1
|
Shrestha S, Goswami S, Banerjee D, Garcia V, Zhou E, Olmsted CN, Majumder ELW, Kumar D, Awasthi D, Mukhopadhyay A, Singer SW, Gladden JM, Simmons BA, Choudhary H. Perspective on Lignin Conversion Strategies That Enable Next Generation Biorefineries. CHEMSUSCHEM 2024; 17:e202301460. [PMID: 38669480 DOI: 10.1002/cssc.202301460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/14/2024] [Indexed: 04/28/2024]
Abstract
The valorization of lignin, a currently underutilized component of lignocellulosic biomass, has attracted attention to promote a stable and circular bioeconomy. Successful approaches including thermochemical, biological, and catalytic lignin depolymerization have been demonstrated, enabling opportunities for lignino-refineries and lignocellulosic biorefineries. Although significant progress in lignin valorization has been made, this review describes unexplored opportunities in chemical and biological routes for lignin depolymerization and thereby contributes to economically and environmentally sustainable lignin-utilizing biorefineries. This review also highlights the integration of chemical and biological lignin depolymerization and identifies research gaps while also recommending future directions for scaling processes to establish a lignino-chemical industry.
Collapse
Affiliation(s)
- Shilva Shrestha
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Shubhasish Goswami
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Valentina Garcia
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Biomanufacturing and Biomaterials, Sandia National Laboratories, Livermore, CA 94550, United States
| | - Elizabeth Zhou
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
| | - Charles N Olmsted
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Erica L-W Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Deepika Awasthi
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - John M Gladden
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Biomanufacturing and Biomaterials, Sandia National Laboratories, Livermore, CA 94550, United States
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Hemant Choudhary
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA 94550, United States
| |
Collapse
|
2
|
Frantsuzova E, Bogun A, Kopylova O, Vetrova A, Solyanikova I, Streletskii R, Delegan Y. Genomic, Phylogenetic and Physiological Characterization of the PAH-Degrading Strain Gordonia polyisoprenivorans 135. BIOLOGY 2024; 13:339. [PMID: 38785821 PMCID: PMC11117675 DOI: 10.3390/biology13050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
The strain Gordonia polyisoprenivorans 135 is able to utilize a wide range of aromatic compounds. The aim of this work was to study the features of genetic organization and biotechnological potential of the strain G. polyisoprenivorans 135 as a degrader of aromatic compounds. The study of the genome of the strain 135 and the pangenome of the G. polyisoprenivorans species revealed that some genes, presumably involved in PAH catabolism, are atypical for Gordonia and belong to the pangenome of Actinobacteria. Analyzing the intergenic regions of strain 135 alongside the "panIGRome" of G. polyisoprenivorans showed that some intergenic regions in strain 135 also differ from those located between the same pairs of genes in related strains. The strain G. polyisoprenivorans 135 in our work utilized naphthalene (degradation degree 39.43%) and grew actively on salicylate. At present, this is the only known strain of G. polyisoprenivorans with experimentally confirmed ability to utilize these compounds.
Collapse
Affiliation(s)
- Ekaterina Frantsuzova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Olga Kopylova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
- Pushchino Branch of Federal State Budgetary Educational Institution of Higher Education “Russian Biotechnology University (ROSBIOTECH)”, 142290 Pushchino, Moscow Region, Russia
| | - Anna Vetrova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Inna Solyanikova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
- Regional Microbiological Center, Belgorod State University, 308015 Belgorod, Russia
| | - Rostislav Streletskii
- Laboratory of Ecological Soil Science, Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| |
Collapse
|
3
|
Pereira-Mora L, Guerrero LD, Erijman L, Fernández-Scavino A. Tartrate fermentation with H 2 production by a new member of Sporomusaceae enriched from rice paddy soil. Appl Environ Microbiol 2024; 90:e0235123. [PMID: 38517167 PMCID: PMC11026083 DOI: 10.1128/aem.02351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024] Open
Abstract
In rice paddies, soil and plant-derived organic matter are degraded anaerobically to methane (CH4), a powerful greenhouse gas. The highest rate of methane emission occurs during the reproductive stage of the plant when mostly dicarboxylic acids are exudated by the roots. The emission of methane at this stage depends largely on the cooperative interaction between dicarboxylic acid-fermenting bacteria and methanogenic archaea in the rhizosphere. The fermentation of tartrate, one of the major acids exudated, has been scarcely explored in rice paddy soils. In this work, we characterized an anaerobic consortium from rice paddy soil composed of four bacterial strains, whose principal member (LT8) can ferment tartrate, producing H2 and acetate. Tartrate fermentation was accelerated by co-inoculation with a hydrogenotrophic methanogen. The assembled genome of LT8 possesses a Na+-dependent oxaloacetate decarboxylase and shows that this bacterium likely invests part of the H2 produced to reduce NAD(P)+ to assimilate C from tartrate. The phylogenetic analysis of the 16S rRNA gene, the genome-based classification as well as the average amino acid identity (AAI) indicated that LT8 belongs to a new genus within the Sporomusaceae family. LT8 shares a few common features with its closest relatives, for which tartrate degradation has not been described. LT8 is limited to a few environments but is more common in rice paddy soils, where it might contribute to methane emissions from root exudates.IMPORTANCEThis is the first report of the metabolic characterization of a new anaerobic bacterium able to degrade tartrate, a compound frequently associated with plants, but rare as a microbial metabolite. Tartrate fermentation by this bacterium can be coupled to methanogenesis in the rice rhizosphere where tartrate is mainly produced at the reproductive stage of the plant, when the maximum methane rate emission occurs. The interaction between secondary fermentative bacteria, such as LT8, and methanogens could represent a fundamental step in exploring mitigation strategies for methane emissions from rice fields. Possible strategies could include controlling the activity of these secondary fermentative bacteria or selecting plants whose exudates are more difficult to ferment.
Collapse
Affiliation(s)
- Luciana Pereira-Mora
- Laboratorio de Ecología Microbiana y Microbiología Ambiental, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Unidad Asociada de Microbiología del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Leandro D. Guerrero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Fernández-Scavino
- Laboratorio de Ecología Microbiana y Microbiología Ambiental, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Bahadori M, Chen C, Lewis S, Wang J, Shen J, Hou E, Rashti MR, Huang Q, Bainbridge Z, Stevens T. The origin of suspended particulate matter in the Great Barrier Reef. Nat Commun 2023; 14:5629. [PMID: 37699913 PMCID: PMC10497579 DOI: 10.1038/s41467-023-41183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
River run-off has long been regarded as the largest source of organic-rich suspended particulate matter (SPM) in the Great Barrier Reef (GBR), contributing to high turbidity, pollutant exposure and increasing vulnerability of coral reef to climate change. However, the terrestrial versus marine origin of the SPM in the GBR is uncertain. Here we provide multiple lines of evidence (13C NMR, isotopic and genetic fingerprints) to unravel that a considerable proportion of the terrestrially-derived SPM is degraded in the riverine and estuarine mixing zones before it is transported further offshore. The fingerprints of SPM in the marine environment were completely different from those of terrestrial origin but more consistent with that formed by marine phytoplankton. This result indicates that the SPM in the GBR may not have terrestrial origin but produced locally in the marine environment, which has significant implications on developing better-targeted management practices for improving water quality in the GBR.
Collapse
Affiliation(s)
- Mohammad Bahadori
- Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Chengrong Chen
- Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| | - Stephen Lewis
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Jupei Shen
- School of Geographical Sciences, Fujian Normal University, Fuzhou, PR China
| | - Enqing Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mehran Rezaei Rashti
- Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zoe Bainbridge
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| | - Tom Stevens
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
5
|
Peng Q, Lin L, Tu Q, Wang X, Zhou Y, Chen J, Jiao N, Zhou J. Unraveling the roles of coastal bacterial consortia in degradation of various lignocellulosic substrates. mSystems 2023; 8:e0128322. [PMID: 37417747 PMCID: PMC10469889 DOI: 10.1128/msystems.01283-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/12/2023] [Indexed: 07/08/2023] Open
Abstract
Lignocellulose, as the most abundant natural organic carbon on earth, plays a key role in regulating the global carbon cycle, but there have been only few studies in marine ecosystems. Little information is available about the extant lignin-degrading bacteria in coastal wetlands, limiting our understanding of their ecological roles and traits in lignocellulose degradation. We utilized in situ lignocellulose enrichment experiments coupled with 16S rRNA amplicon and shotgun metagenomics sequencing to identify and characterize bacterial consortia attributed to different lignin/lignocellulosic substrates in the southern-east intertidal zone of East China Sea. We found the consortia enriched on woody lignocellulose showed higher diversity than those on herbaceous substrate. This also revealed substrate-dependent taxonomic groups. A time-dissimilarity pattern with increased alpha diversity over time was observed. Additionally, this study identified a comprehensive set of genes associated with lignin degradation potential, containing 23 gene families involved in lignin depolymerization, and 371 gene families involved in aerobic/anaerobic lignin-derived aromatic compound pathways, challenging the traditional view of lignin recalcitrance within marine ecosystems. In contrast to similar cellulase genes among the lignocellulose substrates, significantly different ligninolytic gene groups were observed between consortia under woody and herbaceous substrates. Importantly, we not only observed synergistic degradation of lignin and hemi-/cellulose, but also pinpointed the potential biological actors at the levels of taxa and functional genes, which indicated that the alternation of aerobic and anaerobic catabolism could facilitate lignocellulose degradation. Our study advances the understanding of coastal bacterial community assembly and metabolic potential for lignocellulose substrates. IMPORTANCE It is essential for the global carbon cycle that microorganisms drive lignocellulose transformation, due to its high abundance. Previous studies were primarily constrained to terrestrial ecosystems, with limited information about the role of microbes in marine ecosystems. Through in situ lignocellulose enrichment experiment coupled with high-throughput sequencing, this study demonstrated different impacts that substrates and exposure times had on long-term bacterial community assembly and pinpointed comprehensive, yet versatile, potential decomposers at the levels of taxa and functional genes in response to different lignocellulose substrates. Moreover, the links between ligninolytic functional traits and taxonomic groups of substrate-specific populations were revealed. It showed that the synergistic effect of lignin and hemi-/cellulose degradation could enhance lignocellulose degradation under alternation of aerobic and anaerobic conditions. This study provides valuable taxonomic and genomic insights into coastal bacterial consortia for lignocellulose degradation.
Collapse
Affiliation(s)
- Qiannan Peng
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaopeng Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Yueyue Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
| | - Jiyu Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Joint Lab for Ocean Research and Education at Shandong University, Xiamen University and Dalhousie University, Qingdao, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma, USA
- School of Computer Science, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
6
|
Ley Y, Cheng XY, Ying ZY, Zhou NY, Xu Y. Characterization of Two Marine Lignin-Degrading Consortia and the Potential Microbial Lignin Degradation Network in Nearshore Regions. Microbiol Spectr 2023; 11:e0442422. [PMID: 37042774 PMCID: PMC10269927 DOI: 10.1128/spectrum.04424-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Terrestrial organic carbon such as lignin is an important component of the global marine carbon. However, the structural complexity and recalcitrant nature of lignin are deemed challenging for biodegradation. It has been speculated that bacteria play important roles in lignin degradation in the marine system. However, the extent of the involvement of marine microorganisms in lignin degradation and their contribution to the oceanic carbon cycle remains elusive. In this study, two bacterial consortia capable of degrading alkali lignin (a model compound of lignin), designated LIG-B and LIG-S, were enriched from the nearshore sediments of the East and South China Seas. Consortia LIG-B and LIG-S mainly comprised of the Proteobacteria phylum with Nitratireductor sp. (71.6%) and Halomonas sp. (91.6%), respectively. Lignin degradation was found more favorable in consortium LIG-B (max 57%) than in LIG-S (max 18%). Ligninolytic enzymes laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP) capable of decomposing lignin into smaller fragments were all active in both consortia. The newly emerged low-molecular-weight aromatics, organic acids, and other lignin-derived compounds in biotreated alkali lignin also evidently showed the depolymerization of lignin by both consortia. The lignin degradation pathways reconstructed from consortium LIG-S were found to be more comprehensive compared to consortium LIG-B. It was further revealed that catabolic genes, involved in the degradation of lignin and its derivatives through multiple pathways via protocatechuate and catechol, are present not only in lignin-degrading consortia LIG-B and LIG-S but also in 783 publicly available metagenomic-assembled genomes from nine nearshore regions. IMPORTANCE Numerous terrigenous lignin-containing plant materials are constantly discharged from rivers and estuaries into the marine system. However, only low levels of terrigenous organic carbon, especially lignin, are detected in the global marine system due to the abundance of active heterotrophic microorganisms driving the carbon cycle. Simultaneously, the lack of knowledge on lignin biodegradation has hindered our understanding of the oceanic carbon cycle. Moreover, bacteria have been speculated to play important roles in the marine lignin biodegradation. Here, we enriched two bacterial consortia from nearshore sediments capable of utilizing alkali lignin for cell growth while degrading it into smaller molecules and reconstructed the lignin degradation network. In particular, this study highlights that marine microorganisms in nearshore regions mostly undergo similar pathways using protocatechuate and catechol as ring-cleavage substrates to drive lignin degradation as part of the oceanic carbon cycle, regardless of whether they are in sediments or water column.
Collapse
Affiliation(s)
- Yvette Ley
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Yu Cheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Yue Ying
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Zvi-Kedem T, Vintila S, Kleiner M, Tchernov D, Rubin-Blum M. Metabolic handoffs between multiple symbionts may benefit the deep-sea bathymodioline mussels. ISME COMMUNICATIONS 2023; 3:48. [PMID: 37210404 PMCID: PMC10199937 DOI: 10.1038/s43705-023-00254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Bathymodioline mussels rely on thiotrophic and/or methanotrophic chemosynthetic symbionts for nutrition, yet, secondary heterotrophic symbionts are often present and play an unknown role in the fitness of the organism. The bathymodioline Idas mussels that thrive in gas seeps and on sunken wood in the Mediterranean Sea and the Atlantic Ocean, host at least six symbiont lineages that often co-occur. These lineages include the primary symbionts chemosynthetic methane- and sulfur-oxidizing gammaproteobacteria, and the secondary symbionts, Methylophagaceae, Nitrincolaceae and Flavobacteriaceae, whose physiology and metabolism are obscure. Little is known about if and how these symbionts interact or exchange metabolites. Here we curated metagenome-assembled genomes of Idas modiolaeformis symbionts and used genome-centered metatranscriptomics and metaproteomics to assess key symbiont functions. The Methylophagaceae symbiont is a methylotrophic autotroph, as it encoded and expressed the ribulose monophosphate and Calvin-Benson-Bassham cycle enzymes, particularly RuBisCO. The Nitrincolaceae ASP10-02a symbiont likely fuels its metabolism with nitrogen-rich macromolecules and may provide the holobiont with vitamin B12. The Urechidicola (Flavobacteriaceae) symbionts likely degrade glycans and may remove NO. Our findings indicate that these flexible associations allow for expanding the range of substrates and environmental niches, via new metabolic functions and handoffs.
Collapse
Affiliation(s)
- Tal Zvi-Kedem
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, 3108000, Israel
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Maxim Rubin-Blum
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa, 3108000, Israel.
| |
Collapse
|
8
|
Rammala B, Zhou N. Looking into the world's largest elephant population in search of ligninolytic microorganisms for biorefineries: a mini-review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:64. [PMID: 35689287 PMCID: PMC9188235 DOI: 10.1186/s13068-022-02159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Abstract
Gastrointestinal tracts (GIT) of herbivores are lignin-rich environments with the potential to find ligninolytic microorganisms. The occurrence of the microorganisms in herbivore GIT is a well-documented mutualistic relationship where the former benefits from the provision of nutrients and the latter benefits from the microorganism-assisted digestion of their recalcitrant lignin diets. Elephants are one of the largest herbivores that rely on the microbial anaerobic fermentation of their bulky recalcitrant low-quality forage lignocellulosic diet given their inability to break down major components of plant cells. Tapping the potential of these mutualistic associations in the biggest population of elephants in the whole world found in Botswana is attractive in the valorisation of the bulky recalcitrant lignin waste stream generated from the pulp and paper, biofuel, and agro-industries. Despite the massive potential as a feedstock for industrial fermentations, few microorganisms have been commercialised. This review focuses on the potential of microbiota from the gastrointestinal tract and excreta of the worlds' largest population of elephants of Botswana as a potential source of extremophilic ligninolytic microorganisms. The review further discusses the recalcitrance of lignin, achievements, limitations, and challenges with its biological depolymerisation. Methods of isolation of microorganisms from elephant dung and their improvement as industrial strains are further highlighted.
Collapse
Affiliation(s)
- Bame Rammala
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| |
Collapse
|
9
|
Lin L. Bottom-up synthetic ecology study of microbial consortia to enhance lignocellulose bioconversion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:14. [PMID: 35418100 PMCID: PMC8822760 DOI: 10.1186/s13068-022-02113-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/28/2022] [Indexed: 01/21/2023]
Abstract
Lignocellulose is the most abundant organic carbon polymer on the earth. Its decomposition and conversion greatly impact the global carbon cycle. Furthermore, it provides feedstock for sustainable fuel and other value-added products. However, it continues to be underutilized, due to its highly recalcitrant and heterogeneric structure. Microorganisms, which have evolved versatile pathways to convert lignocellulose, undoubtedly are at the heart of lignocellulose conversion. Numerous studies that have reported successful metabolic engineering of individual strains to improve biological lignin valorization. Meanwhile, the bottleneck of single strain modification is becoming increasingly urgent in the conversion of complex substrates. Alternatively, increased attention has been paid to microbial consortia, as they show advantages over pure cultures, e.g., high efficiency and robustness. Here, we first review recent developments in microbial communities for lignocellulose bioconversion. Furthermore, the emerging area of synthetic ecology, which is an integration of synthetic biology, ecology, and computational biology, provides an opportunity for the bottom-up construction of microbial consortia. Then, we review different modes of microbial interaction and their molecular mechanisms, and discuss considerations of how to employ these interactions to construct synthetic consortia via synthetic ecology, as well as highlight emerging trends in engineering microbial communities for lignocellulose bioconversion.
Collapse
Affiliation(s)
- Lu Lin
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
| |
Collapse
|
10
|
A novel Bacillus ligniniphilus catechol 2,3-dioxygenase shows unique substrate preference and metal requirement. Sci Rep 2021; 11:23982. [PMID: 34907211 PMCID: PMC8671467 DOI: 10.1038/s41598-021-03144-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/26/2021] [Indexed: 12/03/2022] Open
Abstract
Identification of novel enzymes from lignin degrading microorganisms will help to develop biotechnologies for biomass valorization and aromatic hydrocarbons degradation. Bacillus ligniniphilus L1 grows with alkaline lignin as the single carbon source and is a great candidate for ligninolytic enzyme identification. The first dioxygenase from strain L1 was heterologously expressed, purified, and characterized with an optimal temperature and pH of 32.5 °C and 7.4, respectively. It showed the highest activity with 3-ethylcatechol and significant activities with other substrates in the decreasing order of 3-ethylcatechol > 3-methylcatechol > 3-isopropyl catechol > 2, 3-dihydroxybiphenyl > 4-methylcatechol > catechol. It did not show activities against other tested substrates with similar structures. Most reported catechol 2,3-dioxygenases (C23Os) are Fe2+-dependent whereas Bacillus ligniniphilus catechol 2,3-dioxygenase (BLC23O) is more Mn2+- dependent. At 1 mM, Mn2+ led to 230-fold activity increase and Fe2+ led to 22-fold increase. Sequence comparison and phylogenetic analyses suggested that BL23O is different from other Mn-dependent enzymes and uniquely grouped with an uncharacterized vicinal oxygen chelate (VOC) family protein from Paenibacillus apiaries. Gel filtration analysis showed that BLC23O is a monomer under native condition. This is the first report of a C23O from Bacillus ligniniphilus L1 with unique substrate preference, metal-dependency, and monomeric structure.
Collapse
|
11
|
Sieradzki ET, Morando M, Fuhrman JA. Metagenomics and Quantitative Stable Isotope Probing Offer Insights into Metabolism of Polycyclic Aromatic Hydrocarbon Degraders in Chronically Polluted Seawater. mSystems 2021; 6:e00245-21. [PMID: 33975968 PMCID: PMC8125074 DOI: 10.1128/msystems.00245-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Bacterial biodegradation is a significant contributor to remineralization of polycyclic aromatic hydrocarbons (PAHs)-toxic and recalcitrant components of crude oil as well as by-products of partial combustion chronically introduced into seawater via atmospheric deposition. The Deepwater Horizon oil spill demonstrated the speed at which a seed PAH-degrading community maintained by chronic inputs responds to acute pollution. We investigated the diversity and functional potential of a similar seed community in the chronically polluted Port of Los Angeles (POLA), using stable isotope probing with naphthalene, deep-sequenced metagenomes, and carbon incorporation rate measurements at the port and in two sites in the San Pedro Channel. We demonstrate the ability of the community of degraders at the POLA to incorporate carbon from naphthalene, leading to a quick shift in microbial community composition to be dominated by the normally rare Colwellia and Cycloclasticus We show that metagenome-assembled genomes (MAGs) belonged to these naphthalene degraders by matching their 16S-rRNA gene with experimental stable isotope probing data. Surprisingly, we did not find a full PAH degradation pathway in those genomes, even when combining genes from the entire microbial community, leading us to hypothesize that promiscuous dehydrogenases replace canonical naphthalene degradation enzymes in this site. We compared metabolic pathways identified in 29 genomes whose abundance increased in the presence of naphthalene to generate genomic-based recommendations for future optimization of PAH bioremediation at the POLA, e.g., ammonium as opposed to urea, heme or hemoproteins as an iron source, and polar amino acids.IMPORTANCE Oil spills in the marine environment have a devastating effect on marine life and biogeochemical cycles through bioaccumulation of toxic hydrocarbons and oxygen depletion by hydrocarbon-degrading bacteria. Oil-degrading bacteria occur naturally in the ocean, especially where they are supported by chronic inputs of oil or other organic carbon sources, and have a significant role in degradation of oil spills. Polycyclic aromatic hydrocarbons are the most persistent and toxic component of crude oil. Therefore, the bacteria that can break those molecules down are of particular importance. We identified such bacteria at the Port of Los Angeles (POLA), one of the busiest ports worldwide, and characterized their metabolic capabilities. We propose chemical targets based on those analyses to stimulate the activity of these bacteria in case of an oil spill in the Port POLA.
Collapse
Affiliation(s)
- Ella T Sieradzki
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Michael Morando
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
12
|
Recovery and Community Succession of the Zostera marina Rhizobiome after Transplantation. Appl Environ Microbiol 2021; 87:AEM.02326-20. [PMID: 33187993 DOI: 10.1128/aem.02326-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022] Open
Abstract
Seagrasses can form mutualisms with their microbiomes that facilitate the exchange of energy sources, nutrients, and hormones and ultimately impact plant stress resistance. Little is known about community succession within the belowground seagrass microbiome after disturbance and its potential role in the plant's recovery after transplantation. We transplanted Zostera marina shoots with and without an intact rhizosphere and cultivated plants for 4 weeks while characterizing microbiome recovery and effects on plant traits. Rhizosphere and root microbiomes were compositionally distinct, likely representing discrete microbial niches. Furthermore, microbiomes of washed transplants were initially different from those of sod transplants and recovered to resemble an undisturbed state within 14 days. Conspicuously, changes in the microbial communities of washed transplants corresponded with changes in the rhizosphere sediment mass and root biomass, highlighting the strength and responsive nature of the relationship between plants, their microbiome, and the environment. Potential mutualistic microbes that were enriched over time include those that function in the cycling and turnover of sulfur, nitrogen, and plant-derived carbon in the rhizosphere environment. These findings highlight the importance and resilience of the seagrass microbiome after disturbance. Consideration of the microbiome will have meaningful implications for habitat restoration practices.IMPORTANCE Seagrasses are important coastal species that are declining globally, and transplantation can be used to combat these declines. However, the bacterial communities associated with seagrass rhizospheres and roots (the microbiome) are often disturbed or removed completely prior to transplantation. The seagrass microbiome benefits seagrasses through metabolite, nutrient, and phytohormone exchange and contributes to the ecosystem services of seagrass meadows by cycling sulfur, nitrogen, and carbon. This experiment aimed to characterize the importance and resilience of the seagrass belowground microbiome by transplanting Zostera marina with and without intact rhizospheres and tracking microbiome and plant morphological recovery over 4 weeks. We found the seagrass microbiome to be resilient to transplantation disturbance, recovering after 14 days. Additionally, microbiome recovery was linked with seagrass morphology, coinciding with increases in the rhizosphere sediment mass and root biomass. The results of this study can be used to include microbiome responses in informing future restoration work.
Collapse
|
13
|
Díaz-García L, Bugg TDH, Jiménez DJ. Exploring the Lignin Catabolism Potential of Soil-Derived Lignocellulolytic Microbial Consortia by a Gene-Centric Metagenomic Approach. MICROBIAL ECOLOGY 2020; 80:885-896. [PMID: 32572536 DOI: 10.1007/s00248-020-01546-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/15/2020] [Indexed: 05/25/2023]
Abstract
An exploration of the ligninolytic potential of lignocellulolytic microbial consortia can improve our understanding of the eco-enzymology of lignin conversion in nature. In this study, we aimed to detect enriched lignin-transforming enzymes on metagenomes from three soil-derived microbial consortia that were cultivated on "pre-digested" plant biomass (wheat straw, WS1-M; switchgrass, SG-M; and corn stover, CS-M). Of 60 selected enzyme-encoding genes putatively involved in lignin catabolism, 20 genes were significantly abundant in WS1-M, CS-M, and/or SG-M consortia compared with the initial forest soil inoculum metagenome (FS1). These genes could be involved in lignin oxidation (e.g., superoxide dismutases), oxidative stress responses (e.g., catalase/peroxidases), generation of protocatechuate (e.g., vanAB genes), catabolism of gentisate, catechol and 3-phenylpropionic acid (e.g., gentisate 1,2-dioxygenases, muconate cycloisomerases, and hcaAB genes), the beta-ketoadipate pathway (e.g., pcaIJ genes), and tolerance to lignocellulose-derived inhibitors (e.g., thymidylate synthases). The taxonomic affiliation of 22 selected lignin-transforming enzymes from WS1-M and CS-M consortia metagenomes revealed that Pseudomonadaceae, Alcaligenaceae, Sphingomonadaceae, Caulobacteraceae, Comamonadaceae, and Xanthomonadaceae are the key bacterial families in the catabolism of lignin. A predictive "model" was sketched out, where each microbial population has the potential to metabolize an array of aromatic compounds through different pathways, suggesting that lignin catabolism can follow a "task division" strategy. Here, we have established an association between functions and taxonomy, allowing a better understanding of lignin transformations in soil-derived lignocellulolytic microbial consortia, and pinpointing some bacterial taxa and catabolic genes as ligninolytic trait-markers.
Collapse
Affiliation(s)
- Laura Díaz-García
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | | | - Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
14
|
Lu P, Wang W, Zhang G, Li W, Jiang A, Cao M, Zhang X, Xing K, Peng X, Yuan B, Feng Z. Isolation and characterization marine bacteria capable of degrading lignin-derived compounds. PLoS One 2020; 15:e0240187. [PMID: 33027312 PMCID: PMC7540876 DOI: 10.1371/journal.pone.0240187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 09/22/2020] [Indexed: 11/30/2022] Open
Abstract
Lignin, a characteristic component of terrestrial plants. Rivers transport large amounts of vascular plant organic matter into the oceans where lignin can degrade over time; however, microorganisms involved in this degradation have not been identified. In this study, several bacterial strains were isolated from marine samples using the lignin-derived compound vanillic acid (4-hydroxy-3-methoxybenzoic acid) as the sole carbon and energy source. The optimum growth temperature for all isolates ranged from 30 to 35°C. All isolates grew well in a wide NaCl concentration range of 0 to over 50 g/L, with an optimum concentration of 22.8 g/L, which is the same as natural seawater. Phylogenetic analysis indicates that these strains are the members of Halomonas, Arthrobacter, Pseudoalteromonas, Marinomonas, and Thalassospira. These isolates are also able to use other lignin-derived compounds, such as 4-hydroxybenzoic acid, ferulic acid, syringic acid, and benzoic acid. Vanillic acid was detected in all culture media when isolates were grown on ferulic acid as the sole carbon source; however, no 4-hydroxy-3-methoxystyrene was detected, indicating that ferulic acid metabolism by these strains occurs via the elimination of two side chain carbons. Furthermore, the isolates exhibit 3,4-dioxygenase or 4,5-dioxygenase activity for protocatechuic acid ring-cleavage, which is consistent with the genetic sequences of related genera. This study was conducted to isolate and characterize marine bacteria of degrading lignin-derived compounds, thereby revealing the degradation of aromatic compounds in the marine environment and opening up new avenues for the development and utilization of marine biological resources.
Collapse
Affiliation(s)
- Peng Lu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Weinan Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Guangxi Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Wen Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Anjie Jiang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mengjiao Cao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiaoyan Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ke Xing
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xue Peng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Bo Yuan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhaozhong Feng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
15
|
Cragg SM, Friess DA, Gillis LG, Trevathan-Tackett SM, Terrett OM, Watts JEM, Distel DL, Dupree P. Vascular Plants Are Globally Significant Contributors to Marine Carbon Fluxes and Sinks. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:469-497. [PMID: 31505131 DOI: 10.1146/annurev-marine-010318-095333] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
More than two-thirds of global biomass consists of vascular plants. A portion of the detritus they generate is carried into the oceans from land and highly productive blue carbon ecosystems-salt marshes, mangrove forests, and seagrass meadows. This large detrital input receives scant attention in current models of the global carbon cycle, though for blue carbon ecosystems, increasingly well-constrained estimates of biomass, productivity, and carbon fluxes, reviewed in this article, are now available. We show that the fate of this detritus differs markedly from that of strictly marine origin, because the former contains lignocellulose-an energy-rich polymer complex of cellulose, hemicelluloses, and lignin that is resistant to enzymatic breakdown. This complex can be depolymerized for nutritional purposes by specialized marine prokaryotes, fungi, protists, and invertebrates using enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases to release sugar monomers. The lignin component, however, is less readily depolymerized, and detritus therefore becomes lignin enriched, particularly in anoxic sediments, and forms a major carbon sink in blue carbon ecosystems. Eventual lignin breakdown releases a wide variety of small molecules that may contribute significantly to the oceanic pool of recalcitrant dissolved organic carbon. Marine carbon fluxes and sinks dependent on lignocellulosic detritus are important ecosystem services that are vulnerable to human interventions. These services must be considered when protecting blue carbon ecosystems and planning initiatives aimed at mitigating anthropogenic carbon emissions.
Collapse
Affiliation(s)
- Simon M Cragg
- Institute of Marine Sciences, University of Portsmouth, Portsmouth PO4 9LY, United Kingdom;
| | - Daniel A Friess
- Department of Geography, National University of Singapore, Singapore 117570;
| | - Lucy G Gillis
- Leibniz-Zentrum für Marine Tropenforschung (ZMT), 28359 Bremen, Germany;
| | - Stacey M Trevathan-Tackett
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Burwood, Victoria 3125, Australia;
| | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; ,
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom;
| | - Daniel L Distel
- Ocean Genome Legacy Center of New England Biolabs, Marine Science Center, Northeastern University, Nahant, Massachusetts 01908, USA;
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; ,
| |
Collapse
|
16
|
Radl V, Winkler JB, Kublik S, Yang L, Winkelmann T, Vestergaard G, Schröder P, Schloter M. Reduced microbial potential for the degradation of phenolic compounds in the rhizosphere of apple plantlets grown in soils affected by replant disease. ENVIRONMENTAL MICROBIOME 2019; 14:8. [PMID: 33902732 PMCID: PMC8204438 DOI: 10.1186/s40793-019-0346-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/07/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Apple replant disease (ARD) is a syndrome that occurs in areas where apple plants or closely related species have been previously cultivated. Even though ARD is a well-known phenomenon, which has been observed in different regions worldwide and occurs independent of the soil type, its causes still remain unclear. RESULTS As expected, the biomass of plants grown in replant soil was significantly lower compared to those grown in control (virgin) soil. A shotgun metagenome analysis showed a clear differentiation between the rhizosphere and bulk soil compartments independent from the soil used. However, significant differences associated with apple replant disease were only observed in the rhizosphere compartment, for which we detected changes in the abundance of major bacterial genera. Interestingly, reads assigned to Actinobacteria were significantly reduced in relative abundance in rhizosphere samples of the soil affected by replant disease. Even though reads assigned to pathogenic fungi were detected, their relative abundance was low and did not differ significantly between the two different soils. Differences in microbiome structure also resulted in shifts in functional pattern. We observed an increase in genes related to stress sensing in the rhizosphere of soils affected by replant disease, whereas genes linked to nutrient sensing and uptake dominated in control soils. Moreover, we observed a lower abundance of genes coding for enzymes which trigger the degradation of aromatic compounds in rhizosphere of soils affected by replant disease, which is probably connected with higher concentration of phenolic compounds, generally associated with disease progression. CONCLUSIONS Our study shows, for the first time, how apple replanting affects soil functioning by altering the soil microbiome. Particularly, the decrease in the abundance of genes which code for enzymes catalyzing the degradation of aromatic compounds, observed in the rhizosphere of plants grown in soil affected by apple replant disease, is of interest. Apple rootstocks are known to synthetize many phenolic compounds, including defense related phytoalexins, which have been considered for long to be connected with the emergence of replant disease. The knowledge gained in this study might help to develop targeted strategies to overcome or at least reduce the effects of ARD symptoms.
Collapse
Affiliation(s)
- Viviane Radl
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Munich, Germany
| | - Jana Barbro Winkler
- Research Unit Environmental Simulations, Helmholtz Zentrum München, Munich, Germany
| | - Susanne Kublik
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Munich, Germany
| | - Luhua Yang
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Munich, Germany
| | - Traud Winkelmann
- Woody Plant and Propagation Physiology Section, Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hanover, Germany
| | - Gisle Vestergaard
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Munich, Germany
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | - Peter Schröder
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Munich, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|