at strain level, as well as diversified field like biomolecule profiling (proteomics and lipidomics) has evolved tremendously. Additionally, this approach has received a lot more attention over conventional technologies due to its high throughput, speed, and cost effectiveness. This review aims to provide a detailed insight regarding the application of MALDI-TOF MS in the context of medicine, biomolecule profiling, dereplication, and microbial ecology. In general, the expansion in the application of this technology and new advancements it has made in the field of science and technology has been highlighted.
Collapse
|
15
|
Flax B, Tortora A, Yeung Y, Schubert WW, McDonnell G. Dry Heat Sterilization Modeling for Spacecraft Applications. J Appl Microbiol 2022; 133:2893-2901. [DOI: 10.1111/jam.15748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Brian Flax
- Microbiological Quality & Sterility Assurance, Johnson & Johnson Raritan New Jersey USA
| | - Andrew Tortora
- Microbiological Quality & Sterility Assurance, Johnson & Johnson Raritan New Jersey USA
| | - Yen Yeung
- Microbiological Quality & Sterility Assurance, Johnson & Johnson Raritan New Jersey USA
| | - Wayne W. Schubert
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory California Institute of Technology Pasadena California USA
| | - Gerald McDonnell
- Microbiological Quality & Sterility Assurance, Johnson & Johnson Raritan New Jersey USA
| |
Collapse
|
16
|
Clark CM, Hernandez A, Mullowney MW, Fitz-Henley J, Li E, Romanowski SB, Pronzato R, Manconi R, Sanchez LM, Murphy BT. Relationship between bacterial phylotype and specialized metabolite production in the culturable microbiome of two freshwater sponges. ISME COMMUNICATIONS 2022; 2:22. [PMID: 37938725 PMCID: PMC9723699 DOI: 10.1038/s43705-022-00105-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/09/2023]
Abstract
Microbial drug discovery programs rely heavily on accessing bacterial diversity from the environment to acquire new specialized metabolite (SM) lead compounds for the therapeutic pipeline. Therefore, knowledge of how commonly culturable bacterial taxa are distributed in nature, in addition to the degree of variation of SM production within those taxa, is critical to informing these front-end discovery efforts and making the overall sample collection and bacterial library creation process more efficient. In the current study, we employed MALDI-TOF mass spectrometry and the bioinformatics pipeline IDBac to analyze diversity within phylotype groupings and SM profiles of hundreds of bacterial isolates from two Eunapius fragilis freshwater sponges, collected 1.5 km apart. We demonstrated that within two sponge samples of the same species, the culturable bacterial populations contained significant overlap in approximate genus-level phylotypes but mostly nonoverlapping populations of isolates when grouped lower than the level of genus. Further, correlations between bacterial phylotype and SM production varied at the species level and below, suggesting SM distribution within bacterial taxa must be analyzed on a case-by-case basis. Our results suggest that two E. fragilis freshwater sponges collected in similar environments can exhibit large culturable diversity on a species-level scale, thus researchers should scrutinize the isolates with analyses that take both phylogeny and SM production into account to optimize the chemical space entering into a downstream bacterial library.
Collapse
Affiliation(s)
- Chase M Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Antonio Hernandez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael W Mullowney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Jhewelle Fitz-Henley
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Emma Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sean B Romanowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Roberto Pronzato
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Renata Manconi
- Dipartimento Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Brian T Murphy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
17
|
van den Beld MJC, Rossen JWA, Evers N, Kooistra-Smid MAMD, Reubsaet FAG. MALDI-TOF MS Using a Custom-Made Database, Biomarker Assignment, or Mathematical Classifiers Does Not Differentiate Shigella spp. and Escherichia coli. Microorganisms 2022; 10:microorganisms10020435. [PMID: 35208889 PMCID: PMC8878589 DOI: 10.3390/microorganisms10020435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/22/2022] Open
Abstract
Shigella spp. and E. coli are closely related and cannot be distinguished using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) with commercially available databases. Here, three alternative approaches using MALDI-TOF MS to identify and distinguish Shigella spp., E. coli, and its pathotype EIEC were explored and evaluated using spectra of 456 Shigella spp., 42 E. coli, and 61 EIEC isolates. Identification with a custom-made database resulted in >94% Shigella identified at the genus level and >91% S. sonnei and S. flexneri at the species level, but the distinction of S. dysenteriae, S. boydii, and E. coli was poor. With biomarker assignment, 98% S. sonnei isolates were correctly identified, although specificity was low. Discriminating markers for S. dysenteriae, S. boydii, and E. coli were not assigned at all. Classification models using machine learning correctly identified Shigella in 96% of isolates, but most E. coli isolates were also assigned to Shigella. None of the proposed alternative approaches were suitable for clinical diagnostics for identifying Shigella spp., E. coli, and EIEC, reflecting their relatedness and taxonomical classification. We suggest the use of MALDI-TOF MS for the identification of the Shigella spp./E. coli complex, but other tests should be used for distinction.
Collapse
Affiliation(s)
- Maaike J. C. van den Beld
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (N.E.); (F.A.G.R.)
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.W.A.R.); (M.A.M.D.K.-S.)
- Correspondence: ; Tel.: +31-88-689-3454
| | - John W. A. Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.W.A.R.); (M.A.M.D.K.-S.)
- Department of Pathology, University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT 84132, USA
- Laboratory of Clinical Microbiology and Infectious Diseases, Isala Hospital, Dr. Van Heesweg 2, 8025 AB Zwolle, The Netherlands
| | - Noah Evers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (N.E.); (F.A.G.R.)
| | - Mirjam A. M. D. Kooistra-Smid
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.W.A.R.); (M.A.M.D.K.-S.)
- Department of Medical Microbiology, Certe, Van Swietenlaan 2, 9728 NZ Groningen, The Netherlands
| | - Frans A. G. Reubsaet
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (N.E.); (F.A.G.R.)
| |
Collapse
|
18
|
Assessment of VITEK® 2, MALDI-TOF MS and full gene 16S rRNA sequencing for aerobic endospore-forming bacteria isolated from a pharmaceutical facility. METHODS IN MICROBIOLOGY 2022; 194:106419. [DOI: 10.1016/j.mimet.2022.106419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/18/2022]
|
19
|
Buszewski B, Maślak E, Złoch M, Railean-Plugaru V, Kłodzińska E, Pomastowski P. A new approach to identifying pathogens, with particular regard to viruses, based on capillary electrophoresis and other analytical techniques. Trends Analyt Chem 2021; 139:116250. [PMID: 34776563 PMCID: PMC8573725 DOI: 10.1016/j.trac.2021.116250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fast determination, identification and characterization of pathogens is a significant challenge in many fields, from industry to medicine. Standard approaches (e.g., culture media and biochemical tests) are known to be very time-consuming and labor-intensive. Conversely, screening techniques demand a quick and low-cost grouping of microbial isolates, and current analysis call for broad reports of pathogens, involving the application of molecular, microscopy, and electromigration techniques, DNA fingerprinting and also MALDI-TOF methods. The present COVID-19 pandemic is a crisis that affects rich and poor countries alike. Detection of SARS-CoV-2 in patient samples is a critical tool for monitoring disease spread, guiding therapeutic decisions and devising social distancing protocols. The goal of this review is to present an innovative methodology based on preparative separation of pathogens by electromigration techniques in combination with simultaneous analysis of the proteome, lipidome, and genome using laser desorption/ionization analysis.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Ewelina Maślak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Ewa Kłodzińska
- Institute of Sport - National Research Institute, Department of Analytical Chemistry and Instrumental Analysis, 01-982, Warsaw, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| |
Collapse
|
20
|
Pinar-Méndez A, Fernández S, Baquero D, Vilaró C, Galofré B, González S, Rodrigo-Torres L, Arahal DR, Macián MC, Ruvira MA, Aznar R, Caudet-Segarra L, Sala-Comorera L, Lucena F, Blanch AR, Garcia-Aljaro C. Rapid and improved identification of drinking water bacteria using the Drinking Water Library, a dedicated MALDI-TOF MS database. WATER RESEARCH 2021; 203:117543. [PMID: 34433109 DOI: 10.1016/j.watres.2021.117543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/23/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
According to the European Directives (UE) 2020/2184 and 2009/54/EC, which establishes the sanitary criteria for water intended for human consumption in Europe, water suitable for human consumption must be free of the bacterial indicators Escherichia coli, Clostridium perfringens and Enterococcus spp. Drinking water is also monitored for heterotrophic bacteria, which are not a human health risk, but can serve as an index of bacteriological water quality. Therefore, a rapid, accurate, and cost-effective method for the identification of these colonies would improve our understanding of the culturable bacteria of drinking water and facilitate the task of water management by treatment facilities. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is potentially such a method, although most of the currently available mass spectral libraries have been developed in a clinical setting and have limited environmental applicability. In this work, a MALDI-TOF MS drinking water library (DWL) was defined and developed by targeting bacteria present in water intended for human consumption. This database, made up of 319 different bacterial strains, can contribute to the routine microbiological control of either treated drinking water or mineral bottled water carried out by water treatment and distribution operators, offering a faster identification rate compared to a clinical sample-based library. The DWL, made up of 96 bacterial genera, 44 of which are not represented in the MALDI-TOF MS bacterial Bruker Daltonics (BDAL) database, was found to significantly improve the identification of bacteria present in drinking water.
Collapse
Affiliation(s)
- Anna Pinar-Méndez
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, General Batet 1-7, Barcelona 08028, Spain; Department of Genetics, Microbiology and Statistics, University of Barcelona, Avinguda Diagonal, 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, Barcelona, Spain.
| | - Sonia Fernández
- Cetaqua, Water technology center, Cornellà de Llobregat, Spain
| | - David Baquero
- Cetaqua, Water technology center, Cornellà de Llobregat, Spain
| | - Carles Vilaró
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, General Batet 1-7, Barcelona 08028, Spain
| | - Belén Galofré
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, General Batet 1-7, Barcelona 08028, Spain
| | - Susana González
- Cetaqua, Water technology center, Cornellà de Llobregat, Spain
| | - Lidia Rodrigo-Torres
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universitat de València, Valencia, Spain
| | - David R Arahal
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universitat de València, Valencia, Spain
| | - M Carmen Macián
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universitat de València, Valencia, Spain
| | - María A Ruvira
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universitat de València, Valencia, Spain
| | - Rosa Aznar
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universitat de València, Valencia, Spain
| | - Laia Caudet-Segarra
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avinguda Diagonal, 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, Barcelona, Spain
| | - Laura Sala-Comorera
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avinguda Diagonal, 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, Barcelona, Spain
| | - Francisco Lucena
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avinguda Diagonal, 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, Barcelona, Spain
| | - Anicet R Blanch
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avinguda Diagonal, 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, Barcelona, Spain
| | - Cristina Garcia-Aljaro
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avinguda Diagonal, 643, 08028 Barcelona, Spain; The Water Research Institute, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
21
|
Han SS, Jeong YS, Choi SK. Current Scenario and Challenges in the Direct Identification of Microorganisms Using MALDI TOF MS. Microorganisms 2021; 9:microorganisms9091917. [PMID: 34576812 PMCID: PMC8466008 DOI: 10.3390/microorganisms9091917] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/12/2023] Open
Abstract
MALDI TOF MS-based microbial identification significantly lowers the operational costs because of minimal requirements of substrates and reagents for extraction. Therefore, it has been widely used in varied applications such as clinical, food, military, and ecological research. However, the MALDI TOF MS method is laced with many challenges including its limitation of the reference spectrum. This review briefly introduces the background of MALDI TOF MS technology, including sample preparation and workflow. We have primarily discussed the application of MALDI TOF MS in the identification of microorganisms. Furthermore, we have discussed the current trends for bioaerosol detection using MALDI TOF MS and the limitations and challenges involved, and finally the approaches to overcome these challenges.
Collapse
Affiliation(s)
- Sang-Soo Han
- Advanced Defense Science & Technology Research Institute, Agency for Defense Development, Daejeon 34186, Korea;
| | - Young-Su Jeong
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon 34186, Korea;
- Correspondence: ; Tel.: +82-42-821-4843; Fax: +82-42-823-3400
| | - Sun-Kyung Choi
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon 34186, Korea;
| |
Collapse
|
22
|
Alsayegh SY, Disi ZA, Al-Ghouti MA, Zouari N. Evaluation by MALDI-TOF MS and PCA of the diversity of biosurfactants and their producing bacteria, as adaption to weathered oil components. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00660. [PMID: 34557388 PMCID: PMC8446580 DOI: 10.1016/j.btre.2021.e00660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022]
Abstract
Indigenous Qatari bacterial strains were isolated from highly weathered oil-contaminated sites, identified, and differentiated based on their protein profiles using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Their diversity was demonstrated by the principal component analysis (PCA) analysis and establishment of a proteodendogram. Both were based on the protein profile of each strain. Interestingly, this approach also showed diversity within the same subspecies. This high diversity is reflected in the emulsification and solubilization activities of their extracellular biosurfactants. The highest emulsification activity (42.1 ± 2.11 AU/mL) was obtained with a strain of Lysinibacillus fusiformis (SA4) after one week of growth in the minimum salt medium in which diesel (5%) is the sole carbon source, while the highest solubilization activity (9.47% ± 0.47%) was produced by the strain Bacillus subtilis (SA6). The functional diversity of the biosurfactants was demonstrated by PCA analysis which allowed their further clustering based on the Fourier-transform infrared spectroscopy (FTIR) analysis. These findings clearly showed that two types of adaptations occur with hydrocarbons degrading bacteria in the weathered-oily soils, one related to the bacterial cell composition maintaining the biosurfactants composition and one to the biosurfactants, which are the primary tool employed by the cell to interact with the weathered oil. This finding would shed light on the potential and strategies of applications for the bioremediation of highly weathered oil-contaminated soils.
Collapse
Affiliation(s)
- Shaikha Y. Alsayegh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO. Box 2713, Doha, Qatar
| | - Zulfa Al Disi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO. Box 2713, Doha, Qatar
| | - Mohammad A. Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO. Box 2713, Doha, Qatar
| | - Nabil Zouari
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO. Box 2713, Doha, Qatar
| |
Collapse
|
23
|
Christensen SM, Munkres I, Vannette RL. Nectar bacteria stimulate pollen germination and bursting to enhance microbial fitness. Curr Biol 2021; 31:4373-4380.e6. [PMID: 34324834 DOI: 10.1016/j.cub.2021.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/27/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022]
Abstract
Many organisms consume pollen, yet mechanisms of its digestion remain a fundamental enigma in pollination biology,1-3 as pollen is protected by a recalcitrant outer shell.4-8 Pollen is commonly found in floral nectar,9,10 as are nectar microbes, which are nearly ubiquitous among flowers.11-13 Nectar specialist bacteria, like Acinetobacter, can reach high densities (up to 109 cells/mL), despite the fact that floral nectar is nitrogen poor.14-17 Here, we show evidence that the genus Acinetobacter, prevalent nectar- and bee-associated bacteria,12,18-20 can induce pollen germination and bursting, gain access to protoplasm nutrients, and thereby grow to higher densities. Although induced germination had been suggested as a potential method in macroscopic pollen consumers,2,21-23 and fungal inhibition of pollen germination has been shown,24-27 direct biological induction of germination has not been empirically documented outside of plants.28-32Acinetobacter pollinis SCC47719 induced over 5× greater pollen germination and 20× greater pollen bursting than that of uninoculated pollen by 45 min. When provided with germinable pollen, A. pollinis stimulates protein release and grows to nearly twice the density compared to growth with ungerminable pollen, indicating that stimulation of germination benefits bacterial fitness. In contrast, a common nectar-inhabiting yeast (Metschnikowia)33 neither induced nor benefited from pollen germination. We conclude that Acinetobacter both specifically causes and benefits from inducing pollen germination and bursting. Further study of microbe-pollen interactions may inform many aspects of pollination ecology, including floral microbial ecology,34,35 pollinator nutrient acquisition from pollen,2,3,21,36 and cues of pollen germination for plant reproduction.37-39.
Collapse
Affiliation(s)
- Shawn M Christensen
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA.
| | - Ivan Munkres
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| |
Collapse
|
24
|
LaMontagne MG, Tran PL, Benavidez A, Morano LD. Development of an inexpensive matrix-assisted laser desorption-time of flight mass spectrometry method for the identification of endophytes and rhizobacteria cultured from the microbiome associated with maize. PeerJ 2021; 9:e11359. [PMID: 34123583 PMCID: PMC8166240 DOI: 10.7717/peerj.11359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Many endophytes and rhizobacteria associated with plants support the growth and health of their hosts. The vast majority of these potentially beneficial bacteria have yet to be characterized, in part because of the cost of identifying bacterial isolates. Matrix-assisted laser desorption-time of flight (MALDI-TOF) has enabled culturomic studies of host-associated microbiomes but analysis of mass spectra generated from plant-associated bacteria requires optimization. In this study, we aligned mass spectra generated from endophytes and rhizobacteria isolated from heritage and sweet varieties of Zea mays. Multiple iterations of alignment attempts identified a set of parameters that sorted 114 isolates into 60 coherent MALDI-TOF taxonomic units (MTUs). These MTUs corresponded to strains with practically identical (>99%) 16S rRNA gene sequences. Mass spectra were used to train a machine learning algorithm that classified 100% of the isolates into 60 MTUs. These MTUs provided >70% coverage of aerobic, heterotrophic bacteria readily cultured with nutrient rich media from the maize microbiome and allowed prediction of the total diversity recoverable with that particular cultivation method. Acidovorax sp., Pseudomonas sp. and Cellulosimicrobium sp. dominated the library generated from the rhizoplane. Relative to the sweet variety, the heritage variety c ontained a high number of MTUs. The ability to detect these differences in libraries, suggests a rapid and inexpensive method of describing the diversity of bacteria cultured from the endosphere and rhizosphere of maize.
Collapse
Affiliation(s)
- Michael G LaMontagne
- Department of Biology and Biotechnology, University of Houston, Clear Lake, Houston, Texas, United States
| | - Phi L Tran
- Department of Biology and Biotechnology, University of Houston, Clear Lake, Houston, Texas, United States
| | - Alexander Benavidez
- Department of Natural Sciences, University of Houston, Downtown, Houston, Texas, United States
| | - Lisa D Morano
- Department of Natural Sciences, University of Houston, Downtown, Houston, Texas, United States
| |
Collapse
|
25
|
Blake KS, Choi J, Dantas G. Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria. Cell Mol Life Sci 2021; 78:2585-2606. [PMID: 33582841 PMCID: PMC8005480 DOI: 10.1007/s00018-020-03717-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
Hospital-associated infections are a major concern for global public health. Infections with antibiotic-resistant pathogens can cause empiric treatment failure, and for infections with multidrug-resistant bacteria which can overcome antibiotics of "last resort" there exists no alternative treatments. Despite extensive sanitization protocols, the hospital environment is a potent reservoir and vector of antibiotic-resistant organisms. Pathogens can persist on hospital surfaces and plumbing for months to years, acquire new antibiotic resistance genes by horizontal gene transfer, and initiate outbreaks of hospital-associated infections by spreading to patients via healthcare workers and visitors. Advancements in next-generation sequencing of bacterial genomes and metagenomes have expanded our ability to (1) identify species and track distinct strains, (2) comprehensively profile antibiotic resistance genes, and (3) resolve the mobile elements that facilitate intra- and intercellular gene transfer. This information can, in turn, be used to characterize the population dynamics of hospital-associated microbiota, track outbreaks to their environmental reservoirs, and inform future interventions. This review provides a detailed overview of the approaches and bioinformatic tools available to study isolates and metagenomes of hospital-associated bacteria, and their multi-layered networks of transmission.
Collapse
Affiliation(s)
- Kevin S Blake
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - JooHee Choi
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
26
|
Mhatre S, Singh NK, Wood JM, Parker CW, Pukall R, Verbarg S, Tindall BJ, Neumann-Schaal M, Venkateswaran K. Description of Chloramphenicol Resistant Kineococcus rubinsiae sp. nov. Isolated From a Spacecraft Assembly Facility. Front Microbiol 2020; 11:1957. [PMID: 32973710 PMCID: PMC7472656 DOI: 10.3389/fmicb.2020.01957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
A Gram-positive, coccoid, motile, aerobic bacterium, designated strain B12T was isolated from a Jet Propulsion Laboratory spacecraft assembly cleanroom, Pasadena, CA, United States. Strain B12T was resistant to chloramphenicol (100 μg/mL), and is a relatively slow grower (3-5 days optimal). Strain B12T was found to grow optimally at 28 to 32°C, pH 7 to 8, and 0.5% NaCl. Fatty acid methyl ester analysis showed that the major fatty acid of the strain B12T was anteiso C15 : 0 (66.3%), which is also produced by other Kineococcus species. However, arachidonic acid (C20 : 4 ω6,9,12,16c) was present in strain B12T and Kineococcus glutinatus YIM 75677T but absent in all other Kineococcus species. 16S rRNA analysis revealed that strain B12T was 97.9% similar to Kineococcus radiotolerans and falls within the Kineococcus clade. Low 16S rRNA gene sequence similarities (<94%) with other genera in the family Kineosporiaceae, including Angustibacter (93%), Kineosporia (94% to 95%), Pseudokineococcus (93%), Quadrisphaera (93%), and Thalassiella (94%) demonstrated that the strain B12T does not belong to these genera. Phylogenetic analysis of the gyrB gene show that all known Kineococcus species exhibited <86% sequence similarity with B12T. Multi-locus sequence and whole genome sequence analyses confirmed that B12T clades with other Kineococcus species. Average nucleotide identity of strain B12T were 75-78% with other Kineococcus species, while values ranged from 72-75% with species from other genera within family Kineosporiaceae. Average amino-acid identities were 66-72% with other Kineococcus species, while they ranged from 50-58% with species from other genera. The dDDH comparison of strain B12T genome with members of genera Kineococcus showed 20-22% similarity, again demonstrating that B12T is distantly related to other members of the genus. Furthermore, analysis of whole proteome deduced from WGS places strain B12T in order Kineosporiales, confirming that strain B12T is a novel member of family Kineosporiaceae. Based on these analyses and other genome characteristics, strain B12T is assigned to a novel species within the genus Kineococcus, and the name Kineococcus rubinsiae sp. nov., is proposed. The type strain is B12T (=FJII-L1-CM-PAB2T; NRRL B-65556T, DSM 110506T).
Collapse
Affiliation(s)
- Snehit Mhatre
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Nitin K. Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Jason M. Wood
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Ceth W. Parker
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Rüdiger Pukall
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Susanne Verbarg
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brian J. Tindall
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
27
|
Rcheulishvili N, Zhang Y, Papukashvili D, Deng YL. Survey and Evaluation of Spacecraft-Associated Aluminum-Degrading Microbes and Their Rapid Identification Methods. ASTROBIOLOGY 2020; 20:925-934. [PMID: 32783563 DOI: 10.1089/ast.2019.2078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aluminum corrosion has become a major obstacle in spacecraft construction given that aluminum is used extensively throughout the construction process. Despite its many attributes in strength and durability, aluminum is susceptible to corrosion, in particular, corrosion due to microbial contamination. Scientists have encountered a number of problems with microbial aluminum corrosion within spacecraft components. Here, we summarize recent findings with regard to the phenomenon of microbiologically influenced corrosion (MIC) on space stations in the context of microbial strains isolated from the Mir space station (Mir) and the International Space Station (ISS). Given that strains found on spacecraft are of terrestrial origin, an understanding of the contribution of Al-corrosive microbes to corrosion and related risks to space travel and astronaut health is essential for implementation of prevention strategies. Accordingly, an efficient rapid identification method of microbes with the capability to degrade aluminum is proposed. In particular, onboard implementation of a matrix-assisted laser desorption/ionization-time of flight mass spectrometer (MALDI-TOF MS) is addressed. The use of a MALDI-TOF MS on board spacecraft will be crucial to future successes in space travel given that traditional methods of identifying corrosive species are far more time-consuming. Identification of microbes by way of a MALDI-TOF MS may also aid in the study of microbial corrosion and be a valuable asset for MIC prevention.
Collapse
Affiliation(s)
- Nino Rcheulishvili
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, China
| | - Ying Zhang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, China
| | - Dimitri Papukashvili
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, China
| | - Yu-Lin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
28
|
Draft Genome Sequences of Six Strains Isolated from the InSight Spacecraft and Associated Surfaces Using Oxford Nanopore- and Illumina-Based Sequencing. Microbiol Resour Announc 2020; 9:9/21/e01161-19. [PMID: 32439680 PMCID: PMC7242682 DOI: 10.1128/mra.01161-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Whole-genome sequencing and annotation have allowed planetary protection engineers to assess the functional capabilities of microorganisms isolated from spacecraft hardware and associated surfaces. Here, we report draft genomes of six strains isolated from the InSight mission, determined using Oxford Nanopore- and Illumina-based sequencing. Whole-genome sequencing and annotation have allowed planetary protection engineers to assess the functional capabilities of microorganisms isolated from spacecraft hardware and associated surfaces. Here, we report draft genomes of six strains isolated from the InSight mission, determined using Oxford Nanopore- and Illumina-based sequencing.
Collapse
|
29
|
Custom Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometric Database for Identification of Environmental Isolates of the Genus Burkholderia and Related Genera. Appl Environ Microbiol 2020; 86:AEM.00354-20. [PMID: 32245762 DOI: 10.1128/aem.00354-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/13/2020] [Indexed: 11/20/2022] Open
Abstract
Success of discovery programs for microbial natural products is dependent on quick and concise discrimination between isolates from diverse environments. However, laboratory isolation and identification of priority genera using current 16S rRNA PCR-based methods are both challenging and time-consuming. An emerging strategy for rapid isolate discrimination is protein fingerprinting via matrix-assisted laser desorption ionization (MALDI) mass spectrometry. Using our in-house environmental isolate repository, we have created a main spectral (MSP) library for the Bruker Biotyper MALDI mass spectrometer that contains 95 entries, including Burkholderia, Caballeronia, Paraburkholderia, and other environmentally related genera. The library creation required the acquisition of over 2,250 mass spectra, which were manually reviewed for quality control and consolidated into a single reference library using a commercial software platform. We tested the effectiveness of the reference library by analyzing 49 environmental isolate strains using two different sample preparation methods. Overall, this approach correctly identified all strains to the genus level provided that suitable reference spectra were present in the MSP library. In this study, we present a fast, accurate method for taxonomic assignment of environmentally derived bacteria from the order Burkholderiales, providing a valuable alternative to traditional PCR-based methods. The MSP library described in the manuscript is available for use.IMPORTANCE The Gram-negative proteobacterial order Burkholderiales has emerged as a promising source of novel natural products in recent years. This order includes the genus Burkholderia and the newly defined genera Caballeronia and Paraburkholderia However, development of this resource has been hampered by difficulties with rapid and selective isolation of Burkholderiales strains from the environment. Environmental metagenome sequencing has revealed that the potential for natural products is not evenly distributed throughout the microbial world. Thus, large but targeted microbial isolate libraries are needed to effectively explore the chemical potential of natural products. To study these organisms efficiently, methods to quickly identify isolates to the genus level are required. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is already used in clinical settings to reliably identify unknown bacterial pathogens. We have adapted similar methodology using the MALDI Biotyper instrument to rapidly identify environmental isolates of Burkholderia, Caballeronia, and Paraburkholderia for downstream natural product discovery.
Collapse
|
30
|
Seuylemezian A, Ott L, Wolf S, Fragante J, Yip O, Pukall R, Schumann P, Vaishampayan P. Bacillus glennii sp. nov. and Bacillus saganii sp. nov., isolated from the vehicle assembly building at Kennedy Space Center where the Viking spacecraft were assembled. Int J Syst Evol Microbiol 2020; 70:71-76. [PMID: 31622233 DOI: 10.1099/ijsem.0.003714] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-positive, motile, endospore-forming, aerobic strains, designated V44-8T and V47-23aT, were isolated from environmental air sampling at the vehicle assembly building at Cape Canaveral, Florida, where the Viking spacecraft were assembled. Growth was observed at pH 7-9 (optimum, pH 9) for strain V44-8T, and pH 5-10 (pH 9) for strain V47-23aT. Both strains displayed growth in 0-5 % NaCl with an optimum at 1 % for strain V44-8T; 0 % for strain V47-23aT. Strains V44-8T and V47-23aT grew optimally at 32 °C, (15-32 °C) and 25 °C (20-45 °C), respectively. The cell wall of both strains contained meso-diaminopimelic acid as the diagnostic diamino acid. Both strains contained phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. The predominant cellular fatty acids were anteiso-C15 : 0, iso-C14 : 0 and iso-C15 : 0. Strain V47.23aT shared its highest 16S rRNA sequence similarity with Bacillus cavernae DSM-105484T at 96.9%, and V44.8T with Bacillus zeae DSM-103964T at 96.6 %. Based on their phenotypic characteristics and phylogenetic position inferred from 16S rRNA gene sequence analyses, the isolates were identified as being a members of the genus Bacillus that forms a separate clade when compared to close relatives. Average nucleotide identity and average amino acid identity values between strains V44-8T and DSM-103964T were 72.1% and 67.5 %; V47-23aT and DSM-105484T were 62.4% and 69.1%, respectively. Based on the phenotypic, genomic and biochemical data, strains V44-8T and V47-23aT represent two novel species in the genus Bacillus for which the names Bacillus glennii sp. nov. [type strain, V44-8T (=ATCC BAA-2860T =DSM 105192T)], and Bacillus saganii sp. nov. [V47-23aT (=ATCC BAA-2861T=DSM 105190T)] are proposed.
Collapse
Affiliation(s)
- Arman Seuylemezian
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Logan Ott
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Sarah Wolf
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Jomel Fragante
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Oscar Yip
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Rüdiger Pukall
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B D-38124 Braunschweig, Germany
| | - Peter Schumann
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B D-38124 Braunschweig, Germany
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
31
|
Kostas J, Parker KC. Using Matrix-Assisted Laser Desorption/Ionization Time of Flight Spectra To Elucidate Species Boundaries by Matching to Translated DNA Databases. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:73-84. [PMID: 32881510 DOI: 10.1021/jasms.9b00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A method has been established to map a bacterial colony to the ever-expanding database of publicly available bacterial genomes by means of matrix-assisted laser desorption/ionization (MALDI) spectra. To accomplish this, spectra are mapped to the predicted masses of ∼65 families of mostly ribosomal proteins. Each of the ∼40 000 bacterial strains in the database receives scores, together with tables listing identified protein sequences and how the highest ranking strains are related to one another. The approach was first confirmed with 16 distinct species of bacteria from the Vibrionales whose genome had been sequenced. Identifications of a few species of bacteria from environmental samples from compost, lakes, and streams in Massachusetts are also reported. Most of these organisms map to known species in the Gammaproteobacteria and Firmicutes. The clades of bacteria deducible from shared ribosomal protein sequences do not always correspond well to named bacterial species. Instead, the identifications made by this methodology indicate groupings of organisms that can readily be distinguished by MALDI-TOF and indicate which polymorphisms in highly conserved proteins demarcate the groupings. Successful identifications highlight organism interrelationships that can be deduced from the available genomes, sorting together genomes into new proposed clades typically consistent with relationships deduced from DNA sequence analysis. In contrast, if for a high-quality spectrum from a fresh colony, no group of related organisms receives high scores, one might infer that no closely related genome has yet been deposited into the database.
Collapse
Affiliation(s)
- James Kostas
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kenneth C Parker
- Virgin Instruments, 261 Cedar Hill Street, Suite 100, Marlborough, Massachusetts 01752, United States
| |
Collapse
|
32
|
Molecular characterization of Bacillus, lactic acid bacteria and yeast as potential probiotic isolated from fermented food. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
33
|
Costa MS, Clark CM, Ómarsdóttir S, Sanchez LM, Murphy BT. Minimizing Taxonomic and Natural Product Redundancy in Microbial Libraries Using MALDI-TOF MS and the Bioinformatics Pipeline IDBac. JOURNAL OF NATURAL PRODUCTS 2019; 82:2167-2173. [PMID: 31335140 PMCID: PMC7197193 DOI: 10.1021/acs.jnatprod.9b00168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Libraries of microorganisms have been a cornerstone of drug discovery efforts since the mid-1950s, but strain duplication in some libraries has resulted in unwanted natural product redundancy. In the current study, we implemented a workflow that minimizes both the natural product overlap and the total number of bacterial isolates in a library. Using a collection expedition to Iceland as an example, we purified every distinct bacterial colony off isolation plates derived from 86 environmental samples. We employed our mass spectrometry (MS)-based IDBac workflow on these isolates to form groups of taxa based on protein MS fingerprints (3-15 kDa) and further distinguished taxa subgroups based on their degree of overlap within corresponding natural product spectra (0.2-2 kDa). This informed the decision to create a library of 301 isolates spanning 54 genera. This process required only 25 h of data acquisition and 2 h of analysis. In a separate experiment, we reduced the size of an existing library based on the degree of metabolic overlap observed in natural product MS spectra of bacterial colonies (from 833 to 233 isolates, a 72.0% size reduction). Overall, our pipeline allows for a significant reduction in costs associated with library generation and minimizes natural product redundancy entering into downstream biological screening efforts.
Collapse
Affiliation(s)
- Maria S Costa
- Faculty of Pharmaceutical Sciences , University of Iceland , Hagi, Hofsvallagata 53 , IS-107 Reykjavík , Iceland
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| | - Chase M Clark
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| | - Sesselja Ómarsdóttir
- Faculty of Pharmaceutical Sciences , University of Iceland , Hagi, Hofsvallagata 53 , IS-107 Reykjavík , Iceland
| | - Laura M Sanchez
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| | - Brian T Murphy
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| |
Collapse
|
34
|
Metagenome to phenome approach enables isolation and genomics characterization of Kalamiella piersonii gen. nov., sp. nov. from the International Space Station. Appl Microbiol Biotechnol 2019; 103:4483-4497. [PMID: 31011775 DOI: 10.1007/s00253-019-09813-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
Abstract
Several evolutionarily distinct, near full-length draft metagenome-resolved genomes (MRG), were assembled from sequences recovered from the International Space Station (ISS) environments. The retrieval of MRGs facilitated the exploration of a large collection of archived strains (~ 500 isolates) and assisted in isolating seven related strains. The whole genome sequences (WGS) of seven ISS strains exhibited 100% identity to the 4.85 × 106 bp of four MRGs. The "metagenome to phenome" approach led to the description of a novel bacterial genus from the ISS samples. The phylogenomics and traditional taxonomic approaches suggested that these seven ISS strains and four MRGs were not phylogenetically affiliated to any validly described genera of the family Erwiniaceae, but belong to a novel genus with the proposed name Kalamiella. Comparative genomic analyses of Kalamiella piersonii strains and MRGs showed genes associated with carbohydrate (348 genes), amino acid (384), RNA (59), and protein (214) metabolisms; membrane transport systems (108), pathways for biosynthesis of cofactors, vitamins, prosthetic groups, and pigments (179); as well as mechanisms for virulence, disease, and defense (50). Even though Kalamiella genome annotation and disc diffusion tests revealed multidrug resistance, the PathogenFinder algorithm predicted that K. piersonii strains are not human pathogens. This approach to isolating microbes allows for the characterization of functional pathways and their potential virulence properties that can directly affect human health. The isolation of novel strains from the ISS has broad applications in microbiology, not only because of concern for astronaut health but it might have a great potential for biotechnological relevance. The metagenome to phenome approach will help to improve our understanding of complex metabolic networks that control fundamental life processes under microgravity and in deep space.
Collapse
|