1
|
Kremer M, Schulze S, Eisenbruch N, Nagel F, Vogt R, Berndt L, Dörre B, Palm GJ, Hoppen J, Girbardt B, Albrecht D, Sievers S, Delcea M, Baumann U, Schnetz K, Lammers M. Bacteria employ lysine acetylation of transcriptional regulators to adapt gene expression to cellular metabolism. Nat Commun 2024; 15:1674. [PMID: 38395951 PMCID: PMC10891134 DOI: 10.1038/s41467-024-46039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The Escherichia coli TetR-related transcriptional regulator RutR is involved in the coordination of pyrimidine and purine metabolism. Here we report that lysine acetylation modulates RutR function. Applying the genetic code expansion concept, we produced site-specifically lysine-acetylated RutR proteins. The crystal structure of lysine-acetylated RutR reveals how acetylation switches off RutR-DNA-binding. We apply the genetic code expansion concept in E. coli in vivo revealing the consequences of RutR acetylation on the transcriptional level. We propose a model in which RutR acetylation follows different kinetic profiles either reacting non-enzymatically with acetyl-phosphate or enzymatically catalysed by the lysine acetyltransferases PatZ/YfiQ and YiaC. The NAD+-dependent sirtuin deacetylase CobB reverses enzymatic and non-enzymatic acetylation of RutR playing a dual regulatory and detoxifying role. By detecting cellular acetyl-CoA, NAD+ and acetyl-phosphate, bacteria apply lysine acetylation of transcriptional regulators to sense the cellular metabolic state directly adjusting gene expression to changing environmental conditions.
Collapse
Affiliation(s)
- Magdalena Kremer
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Sabrina Schulze
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Nadja Eisenbruch
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Felix Nagel
- Institute of Biochemistry, Department of Biophysical Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Robert Vogt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Leona Berndt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Babett Dörre
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Gottfried J Palm
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Jens Hoppen
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Britta Girbardt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Susanne Sievers
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Institute of Biochemistry, Department of Biophysical Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Michael Lammers
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany.
| |
Collapse
|
2
|
Guebel DV. Human hippocampal astrocytes: Computational dissection of their transcriptome, sexual differences and exosomes across ageing and mild-cognitive impairment. Eur J Neurosci 2023; 58:2677-2707. [PMID: 37427765 DOI: 10.1111/ejn.16081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/20/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023]
Abstract
The role of astrocytes in Alzheimer's disease is often disregarded. Hence, characterization of astrocytes along their early evolution toward Alzheimer would be greatly beneficial. However, due to their exquisite responsiveness, in vivo studies are difficult. So public microarray data of hippocampal homogenates from (healthy) young, (healthy) elder and elder with mild cognitive impairment (MCI) were subjected to re-analysis by a multi-step computational pipeline. Ontologies and pathway analyses were compared after determining the differential genes that, belonging to astrocytes, have splice forms. Likewise, the subset of molecules exportable to exosomes was also determined. The results showed that astrocyte's phenotypes changed significantly. While already 'activated' astrocytes were found in the younger group, major changes occurred during ageing (increased vascular remodelling and response to mechanical stimulus, diminished long-term potentiation and increased long-term depression). MCI's astrocytes showed some 'rejuvenated' features, but their sensitivity to shear stress was markedly lost. Importantly, most of the changes showed to be sex biassed. Men's astrocytes are enriched in a type 'endfeet-astrocytome', whereas women's astrocytes appear close to the 'scar-forming' type (prone to endothelial dysfunction, hypercholesterolemia, loss of glutamatergic synapses, Ca+2 dysregulation, hypoxia, oxidative stress and 'pro-coagulant' phenotype). In conclusion, the computational dissection of the networks based on the hippocampal gene isoforms provides a relevant proxy to in vivo astrocytes, also revealing the occurrence of sexual differences. Analyses of the astrocytic exosomes did not provide an acceptable approximation to the overall functioning of astrocytes in the hippocampus, probably due to the selective cellular mechanisms which charge the cargo molecules.
Collapse
|
3
|
Guebel DV, Torres NV, Acebes Á. Mapping the transcriptomic changes of endothelial compartment in human hippocampus across aging and mild cognitive impairment. Biol Open 2021; 10:bio057950. [PMID: 34184731 PMCID: PMC8181899 DOI: 10.1242/bio.057950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Compromise of the vascular system has important consequences on cognitive abilities and neurodegeneration. The identification of the main molecular signatures present in the blood vessels of human hippocampus could provide the basis to understand and tackle these pathologies. As direct vascular experimentation in hippocampus is problematic, we achieved this information by computationally disaggregating publicly available whole microarrays data of human hippocampal homogenates. Three conditions were analyzed: 'Young Adults', 'Aged', and 'aged with Mild Cognitive Impairment' (MCI). The genes identified were contrasted against two independent data-sets. Here we show that the endothelial cells from the Younger Group appeared in an 'activated stage'. In turn, in the Aged Group, the endothelial cells showed a significant loss of response to shear stress, changes in cell adhesion molecules, increased inflammation, brain-insulin resistance, lipidic alterations, and changes in the extracellular matrix. Some specific changes in the MCI group were also detected. Noticeably, in this study the features arisen from the Aged Group (high tortuosity, increased bifurcations, and smooth muscle proliferation), pose the need for further experimental verification to discern between the occurrence of arteriogenesis and/or vascular remodeling by capillary arterialization. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daniel V. Guebel
- Program Agustín de Betancourt, Universidad de La Laguna, Tenerife 38200, Spain
- Department of Biochemistry, Cellular Biology and Genetics, Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife 38200, Spain
| | - Néstor V. Torres
- Department of Biochemistry, Cellular Biology and Genetics, Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife 38200, Spain
| | - Ángel Acebes
- Department of Basic Medical Sciences, Institute of Biomedical Technologies, University of La Laguna, Tenerife 38200, Spain
| |
Collapse
|
4
|
Li S, Ye Z, Moreb EA, Hennigan JN, Castellanos DB, Yang T, Lynch MD. Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli. Metab Eng 2021; 64:26-40. [PMID: 33460820 DOI: 10.1016/j.ymben.2021.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/23/2020] [Accepted: 01/10/2021] [Indexed: 12/24/2022]
Abstract
We report improved NADPH flux and xylitol biosynthesis in engineered E. coli. Xylitol is produced from xylose via an NADPH dependent reductase. We utilize 2-stage dynamic metabolic control to compare two approaches to optimize xylitol biosynthesis, a stoichiometric approach, wherein competitive fluxes are decreased, and a regulatory approach wherein the levels of key regulatory metabolites are reduced. The stoichiometric and regulatory approaches lead to a 20-fold and 90-fold improvement in xylitol production, respectively. Strains with reduced levels of enoyl-ACP reductase and glucose-6-phosphate dehydrogenase, led to altered metabolite pools resulting in the activation of the membrane bound transhydrogenase and an NADPH generation pathway, consisting of pyruvate ferredoxin oxidoreductase coupled with NADPH dependent ferredoxin reductase, leading to increased NADPH fluxes, despite a reduction in NADPH pools. These strains produced titers of 200 g/L of xylitol from xylose at 86% of theoretical yield in instrumented bioreactors. We expect dynamic control over the regulation of the membrane bound transhydrogenase as well as NADPH production through pyruvate ferredoxin oxidoreductase to broadly enable improved NADPH dependent bioconversions or production via NADPH dependent metabolic pathways.
Collapse
Affiliation(s)
- Shuai Li
- Department of Chemistry, Duke University, USA
| | - Zhixia Ye
- Department of Biomedical Engineering, Duke University, USA
| | - Eirik A Moreb
- Department of Biomedical Engineering, Duke University, USA
| | | | | | - Tian Yang
- Department of Biomedical Engineering, Duke University, USA
| | | |
Collapse
|
5
|
|
6
|
de Oliveira Barbosa F, de Freitas Neto OC, Rodrigues Alves LB, Benevides VP, de Souza AIS, da Silva Rubio M, de Almeida AM, Saraiva MM, de Oliveira CJB, Olsen JE, Junior AB. Immunological and bacteriological shifts associated with a flagellin-hyperproducing Salmonella Enteritidis mutant in chickens. Braz J Microbiol 2020; 52:419-429. [PMID: 33150477 DOI: 10.1007/s42770-020-00399-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022] Open
Abstract
Salmonella Enteritidis causes infections in humans and animals which are often associated with extensive gut colonization and bacterial shedding in faeces. The natural presence of flagella in Salmonella enterica has been shown to be enough to induce pro-inflammatory responses in the gut, resulting in recruitment of polymorphonuclear cells, gut inflammation and, consequently, reducing the severity of systemic infection in chickens. On the other hand, the absence of flagellin in some Salmonella strains favours systemic infection as a result of the poor intestinal inflammatory responses elicited. The hypothesis that higher production of flagellin by certain Salmonella enterica strains could lead to an even more immunogenic and less pathogenic strain for chickens was here investigated. In the present study, a Salmonella Enteritidis mutant strain harbouring deletions in clpP and fliD genes (SE ΔclpPfliD), which lead to overexpression of flagellin, was generated, and its immunogenicity and pathogenicity were comparatively assessed to the wild type in chickens. Our results showed that SE ΔclpPfliD elicited more intense immune responses in the gut during early stages of infection than the wild type did, and that this correlated with earlier intestinal and systemic clearance of the bacterium.
Collapse
Affiliation(s)
- Fernanda de Oliveira Barbosa
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Oliveiro Caetano de Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Lucas Bocchini Rodrigues Alves
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Valdinete Pereira Benevides
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Andrei Itajahy Secundo de Souza
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Marcela da Silva Rubio
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Adriana Maria de Almeida
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Mauro Mesquita Saraiva
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| | - Celso José Bruno de Oliveira
- Department of Animal Science, Center for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Angelo Berchieri Junior
- Department of Veterinary Pathology from the School of Agriculture and Veterinarian Sciences (FCAV), Jaboticabal, State University of São Paulo, Jaboticabal, Brazil
| |
Collapse
|
7
|
Kim JE, Choi JS, Kim JS, Cho YH, Roe JH. Lysine acetylation of the housekeeping sigma factor enhances the activity of the RNA polymerase holoenzyme. Nucleic Acids Res 2020; 48:2401-2411. [PMID: 31970401 PMCID: PMC7049703 DOI: 10.1093/nar/gkaa011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/28/2019] [Accepted: 01/04/2020] [Indexed: 02/03/2023] Open
Abstract
Protein lysine acetylation, one of the most abundant post-translational modifications in eukaryotes, occurs in prokaryotes as well. Despite the evidence of lysine acetylation in bacterial RNA polymerases (RNAPs), its function remains unknown. We found that the housekeeping sigma factor (HrdB) was acetylated throughout the growth of an actinobacterium, Streptomyces venezuelae, and the acetylated HrdB was enriched in the RNAP holoenzyme complex. The lysine (K259) located between 1.2 and 2 regions of the sigma factor, was determined to be the acetylated residue of HrdB in vivo by LC–MS/MS analyses. Specifically, the label-free quantitative analysis revealed that the K259 residues of all the HrdB subunits were acetylated in the RNAP holoenzyme. Using mutations that mimic or block acetylation (K259Q and K259R), we found that K259 acetylation enhances the interaction of HrdB with the RNAP core enzyme as well as the binding activity of the RNAP holoenzyme to target promoters in vivo. Taken together, these findings provide a novel insight into an additional layer of modulation of bacterial RNAP activity.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Joon-Sun Choi
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - Jung-Hye Roe
- Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|